Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceutricals for joint health

Ali Mobasheri, Yves Henrotin, Hans-Konrad Biesalski, Mehdi Shakibaei, Ali Mobasheri, Yves Henrotin, Hans-Konrad Biesalski, Mehdi Shakibaei

Abstract

Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods.

Keywords: OA; RA; articular cartilage; curcumin; functional food; osteoarthritis; phytochemical; resveratrol; rheumatoid arthritis.

Figures

Figure 1
Figure 1
Structure of human articular cartilage. This figure illustrates a sample of human cartilage from a tissue microarray developed by the Cooperative Human Tissue Network (CHTN) [22] of the National Cancer Institute [23]. Cartilage is predominantly an avascular, aneural and alymphatic load-bearing connective tissue consisting of a single cell type known as the chondrocyte. Blood vessels are only present in subchondral bone.
Figure 2
Figure 2
Molecular composition of the ECM of articular cartilage. The major collagenous and non-collagenous components of the territorial and interterritorial cartilage ECM are illustrated.
Figure 3
Figure 3
Summary of the major molecular and cellular changes that occur in the synovial joint during inflammation in OA. Summary of the major synovial, chondral and subchondral changes observed in OA. This schematic also highlights the actions of various white blood cells and inflammatory mediators in OA. Chondral changes include cartilage fragmentation (fibrillation), cartilage degradation and loss of collagen type II and glycosaminoglycans, chondrocyte apoptosis (hypocellularity) and matrix mineralization. Synovial membrane changes in OA include inflammation, synovial hypertrophy, recruitment and activation of T cells, macrophages and fibroblasts, production of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS). Synovial fluid alterations in OA include accumulation of MMPs and ROS, release of IL-1β, TNF-α and other proinflammatory cytokines (IL-6, IL-8), release of inflammatory pain mediators such as prostaglandin E2 (PGE2), formation of degradative products and microcrystals. Subchondral alterations in OA include subchondral sclerosis (i.e., eburnation), osteoblast mediated subchondral bone formation, proteolysis (degradation) of IGF-I and IGF-I binding proteins, increased production of some growth factors and cytokines including: transforming growth factor β, TGF-β, PGE2; interleukin 6, IL-6 and IGF-I.
Figure 4
Figure 4
Schematic of the effects of curcumin on the TNF-α receptor and its downstream signaling pathway. The biochemical pathway illustrated here was generated by text mining and makes use of a collection of canonical Ariadne pathways in addition to MedScan text mining.

References

    1. Oeppen J., Vaupel J.W. The Disability Study Expert Group Members. Demography. Broken limits to life expectancy. Science. 2002;296:1029–1031.
    1. Lafortune G., Balestat G. Trends in Severe Disability Among Elderly People: Assessing the Evidence in 12 OECD Countries and the Future Implications. [accessed on 20 March 2012]. Available online: .
    1. The World Health Organization Home Page. [accessed on 20 March 2012]. Available online:
    1. Weigl M., Cieza A., Cantista P., Reinhardt J.D., Stucki G. Determinants of disability in chronic musculoskeletal health conditions: A literature review. Eur. J. Phys. Rehabil. Med. 2008;44:67–79.
    1. Woolf A.D., Pfleger B. Burden of major musculoskeletal conditions. Bull. World Health Organ. 2003;81:646–656.
    1. McGowan J.A. Perspectives on the future of bone and joint diseases. J. Rheumatol. Suppl. 2003;67:62–64.
    1. The Bone and Joint Decade. [accessed on 20 March 2012]. Available online:
    1. Brooks P.M. Impact of osteoarthritis on individuals and society: how much disability? Social consequences and health economic implications. Curr. Opin. Rheumatol. 2002;14:573–577.
    1. Brooks P.M. The burden of musculoskeletal disease—A global perspective. Clin. Rheumatol. 2006;25:778–781.
    1. Buckwalter J.A., Mankin H.J. Articular cartilage: Degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 1998;47:487–504.
    1. Buckwalter J.A., Mankin H.J., Grodzinsky A.J. Articular cartilage and osteoarthritis. Instr. Course Lect. 2005;54:465–480.
    1. Buckwalter J.A., Martin J., Mankin H.J. Synovial joint degeneration and the syndrome of osteoarthritis. Instr. Course Lect. 2000;49:481–489.
    1. Sutton S., Clutterbuck A., Harris P., Gent T., Freeman S., Foster N., Barrett-Jolley R., Mobasheri A. The contribution of the synovium, synovial derived inflammatory cytokines and neuropeptides to the pathogenesis of osteoarthritis. Vet. J. 2009;179:10–24.
    1. Shane Anderson A., Loeser R.F. Why is osteoarthritis an age-related disease? Best Pract. Res. Clin. Rheumatol. 2010;24:15–26.
    1. Sharma L., Kapoor D., Issa S. Epidemiology of osteoarthritis: An update. Curr. Opin. Rheumatol. 2006;18:147–156.
    1. Cushnaghan J., Dieppe P. Study of 500 patients with limb joint osteoarthritis. I. Analysis by age, sex, and distribution of symptomatic joint sites. Ann. Rheum. Dis. 1991;50:8–13.
