Improvements in bladder, bowel and sexual outcomes following task-specific locomotor training in human spinal cord injury

Charles H Hubscher, April N Herrity, Carolyn S Williams, Lynnette R Montgomery, Andrea M Willhite, Claudia A Angeli, Susan J Harkema, Charles H Hubscher, April N Herrity, Carolyn S Williams, Lynnette R Montgomery, Andrea M Willhite, Claudia A Angeli, Susan J Harkema

Abstract

Objective: Locomotor training (LT) as a therapeutic intervention following spinal cord injury (SCI) is an effective rehabilitation strategy for improving motor outcomes, but its impact on non-locomotor functions is unknown. Given recent results of our labs' pre-clinical animal SCI LT studies and existing overlap of lumbosacral spinal circuitries controlling pelvic-visceral and locomotor functions, we addressed whether LT can improve bladder, bowel and sexual function in humans at chronic SCI time-points (> two years post-injury).

Study design: Prospective cohort study; pilot trial with small sample size.

Methods: Eight SCI research participants who were undergoing 80 daily one-hour sessions of LT on a treadmill using body-weight support, or one-hour of LT and stand training on alternate days, as part of another research study conducted at the Kentucky Spinal Cord Injury Research Center, University of Louisville, were enrolled in this pilot trial. Urodynamic assessments were performed and International Data Set questionnaire forms completed for bladder, bowel and sexual functions at pre-and post-training time points. Four usual care (non-trained; regular at-home routine) research participants were also enrolled in this study and had the same assessments collected twice, at least 3 months apart.

Results: Filling cystometry documented significant increases in bladder capacity, voiding efficiency and detrusor contraction time as well as significant decreases in voiding pressure post-training relative to baseline. Questionnaires revealed a decrease in the frequency of nocturia and urinary incontinence for several research participants as well as a significant decrease in time required for defecation and a significant increase in sexual desire post-training. No significant differences were found for usual care research participants.

Conclusions: These results suggest that an appropriate level of sensory information provided to the spinal cord, generated through task-specific stepping and/or loading, can positively benefit the neural circuitries controlling urogenital and bowel functions.

Trial registration: ClinicalTrials.gov NCT03036527.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Methods flowchart.
Fig 1. Methods flowchart.
Urodynamic and questionnaires (bladder, bowel and sexual function assessments) were conducted after clinical evaluation for eligibility. After approximately 80 locomotor training sessions or usual care (at home in usual routine between assessments for an equivalent time period for 80 training sessions), assessments were repeated. Each participant served as their own control. Individual and group data were analyzed at the conclusion of the study.
Fig 2. Detrusor pressure recording example.
Fig 2. Detrusor pressure recording example.
Raw recording of detrusor pressures (Pdet) from research participant A57 for the initial fill cycle pre-training and post-training. Note that the urge sensation precipitated by the rise in the bladder pressure immediately preceded the onset of leak, which occurred at almost twice the fill volume post-training. On the pre-training fill/void cycle, the leak occurred at 05:54 (min:sec), while post-training the leak occurred at 10:33 (20 ml/min–constant fill rate).
Fig 3. Bladder capacity data summary.
Fig 3. Bladder capacity data summary.
Bladder filling ceased and capacity measured (leak + residual volumes) with the occurrence of either spontaneous urine leakage (n = 5; reflex void), autonomic dysreflexia (n = 2; Participants A60 and C42) or a voluntary void following a strong urge (AIS D Participant C43). (A) A comparison of pre- and post-training bladder capacity values in each of the eight participants. A binomial proportion test indicates that a significant majority of the research participants demonstrated an improvement in bladder capacity (vs. random occurrence, p

Fig 4. Blood pressure recording example during…

Fig 4. Blood pressure recording example during bladder filling.

Blood pressure recordings for research participant…

Fig 4. Blood pressure recording example during bladder filling.
Blood pressure recordings for research participant C42 during filling pre- and post-training. Filling was stopped at the onset of autonomic dysreflexia (increase of > 20 mmHg), as indicated by the asterisk (*). Note that the shift to a higher volume post-training is indicative of an increase in bladder capacity. Blood pressure returned to baseline by the time the bladder was emptied by catheterization for residual volume measurement.