    1. Felson D.T. Risk factors for osteoarthritis: Understanding joint vulnerability. Clin. Orthop. Relat. Res. 2004;427:S16–S21.
    1. Lees P. Pharmacology of drugs used to treat osteoarthritis in veterinary practice. Inflammopharmacology. 2003;11:385–399.
    1. Ilyin S.E., Belkowski S.M., Plata-Salaman C.R. Biomarker discovery and validation: Technologies and integrative approaches. Trends Biotechnol. 2004;22:411–416.
    1. Mobasheri A., Airley R., Foster C.S., Schulze-Tanzil G., Shakibaei M. Post-genomic applications of tissue microarrays: Basic research, prognostic oncology, clinical genomics and drug discovery. Histol. Histopathol. 2004;19:325–335.
    1. Garnero P., Delmas P.D. Biomarkers in osteoarthritis. Curr. Opin. Rheumatol. 2003;15:641–646.
    1. The Cooperative Human Tissue Network (CHTN) [accessed on 20 March 2012]. Available online:
    1. The National Cancer Institute (NCI) [accessed on 20 March 2012]. Available online:
    1. Buckwalter J.A., Mankin H.J. Articular cartilage: Tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 1998;47:477–486.
    1. Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays. 1995;17:1039–1048.
    1. Eyre D.R. Collagens and cartilage matrix homeostasis. Clin. Orthop. Relat. Res. 2004:S118–122.
    1. Kuettner K.E., Aydelotte M.B., Thonar E.J. Articular cartilage matrix and structure: A minireview. J. Rheumatol. Suppl. 1991;27:46–48.
    1. Guilak F., Alexopoulos L.G., Upton M.L., Youn I., Choi J.B., Cao L., Setton L.A., Haider M.A. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N. Y. Acad. Sci. 2006;1068:498–512.
    1. Roughley P.J., Lee E.R. Cartilage proteoglycans: Structure and potential functions. Microsc. Res. Tech. 1994;28:385–397.
    1. Dudhia J. Aggrecan, aging and assembly in articular cartilage. Cell Mol. Life Sci. 2005;62:2241–2256.
    1. Kiani C., Chen L., Wu Y.J., Yee A.J., Yang B.B. Structure and function of aggrecan. Cell Res. 2002;12:19–32.
    1. Luo W., Guo C., Zheng J., Chen T.L., Wang P.Y., Vertel B.M., Tanzer M.L. Aggrecan from start to finish. J. Bone Miner. Metab. 2000;18:51–56.
    1. Kosher R.A., Lash J.W., Minor R.R. Environmental enhancement of in vitro chondrogenesis. IV. Stimulation of somite chondrogenesis by exogenous chondromucoprotein. Dev. Biol. 1973;35:210–220.
    1. Kosher R.A., Church R.L. Stimulation of in vitro somite chondrogenesis by procollagen and collagen. Nature. 1975;258:327–330.
    1. Von der Mark K., Gauss V., von der Mark H., Muller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977;267:531–532.
    1. Hewitt A.T., Varner H.H., Silver M.H., Martin G.R. The role of chondronectin and cartilage proteoglycan in the attachment of chondrocytes to collagen. Prog. Clin. Biol. Res. 1982;110:25–33.
    1. Sommarin Y., Larsson T., Heinegard D. Chondrocyte-matrix interactions. Attachment to proteins isolated from cartilage. Exp. Cell Res. 1989;184:181–192.
    1. Ramachandrula A., Tiku K., Tiku M.L. Tripeptide RGD-dependent adhesion of articular chondrocytes to synovial fibroblasts. J. Cell Sci. 1992;101:859–871.
    1. Ruoslahti E., Reed J.C. Anchorage dependence, integrins, and apoptosis. Cell. 1994;77:477–478.
    1. Enomoto-Iwamoto M., Iwamoto M., Nakashima K., Mukudai Y., Boettiger D., Pacifici M., Kurisu K., Suzuki F. Involvement of α5β1 integrin in matrix interactions and proliferation of chondrocytes. J. Bone Miner. Res. 1997;12:1124–1132.
    1. Gonzalez F.A., Seth A., Raden D.L., Bowman D.S., Fay F.S., Davis R.J. Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J. Cell Biol. 1993;122:1089–1101.
    1. Jenniskens Y.M., Koevoet W., de Bart A.C., Weinans H., Jahr H., Verhaar J.A., DeGroot J., van Osch G.J. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFβ2 and FGF2. Osteoarthr. Cartil. 2006;14:1136–1146.
    1. Trippel S.B., Corvol M.T., Dumontier M.F., Rappaport R., Hung H.H., Mankin H.J. Effect of somatomedin-C/insulin-like growth factor I and growth hormone on cultured growth plate and articular chondrocytes. Pediatr. Res. 1989;25:76–82.
    1. Isgaard J. Expression and regulation of IGF-I in cartilage and skeletal muscle. Growth Regul. 1992;2:16–22.
    1. Hunziker E.B., Wagner J., Zapf J. Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo. J. Clin. Investig. 1994;93:1078–1086.
    1. Sah R.L., Chen A.C., Grodzinsky A.J., Trippel S.B. Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch. Biochem. Biophys. 1994;308:137–147.