Fig 5. Voiding efficiency data summary.

A…

Fig 5. Voiding efficiency data summary.

A comparison of pre- and post-training voiding efficiency (VE)…

Fig 5. Voiding efficiency data summary.
A comparison of pre- and post-training voiding efficiency (VE) values in the eight research participants. While the majority of participants demonstrated an improvement in VE, participant C42 did not have a leak/void and participant A60 just leaked a few drops. When considering the six research participants that had a measurable efficiency, a significant improvement in VE values occurred collectively post-training (p = .046; 39.6 ± 15.5% vs 63.9 ± 8.9%).

Fig 6. Leak point pressure data summary.

Fig 6. Leak point pressure data summary.

Intravesical bladder pressure values at the onset of…

Fig 6. Leak point pressure data summary.
Intravesical bladder pressure values at the onset of leak/void in six of eight research participants during cystometry. (A) A comparison of pre- and post-training bladder leak pressure values in each of the six participants. A binomial proportion test indicates that a significant majority of the research participants demonstrated an improvement in overall bladder leak point pressure (vs. random occurrence, p 2O).

Fig 7. Bladder contraction data summary.

A…

Fig 7. Bladder contraction data summary.

A comparison of pre- and post-training bladder contraction values…

Fig 7. Bladder contraction data summary.
A comparison of pre- and post-training bladder contraction values (area under the curve and duration) for the eight research participants receiving LT. All research participants had an improvement in the detrusor contraction area (A) and 7/8 had improved duration (B). Collectively, the group values post-training (C) were significantly greater compared to pre-train values (area—p = .016; duration–p = .019). An example of the entire detrusor muscle contraction cycle is provided for participant A59 (D) to illustrate a greater capacity for bladder filling was maintained post-training and generated a larger voiding contraction for a longer duration.

Fig 8. Bladder compliance data summary.

Most…

Fig 8. Bladder compliance data summary.

Most research participants (85%) had low compliance (2…10>

Fig 8. Bladder compliance data summary.
Most research participants (85%) had low compliance (2O - ΔP/ΔV) at the pre-training baseline cystometric recording. However, post-training, 50% showed an improvement in bladder filling under lower pressures. A ranking and average of the compliance values at the pre-training time point indicate a median (horizontal line) and mean (small white square) value of 6.3 and 7.0 ± 4.8 cm/H2O, respectively, while post training, the median and mean values were 9.0 and 15.5 ± 16.8 cm/H2O, respectively (p>.05).

Fig 9. Participant estimated time for defecation.

Fig 9. Participant estimated time for defecation.

Average time for defecation over “last four weeks”…

Fig 9. Participant estimated time for defecation.
Average time for defecation over “last four weeks” for seven of eight research participants (bowel data set used beginning with participant A57). Pre-/post-training group means were 57.9 ± 18.2 and 35.7 ± 26.2, respectively. A binomial proportion test indicates that a significant majority of the research participants demonstrated an improvement in bowel function (vs. random occurrence, p

Fig 10. Summary of sexual function data.

Fig 10. Summary of sexual function data.

Sexual function domain scores for desire and satisfaction…

Fig 10. Summary of sexual function data.
Sexual function domain scores for desire and satisfaction (total score from two 5 point questions). Group means are provided in the bottom histogram. Whereas scores for desire significantly increased post-training (*, p = .04), overall satisfaction remained unchanged. Note that scores above the two point minimum for satisfaction were given when research participants reported engagement in sexual activity.

Fig 11. Summary of cystometry data for…

Fig 11. Summary of cystometry data for usual care participants.

Summary of cystometry results for…

Fig 11. Summary of cystometry data for usual care participants.
Summary of cystometry results for the four non-trained research participants at two different time points. No significant differences were found between any parameters. Shown are group means (± SD) for capacity, leak point pressure (LPP), maximum detrusor pressure (MDP) and contraction duration (CD).
All figures (11)
Similar articles
Cited by
References
    1. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):1371–83. doi: 10.1089/neu.2004.21.1371 - DOI - PubMed
    1. Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008;46(7):500–6. doi: 10.1038/sj.sc.3102172 - DOI - PubMed
    1. Han TR, Kim JH, Kwon BS. Chronic gastrointestinal problems and bowel dysfunction in patients with spinal cord injury. Spinal Cord. 1998;36(7):485–90. - PubMed
    1. Piatt JA, Nagata S, Zahl M, Li J, Rosenbluth JP. Problematic secondary health conditions among adults with spinal cord injury and its impact on social participation and daily life. The journal of spinal cord medicine. 2015:1–6. - PMC - PubMed
    1. Groen J, Pannek J, Castro Diaz D, Del Popolo G, Gross T, Hamid R, et al. Summary of European Association of Urology (EAU) Guidelines on Neuro-Urology. Eur Urol. 2016;69(2):324–33. doi: 10.1016/j.eururo.2015.07.071 - DOI - PubMed
Show all 126 references
Publication types
MeSH terms
Associated data
Related information
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig 4. Blood pressure recording example during…
Fig 4. Blood pressure recording example during bladder filling.
Blood pressure recordings for research participant C42 during filling pre- and post-training. Filling was stopped at the onset of autonomic dysreflexia (increase of > 20 mmHg), as indicated by the asterisk (*). Note that the shift to a higher volume post-training is indicative of an increase in bladder capacity. Blood pressure returned to baseline by the time the bladder was emptied by catheterization for residual volume measurement.
Fig 5. Voiding efficiency data summary.
Fig 5. Voiding efficiency data summary.
A comparison of pre- and post-training voiding efficiency (VE) values in the eight research participants. While the majority of participants demonstrated an improvement in VE, participant C42 did not have a leak/void and participant A60 just leaked a few drops. When considering the six research participants that had a measurable efficiency, a significant improvement in VE values occurred collectively post-training (p = .046; 39.6 ± 15.5% vs 63.9 ± 8.9%).
Fig 6. Leak point pressure data summary.
Fig 6. Leak point pressure data summary.
Intravesical bladder pressure values at the onset of leak/void in six of eight research participants during cystometry. (A) A comparison of pre- and post-training bladder leak pressure values in each of the six participants. A binomial proportion test indicates that a significant majority of the research participants demonstrated an improvement in overall bladder leak point pressure (vs. random occurrence, p 2O).
Fig 7. Bladder contraction data summary.
Fig 7. Bladder contraction data summary.
A comparison of pre- and post-training bladder contraction values (area under the curve and duration) for the eight research participants receiving LT. All research participants had an improvement in the detrusor contraction area (A) and 7/8 had improved duration (B). Collectively, the group values post-training (C) were significantly greater compared to pre-train values (area—p = .016; duration–p = .019). An example of the entire detrusor muscle contraction cycle is provided for participant A59 (D) to illustrate a greater capacity for bladder filling was maintained post-training and generated a larger voiding contraction for a longer duration.
Fig 8. Bladder compliance data summary.
Fig 8. Bladder compliance data summary.
Most research participants (85%) had low compliance (2O - ΔP/ΔV) at the pre-training baseline cystometric recording. However, post-training, 50% showed an improvement in bladder filling under lower pressures. A ranking and average of the compliance values at the pre-training time point indicate a median (horizontal line) and mean (small white square) value of 6.3 and 7.0 ± 4.8 cm/H2O, respectively, while post training, the median and mean values were 9.0 and 15.5 ± 16.8 cm/H2O, respectively (p>.05).
Fig 9. Participant estimated time for defecation.
Fig 9. Participant estimated time for defecation.
Average time for defecation over “last four weeks” for seven of eight research participants (bowel data set used beginning with participant A57). Pre-/post-training group means were 57.9 ± 18.2 and 35.7 ± 26.2, respectively. A binomial proportion test indicates that a significant majority of the research participants demonstrated an improvement in bowel function (vs. random occurrence, p

Fig 10. Summary of sexual function data.

Fig 10. Summary of sexual function data.

Sexual function domain scores for desire and satisfaction…

Fig 10. Summary of sexual function data.
Sexual function domain scores for desire and satisfaction (total score from two 5 point questions). Group means are provided in the bottom histogram. Whereas scores for desire significantly increased post-training (*, p = .04), overall satisfaction remained unchanged. Note that scores above the two point minimum for satisfaction were given when research participants reported engagement in sexual activity.

Fig 11. Summary of cystometry data for…

Fig 11. Summary of cystometry data for usual care participants.