    1. Loeser R.F. Growth factor regulation of chondrocyte integrins. Differential effects of insulin-like growth factor 1 and transforming growth factor β on α 1 β 1 integrin expression and chondrocyte adhesion to type VI collagen. Arthritis Rheum. 1997;40:270–276.
    1. Di Cesare P.E., Carlson C.S., Stolerman E.S., Hauser N., Tulli H., Paulsson M. Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J. Orthop. Res. 1996;14:946–955.
    1. Burton-Wurster N., Lust G., Macleod J.N. Cartilage fibronectin isoforms: In search of functions for a special population of matrix glycoproteins. Matrix Biol. 1997;15:441–454.
    1. Mobasheri A., Carter S.D., Martin-Vasallo P., Shakibaei M. Integrins and stretch activated ion channels; putative components of functional cell surface mechanoreceptors in articular chondrocytes. Cell Biol. Int. 2002;26:1–18.
    1. Millward-Sadler S.J., Salter D.M. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann. Biomed. Eng. 2004;32:435–446.
    1. Buckwalter J.A., Lane N.E. Athletics and osteoarthritis. Am. J. Sports Med. 1997;25:873–881.
    1. Maffulli N., King J.B. Effects of physical activity on some components of the skeletal system. Sports Med. 1992;13:393–407.
    1. Martin J.A., Brown T., Heiner A., Buckwalter J.A. Post-traumatic osteoarthritis: The role of accelerated chondrocyte senescence. Biorheology. 2004;41:479–491.
    1. Buckwalter J.A. Sports, joint injury, and posttraumatic osteoarthritis. J. Orthop. Sports Phys. Ther. 2003;33:578–588.
    1. Newman A.P. Articular cartilage repair. Am. J. Sports Med. 1998;26:309–324.
    1. Solursh M. Formation of cartilage tissue in vitro. J. Cell Biochem. 1991;45:258–260.
    1. Hudelmaier M., Glaser C., Hohe J., Englmeier K.H., Reiser M., Putz R., Eckstein F. Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum. 2001;44:2556–2561.
    1. Eckstein F., Reiser M., Englmeier K.H., Putz R. In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging—from image to data, from data to theory. Anat. Embryol. (Berl.) 2001;203:147–173.
    1. Ralphs J.R., Benjamin M. The joint capsule: Structure, composition, ageing and disease. J. Anat. 1994;184:503–509.
    1. Sarzi-Puttini P., Cimmino M.A., Scarpa R., Caporali R., Parazzini F., Zaninelli A., Atzeni F., Canesi B. Osteoarthritis: An overview of the disease and its treatment strategies. Semin. Arthritis Rheum. 2005;35:1–10.
    1. Poole A.R. An introduction to the pathophysiology of osteoarthritis. Front. Biosci. 1999;4:D662–D670.
    1. Setton L.A., Elliott D.M., Mow V.C. Altered mechanics of cartilage with osteoarthritis: Human osteoarthritis and an experimental model of joint degeneration. Osteoarthr.Cartil. 1999;7:2–14.
    1. Shakibaei M., John T., de Souza P., Rahmanzadeh R., Merker H.J. Signal transduction by β1 integrin receptors in human chondrocytes in vitro: Collaboration with the insulin-like growth factor-I receptor. Biochem. J. 1999;342:615–623.
    1. Aigner T., Rose J., Martin J., Buckwalter J. Aging theories of primary osteoarthritis: From epidemiology to molecular biology. Rejuvenation Res. 2004;7:134–145.
    1. Abramson S.B., Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 2009;11 doi: 10.1186/ar2655.
    1. Goldring M.B., Goldring S.R. Osteoarthritis. J. Cell Physiol. 2007;213:626–634.
    1. The National Institute of Arthritis and Musculoskeletal and Skin Diseases Home Page. [accessed on 20 March 2012]. Available online:
    1. Freedman V.A., Crimmins E., Schoeni R.F., Spillman B.C., Aykan H., Kramarow E., Land K., Lubitz J., Manton K., Martin L.G., et al. Resolving inconsistencies in trends in old-age disability: Report from a technical working group. Demography. 2004;41:417–441.
    1. Australian Bureau of Statistics. Disability, Ageing and Carers, Australia: Summary of Findings. 2003. [accessed on 20 March 2012]. Available online: .
    1. Sellam J., Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 2010;6:625–635.
    1. Liles W.C., van Voorhis W.C. Review: Nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J. Infect. Dis. 1995;172:1573–1580.
    1. Feldmann M., Brennan F.M., Maini R.N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 1996;14:397–440.
    1. Maini R.N., Taylor P.C. Anti-cytokine therapy for rheumatoid arthritis. Annu. Rev. Med. 2000;51:207–229.
    1. Loeser R.F. Aging and osteoarthritis. Curr. Opin. Rheumatol. 2011;23:492–496.
    1. Bondeson J., Wainwright S.D., Lauder S., Amos N., Hughes C.E. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res. Ther. 2006;8 doi: 10.1186/ar2099.
    1. Martel-Pelletier J., Alaaeddine N., Pelletier J.P. Cytokines and their role in the pathophysiology of osteoarthritis. Front. Biosci. 1999;4:D694–D703.
    1. Sadouk M.B., Pelletier J.P., Tardif G., Kiansa K., Cloutier J.M., Martel-Pelletier J. Human synovial fibroblasts coexpress IL-1 receptor type I and type II mRNA. The increased level of the IL-1 receptor in osteoarthritic cells is related to an increased level of the type I receptor. Lab. Investig. 1995;73:347–355.
    1. Alaaeddine N., DiBattista J.A., Pelletier J.P., Cloutier J.M., Kiansa K., Dupuis M., Martel-Pelletier J. Osteoarthritic synovial fibroblasts possess an increased level of tumor necrosis factor-receptor 55 (TNF-R55) that mediates biological activation by TNF-α. J. Rheumatol. 1997;24:1985–1994.
    1. Bertolini D.R., Nedwin G.E., Bringman T.S., Smith D.D., Mundy G.R. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986;319:516–518.
    1. Kumar S., Votta B.J., Rieman D.J., Badger A.M., Gowen M., Lee J.C. IL-1- and TNF-induced bone resorption is mediated by p38 mitogen activated protein kinase. J. Cell Physiol. 2001;187:294–303.
    1. Seguin C.A., Bernier S.M. TNFα suppresses link protein and type II collagen expression in chondrocytes: Role of MEK1/2 and NF-κB signaling pathways. J. Cell Physiol. 2003;197:356–369.
    1. Sakai T., Kambe F., Mitsuyama H., Ishiguro N., Kurokouchi K., Takigawa M., Iwata H., Seo H. Tumor necrosis factor α induces expression of genes for matrix degradation in human chondrocyte-like HCS-2/8 cells through activation of NF-κB: Abrogation of the tumor necrosis factor α effect by proteasome inhibitors. J. Bone Miner. Res. 2001;16:1272–1280.
    1. Beutler B.A. The role of tumor necrosis factor in health and disease. J. Rheumatol. Suppl. 1999;57:16–21.
    1. Honorati M.C., Cattini L., Facchini A. IL-17, IL-1β and TNF-α stimulate VEGF production by dedifferentiated chondrocytes. Osteoarthr. Cartil. 2004;12:683–691.
    1. Seitz M., Loetscher P., Dewald B., Towbin H., Ceska M., Baggiolini M. Production of interleukin-1 receptor antagonist, inflammatory chemotactic proteins, and prostaglandin E by rheumatoid and osteoarthritic synoviocytes—Regulation by IFN-γ and IL-4. J. Immunol. 1994;152:2060–2065.
    1. Lisignoli G., Toneguzzi S., Pozzi C., Piacentini A., Riccio M., Ferruzzi A., Gualtieri G., Facchini A. Proinflammatory cytokines and chemokine production and expression by human osteoblasts isolated from patients with rheumatoid arthritis and osteoarthritis. J. Rheumatol. 1999;26:791–799.
    1. Goodstone N.J., Hardingham T.E. Tumour necrosis factor α stimulates nitric oxide production more potently than interleukin-1β in porcine articular chondrocytes. Rheumatol. (Oxf.) 2002;41:883–891.
    1. Schuerwegh A.J., Dombrecht E.J., Stevens W.J., van Offel J.F., Bridts C.H., de Clerck L.S. Influence of pro-inflammatory (IL-1 α, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthr. Cartil. 2003;11:681–687.
    1. Arend W.P., Dayer J.M. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum. 1990;33:305–315.
    1. Van Beuningen H.M., Arntz O.J., van den Berg W.B. In vivo effects of interleukin-1 on articular cartilage. Prolongation of proteoglycan metabolic disturbances in old mice. Arthritis Rheum. 1991;34:606–615.
    1. Takafuji V.A., McIlwraith C.W., Howard R.D. Effects of equine recombinant interleukin-1α and interleukin-1β on proteoglycan metabolism and prostaglandin E2 synthesis in equine articular cartilage explants. Am. J. Vet. Res. 2002;63:551–558.
    1. Tung J.T., Fenton J.I., Arnold C., Alexander L., Yuzbasiyan-Gurkan V., Venta P.J., Peters T.L., Orth M.W., Richardson D.W., Caron J.P. Recombinant equine interleukin-1β induces putative mediators of articular cartilage degradation in equine chondrocytes. Can. J. Vet. Res. 2002;66:19–25.
    1. Spiers S., May S.A., Bennett D., Edwards G.B. Cellular sources of proteolytic enzymes in equine joints. Equine Vet. J. 1994;26:43–47.
    1. Palmer R.M., Hickery M.S., Charles I.G., Moncada S., Bayliss M.T. Induction of nitric oxide synthase in human chondrocytes. Biochem. Biophys.Res. Commun. 1993;193:398–405.
    1. Jikko A., Wakisaka T., Iwamoto M., Hiranuma H., Kato Y., Maeda T., Fujishita M., Fuchihata H. Effects of interleukin-6 on proliferation and proteoglycan metabolism in articular chondrocyte cultures. Cell Biol. Int. 1998;22:615–621.
    1. Damiens C., Fortun Y., Charrier C., Heymann D., Padrines M. Modulation by soluble factors of gelatinase activities released by osteoblastic cells. Cytokine. 2000;12:1727–1731.
    1. Flannery C.R., Little C.B., Hughes C.E., Curtis C.L., Caterson B., Jones S.A. IL-6 and its soluble receptor augment aggrecanase-mediated proteoglycan catabolism in articular cartilage. Matrix Biol. 2000;19:549–553.
    1. Endo H., Akahoshi T., Nishimura A., Tonegawa M., Takagishi K., Kashiwazaki S., Matsushima K., Kondo H. Experimental arthritis induced by continuous infusion of IL-8 into rabbit knee joints. Clin. Exp. Immunol. 1994;96:31–35.
    1. Leonard E.J., Yoshimura T. Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]) Am. J. Respir. Cell Mol. Biol. 1990;2:479–486.
    1. Yu C.L., Sun K.H., Shei S.C., Tsai C.Y., Tsai S.T., Wang J.C., Liao T.S., Lin W.M., Chen H.L., Yu H.S., et al. Interleukin 8 modulates interleukin-1 β, interleukin-6 and tumor necrosis factor-α release from normal human mononuclear cells. Immunopharmacology. 1994;27:207–214.
    1. Merz D., Liu R., Johnson K., Terkeltaub R. IL-8/CXCL8 and growth-related oncogene α/CXCL1 induce chondrocyte hypertrophic differentiation. J. Immunol. 2003;171:4406–4415.
    1. Shalom-Barak T., Quach J., Lotz M. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB. J. Biol. Chem. 1998;273:27467–27473.
    1. Fahmi H., di Battista J.A., Pelletier J.P., Mineau F., Ranger P., Martel-Pelletier J. Peroxisome proliferator—Activated receptor γ activators inhibit interleukin-1β-induced nitric oxide and matrix metalloproteinase 13 production in human chondrocytes. Arthritis Rheum. 2001;44:595–607.
    1. Yao Z., Painter S.L., Fanslow W.C., Ulrich D., Macduff B.M., Spriggs M.K., Armitage R.J. Human IL-17: A novel cytokine derived from T cells. J. Immunol. 1995;155:5483–5486.
    1. Honorati M.C., Neri S., Cattini L., Facchini A. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthr. Cartil. 2006;14:345–352.
    1. Puren A.J., Fantuzzi G., Gu Y., Su M.S., Dinarello C.A. Interleukin-18 (IFNγ-inducing factor) induces IL-8 and IL-1β via TNFα production from non-CD14+ human blood mononuclear cells. J. Clin. Investig. 1998;101:711–721.
    1. Gracie J.A., Forsey R.J., Chan W.L., Gilmour A., Leung B.P., Greer M.R., Kennedy K., Carter R., Wei X.Q., Xu D., et al. A proinflammatory role for IL-18 in rheumatoid arthritis. J. Clin. Investig. 1999;104:1393–1401.
    1. Cho M.L., Jung Y.O., Moon Y.M., Min S.Y., Yoon C.H., Lee S.H., Park S.H., Cho C.S., Jue D.M., Kim H.Y. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol. Lett. 2006;103:159–166.
    1. Leung B.P., McInnes I.B., Esfandiari E., Wei X.Q., Liew F.Y. Combined effects of IL-12 and IL-18 on the induction of collagen-induced arthritis. J. Immunol. 2000;164:6495–6502.
    1. John T., Kohl B., Mobasheri A., Ertel W., Shakibaei M. Interleukin-18 induces apoptosis in human articular chondrocytes. Histol. Histopathol. 2007;22:469–482.
    1. Villiger P.M., Geng Y., Lotz M. Induction of cytokine expression by leukemia inhibitory factor. J. Clin. Investig. 1993;91:1575–1581.
    1. Henrotin Y.E., de Groote D.D., Labasse A.H., Gaspar S.E., Zheng S.X., Geenen V.G., Reginster J.Y. Effects of exogenous IL-1 β, TNF α, IL-6, IL-8 and LIF on cytokine production by human articular chondrocytes. Osteoarthr. Cartil. 1996;4:163–173.
    1. Varghese S., Yu K., Canalis E. Leukemia inhibitory factor and oncostatin M stimulate collagenase-3 expression in osteoblasts. Am. J. Physiol. 1999;276:E465–E471.
    1. Carroll G.J., Bell M.C. Leukaemia inhibitory factor stimulates proteoglycan resorption in porcine articular cartilage. Rheumatol. Intern. 1993;13:5–8.
    1. Bell M.C., Carroll G.J. Leukaemia inhibitory factor (LIF) suppresses proteoglycan synthesis in porcine and caprine cartilage explants. Cytokine. 1995;7:137–141.
    1. Carroll G.J., Bell M.C., Chapman H.M., Mills J.N., Robinson W.F. Leukemia inhibitory factor induces leukocyte infiltration and cartilage proteoglycan degradation in goat joints. J. Interferon Cytokine Res. 1995;15:567–573.
    1. Aggarwal B.B., Shishodia S. Suppression of the nuclear factor-κB activation pathway by spice-derived phytochemicals: Reasoning for seasoning. Ann. N. Y. Acad. Sci. 2004;1030:434–441.
    1. Aggarwal B.B., Sundaram C., Malani N., Ichikawa H. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol. 2007;595:1–75.
    1. Bremner P., Heinrich M. Natural products as targeted modulators of the nuclear factor-κB pathway. J. Pharm. Pharmacol. 2002;54:453–472.
    1. Marcu K.B., Otero M., Olivotto E., Borzi R.M., Goldring M.B. NF-κB signaling: Multiple angles to target OA. Curr. Drug. Targets. 2010;11:599–613.
    1. Hak A.E., Choi H.K. Lifestyle and gout. Curr. Opin. Rheumatol. 2008;20:179–186.
    1. Sale J.E., Gignac M., Hawker G. The relationship between disease symptoms, life events, coping and treatment, and depression among older adults with osteoarthritis. J. Rheumatol. 2008;35:335–342.
    1. Corson T.W., Crews C.M. Molecular understanding and modern application of traditional medicines: Triumphs and trials. Cell. 2007;130:769–774.
    1. Curtis C.L., Rees S.G., Little C.B., Flannery C.R., Hughes C.E., Wilson C., Dent C.M., Otterness I.G., Harwood J.L., Caterson B. Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n-3 fatty acids. Arthritis Rheum. 2002;46:1544–1553.
    1. Henrotin Y., Clutterbuck A.L., Allaway D., Lodwig E.M., Harris P., Mathy-Hartert M., Shakibaei M., Mobasheri A. Biological actions of curcumin on articular chondrocytes. Osteoarthr.Cartil. 2010;18:141–149.
    1. Lee B., Moon S.K. Resveratrol inhibits TNF-α-induced proliferation and matrix metalloproteinase expression in human vascular smooth muscle cells. J. Nutr. 2005;135:2767–2773.
    1. Annabi B., Currie J.C., Moghrabi A., Beliveau R. Inhibition of HuR and MMP-9 expression in macrophage-differentiated HL-60 myeloid leukemia cells by green tea polyphenol EGCg. Leuk. Res. 2007;31:1277–1284.
    1. Kim M., Murakami A., Ohigashi H. Modifying effects of dietary factors on (−)-epigallocatechin-3-gallate-induced pro-matrix metalloproteinase-7 production in HT-29 human colorectal cancer cells. Biosci. Biotechnol. Biochem. 2007;71:2442–2450.
    1. Kong C.S., Kim Y.A., Kim M.M., Park J.S., Kim J.A., Kim S.K., Lee B.J., Nam T.J., Seo Y. Flavonoid glycosides isolated from Salicornia herbacea inhibit matrix metalloproteinase in HT1080 cells. Toxicol. In Vitro. 2008;22:1742–1748.
    1. Vijayababu M.R., Arunkumar A., Kanagaraj P., Venkataraman P., Krishnamoorthy G., Arunakaran J. Quercetin downregulates matrix metalloproteinases 2 and 9 proteins expression in prostate cancer cells (PC-3) Mol. Cell. Biochem. 2006;287:109–116.
    1. Shishodia S., Singh T., Chaturvedi M.M. Modulation of transcription factors by curcumin. Adv. Exp. Med. Biol. 2007;595:127–148.
    1. Aggarwal B.B., Kumar A., Bharti A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003;23:363–398.
    1. Largo R., Alvarez-Soria M.A., Diez-Ortego I., Calvo E., Sanchez-Pernaute O., Egido J., Herrero-Beaumont G. Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes. Osteoarthr.Cartil. 2003;11:290–298.
    1. Liacini A., Sylvester J., Li W.Q., Huang W., Dehnade F., Ahmad M., Zafarullah M. Induction of matrix metalloproteinase-13 gene expression by TNF-α is mediated by MAP kinases, AP-1, and NF-κB transcription factors in articular chondrocytes. Exp. Cell Res. 2003;288:208–217.
    1. Singh S. From exotic spice to modern drug? Cell. 2007;130:765–768.
    1. Csaki C., Keshishzadeh N., Fischer K., Shakibaei M. Regulation of inflammation signalling by resveratrol in human chondrocytes in vitro. Biochem. Pharmacol. 2008;75:677–687.
    1. Csaki C., Mobasheri A., Shakibaei M. Synergistic chondroprotective effects of curcumin and resveratrol in human articular chondrocytes: Inhibition of IL-1β-induced NF-κB-mediated inflammation and apoptosis. Arthritis Res. Ther. 2009;11 doi: 10.1186/ar2850.
    1. Deodhar S.D., Sethi R., Srimal R.C. Preliminary study on antirheumatic activity of curcumin (diferuloyl methane) Indian J. Med. Res. 1980;71:632–634.
    1. Joe B., Rao U.J., Lokesh B.R. Presence of an acidic glycoprotein in the serum of arthritic rats: Modulation by capsaicin and curcumin. Mol. Cell. Biochem. 1997;169:125–134.
    1. Onodera S., Kaneda K., Mizue Y., Koyama Y., Fujinaga M., Nishihira J. Macrophage migration inhibitory factor up-regulates expression of matrix metalloproteinases in synovial fibroblasts of rheumatoid arthritis. J. Biol. Chem. 2000;275:444–450.
    1. Jackson J.K., Higo T., Hunter W.L., Burt H.M. The antioxidants curcumin and quercetin inhibit inflammatory processes associated with arthritis. Inflamm. Res. 2006;55:168–175.
    1. Molnar V., Garai J. Plant-derived anti-inflammatory compounds affect MIF tautomerase activity. Int. Immunopharmacol. 2005;5:849–856.
    1. Mathy-Hartert M., Jacquemond-Collet I., Priem F., Sanchez C., Lambert C., Henrotin Y. Curcumin inhibits pro-inflammatory mediators and metalloproteinase-3 production by chondrocytes. Inflamm. Res. 2009;58:899–908.
    1. Park C., Moon D.O., Choi I.W., Choi B.T., Nam T.J., Rhu C.H., Kwon T.K., Lee W.H., Kim G.Y., Choi Y.H. Curcumin induces apoptosis and inhibits prostaglandin E(2) production in synovial fibroblasts of patients with rheumatoid arthritis. Int. J. Mol. Med. 2007;20:365–372.
    1. Neff L., Zeisel M., Sibilia J., Scholler-Guinard M., Klein J.P., Wachsmann D. NF-κB and the MAP kinases/AP-1 pathways are both involved in interleukin-6 and interleukin-8 expression in fibroblast-like synoviocytes stimulated by protein I/II, a modulin from oral streptococci. Cell Microbiol. 2001;3:703–712.
    1. Liacini A., Sylvester J., Li W.Q., Zafarullah M. Inhibition of interleukin-1-stimulated MAP kinases, activating protein-1 (AP-1) and nuclear factor κ B (NF-κ B) transcription factors down-regulates matrix metalloproteinase gene expression in articular chondrocytes. Matrix Biol. 2002;21:251–262.
    1. Shakibaei M., Schulze-Tanzil G., John T., Mobasheri A. Curcumin protects human chondrocytes from IL-l1β-induced inhibition of collagen type II and β1-integrin expression and activation of caspase-3: An immunomorphological study. Ann. Anat. 2005;187:487–497.
    1. Cho M.L., Jung Y.O., Moon Y.M., Min S.Y., Yoon C.H., Lee S.H., Park S.H., Cho C.S., Jue D.M., Kim H.Y. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol. Lett. 2006;103:159–166.
    1. Funk J.L., Oyarzo J.N., Frye J.B., Chen G., Lantz R.C., Jolad S.D., Solyom A.M., Timmermann B.N. Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. J. Nat. Prod. 2006;69:351–355.
    1. Tohda C., Nakayama N., Hatanaka F., Komatsu K. Comparison of anti-inflammatory activities of six curcuma rhizomes: A possible curcuminoid-independent pathway mediated by curcuma phaeocaulis extract. Evid. Based Complement. Alternat. Med. 2006;3:255–260.
    1. Shakibaei M., John T., Schulze-Tanzil G., Lehmann I., Mobasheri A. Suppression of NF-κB activation by curcumin leads to inhibition of expression of cyclo-oxygenase-2 and matrix metalloproteinase-9 in human articular chondrocytes: Implications for the treatment of osteoarthritis. Biochem. Pharmacol. 2007;73:1434–1445.
    1. Anand P., Kunnumakkara A.B., Newman R.A., Aggarwal B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007;4:807–818.
    1. Toegel S., Wu S.Q., Piana C., Unger F.M., Wirth M., Goldring M.B., Gabor F., Viernstein H. Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1β-stimulated C-28/I2 chondrocytes. Osteoarthr.Cartil. 2008;16:1205–1212.
    1. Bright J.J. Curcumin and autoimmune disease. Adv. Exp. Med. Biol. 2007;595:425–451.
    1. Home Page. A service of the National Institutes of Health (NIH) [accessed on 20 March 2012]. Available online:
    1. University of California. Curcumin in Rheumatoid Arthritis. [accessed on 20 March 2012]. Available online: .
    1. Gupta N.K., Dixit V.K. Bioavailability enhancement of curcumin by complexation with phosphatidyl choline. J. Pharm. Sci. 2011;100:1987–1995.
    1. Hegge A.B., Masson M., Kristensen S., Tonnesen H.H. Investigation of curcumin-cyclodextrin inclusion complexation in aqueous solutions containing various alcoholic co-solvents and alginates using an UV-VIS titration method. Pharmaze. 2009;64:382–389.
    1. Hegge A.B., Schuller R.B., Kristensen S., Tonnesen H.H. In vitro release of curcumin from vehicles containing alginate and cyclodextrin. Pharmaze. 2008;63:585–592.
    1. Banerjee M., Tripathi L.M., Srivastava V.M., Puri A., Shukla R. Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol. Immunotoxicol. 2003;25:213–224.
    1. Lev-Ari S., Strier L., Kazanov D., Elkayam O., Lichtenberg D., Caspi D., Arber N. Curcumin synergistically potentiates the growth-inhibitory and pro-apoptotic effects of celecoxib in osteoarthritis synovial adherent cells. Rheumatol. (Oxf.) 2006;45:171–177.
    1. Lev-Ari S., Lichtenberg D., Arber N. Compositions for treatment of cancer and inflammation. Recent Pat. Anticancer Drug Discov. 2008;3:55–62.
    1. Jurenka J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev. 2009;14:141–153.
    1. Rahman I., Biswas S.K., Kirkham P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 2006;72:1439–1452.
    1. Bertelli A.A., Ferrara F., Diana G., Fulgenzi A., Corsi M., Ponti W., Ferrero M.E., Bertelli A. Resveratrol, a natural stilbene in grapes and wine, enhances intraphagocytosis in human promonocytes: A co-factor in antiinflammatory and anticancer chemopreventive activity. Int. J. Tissue React. 1999;21:93–104.
    1. Elliott P.J., Jirousek M. Sirtuins: Novel targets for metabolic disease. Curr. Opin. Investig. Drugs. 2008;9:371–378.
    1. Soleas G.J., Diamandis E.P., Goldberg D.M. Wine as a biological fluid: History, production, and role in disease prevention. J. Clin. Lab. Anal. 1997;11:287–313.
    1. Elmali N., Esenkaya I., Harma A., Ertem K., Turkoz Y., Mizrak B. Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm. Res. 2005;54:158–162.
    1. Penberthy W.T. Pharmacological targeting of IDO-mediated tolerance for treating autoimmune disease. Curr. Drug. Metab. 2007;8:245–266.
    1. Andlauer W., Kolb J., Siebert K., Furst P. Assessment of resveratrol bioavailability in the perfused small intestine of the rat. Drugs. Exp. Clin. Res. 2000;26:47–55.
    1. Aggarwal B.B., Bhardwaj A., Aggarwal R.S., Seeram N.P., Shishodia S., Takada Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004;24:2783–2840.
    1. Yu C., Shin Y.G., Chow A., Li Y., Kosmeder J.W., Lee Y.S., Hirschelman W.H., Pezzuto J.M., Mehta R.G., van Breemen R.B. Human, rat, and mouse metabolism of resveratrol. Pharm. Res. 2002;19:1907–1914.
    1. Kumar A., Takada Y., Boriek A.M., Aggarwal B.B. Nuclear factor-κB: Its role in health and disease. J. Mol. Med. 2004;82:434–448.
    1. Tang X., Liu D., Shishodia S., Ozburn N., Behrens C., Lee J.J., Hong W.K., Aggarwal B.B., Wistuba Nuclear factor-κB (NF-κB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer. 2006;107:2637–2646.
    1. Sarkar F.H., Li Y. NF-κB: A potential target for cancer chemoprevention and therapy. Front. Biosci. 2008;13:2950–2959.
    1. Aggarwal B.B., Takada Y., Shishodia S., Gutierrez A.M., Oommen O.V., Ichikawa H., Baba Y., Kumar A. Nuclear transcription factor NF-κ B: Role in biology and medicine. Indian J. Exp. Biol. 2004;42:341–353.
    1. Manna S.K., Mukhopadhyay A., Aggarwal B.B. Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-κ B, activator protein-1, and apoptosis: Potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. 2000;164:6509–6519.
    1. Pinto M.C., Garcia-Barrado J.A., Macias P. Resveratrol is a potent inhibitor of the dioxygenase activity of lipoxygenase. J. Agric. Food Chem. 1999:4842–4846.
    1. Xie W.L., Chipman J.G., Robertson D.L., Erikson R.L., Simmons D.L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. USA. 1991;88:2692–2696.
    1. Subbaramaiah K., Chung W.J., Michaluart P., Telang N., Tanabe T., Inoue H., Jang M., Pezzuto J.M., Dannenberg A.J. Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J. Biol. Chem. 1998;273:21875–21882.
    1. Elmali N., Baysal O., Harma A., Esenkaya I., Mizrak B. Effects of resveratrol in inflammatory arthritis. Inflammation. 2007;30:1–6.
    1. Shakibaei M., John T., Seifarth C., Mobasheri A. Resveratrol inhibits IL-1 β-induced stimulation of caspase-3 and cleavage of PARP in human articular chondrocytes in vitro. Ann. N. Y. Acad. Sci. 2007;1095:554–563.
    1. Shakibaei M., Csaki C., Nebrich S., Mobasheri A. Resveratrol suppresses interleukin-1β-induced inflammatory signaling and apoptosis in human articular chondrocytes: Potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol. 2008;76:1426–1439.
    1. Kelly G.S. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: Part 2. Altern. Med. Rev. 2010;15:313–328.
    1. Limbrel. [accessed on 20 March 2012]. Available online:
    1. Study of Flavocoxid (Limbrel) Versus Naproxen in Subjects With Moderate-Severe Osteoarthritis of the Knee. [accessed on 20 March 2012]. Available online: .
    1. The European Food Safety Authority (EFSA) [accessed on 20 March 2012]. Available online:
    1. EFSA Panel on Dietetic Products, N.A.A.N. Scientific Opinion on the substantiation of health claims related to glucosamine alone or in combination with chondroitin sulphate and maintenance of joints (ID 1561, 1562, 1563, 1564, 1565) and reduction of inflammation (ID 1869) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2009;7 doi: 10.2903/j.efsa.2009.1264.

Source: PubMed

3
订阅