Summary of cystometry results for…

Fig 11. Summary of cystometry data for usual care participants.
Summary of cystometry results for the four non-trained research participants at two different time points. No significant differences were found between any parameters. Shown are group means (± SD) for capacity, leak point pressure (LPP), maximum detrusor pressure (MDP) and contraction duration (CD).
All figures (11)
Fig 10. Summary of sexual function data.
Fig 10. Summary of sexual function data.
Sexual function domain scores for desire and satisfaction (total score from two 5 point questions). Group means are provided in the bottom histogram. Whereas scores for desire significantly increased post-training (*, p = .04), overall satisfaction remained unchanged. Note that scores above the two point minimum for satisfaction were given when research participants reported engagement in sexual activity.
Fig 11. Summary of cystometry data for…
Fig 11. Summary of cystometry data for usual care participants.
Summary of cystometry results for the four non-trained research participants at two different time points. No significant differences were found between any parameters. Shown are group means (± SD) for capacity, leak point pressure (LPP), maximum detrusor pressure (MDP) and contraction duration (CD).

References

    1. Anderson KD. Targeting recovery: priorities of the spinal cord-injured population. J Neurotrauma. 2004;21(10):1371–83. doi:
    1. Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008;46(7):500–6. doi:
    1. Han TR, Kim JH, Kwon BS. Chronic gastrointestinal problems and bowel dysfunction in patients with spinal cord injury. Spinal Cord. 1998;36(7):485–90.
    1. Piatt JA, Nagata S, Zahl M, Li J, Rosenbluth JP. Problematic secondary health conditions among adults with spinal cord injury and its impact on social participation and daily life. The journal of spinal cord medicine. 2015:1–6.
    1. Groen J, Pannek J, Castro Diaz D, Del Popolo G, Gross T, Hamid R, et al. Summary of European Association of Urology (EAU) Guidelines on Neuro-Urology. Eur Urol. 2016;69(2):324–33. doi:
    1. Lynch AC, Antony A, Dobbs BR, Frizelle FA. Bowel dysfunction following spinal cord injury. Spinal Cord. 2001;39(4):193–203. Epub 2001/06/23. doi:
    1. McGee MJ, Amundsen CL, Grill WM. Electrical stimulation for the treatment of lower urinary tract dysfunction after spinal cord injury. The journal of spinal cord medicine. 2015;38(2):135–46. doi:
    1. Steadman CJ, Hubscher CH. Sexual function after spinal cord injury: innervation, assessment, and treatment. Curr Sex Health Rep. 2016;8:106–15.
    1. Jamil F. Towards a catheter free status in neurogenic bladder dysfunction: a review of bladder management options in spinal cord injury (SCI). Spinal Cord. 2001;39(7):355–61. Epub 2001/07/21. doi:
    1. Benevento BT, Sipski ML. Neurogenic bladder, neurogenic bowel, and sexual dysfunction in people with spinal cord injury. Phys Ther. 2002;82(6):601–12.
    1. Panicker JN, de Seze M, Fowler CJ. Rehabilitation in practice: neurogenic lower urinary tract dysfunction and its management. Clin Rehabil. 2010;24(7):579–89. doi:
    1. Cruz F, Herschorn S, Aliotta P, Brin M, Thompson C, Lam W, et al. Efficacy and safety of onabotulinumtoxinA in patients with urinary incontinence due to neurogenic detrusor overactivity: a randomised, double-blind, placebo-controlled trial. Eur Urol. 2011;60(4):742–50. doi:
    1. Ginsberg D, Gousse A, Keppenne V, Sievert KD, Thompson C, Lam W, et al. Phase 3 efficacy and tolerability study of onabotulinumtoxinA for urinary incontinence from neurogenic detrusor overactivity. J Urol. 2012;187(6):2131–9. doi:
    1. Brindley GS. The first 500 patients with sacral anterior root stimulator implants: general description. Paraplegia. 1994;32(12):795–805. doi:
    1. Sipski ML, Alexander CJ, Rosen R. Sexual arousal and orgasm in women: effects of spinal cord injury. Ann Neurol. 2001;49(1):35–44.
    1. Behrman AL, Lawless-Dixon AR, Davis SB, Bowden MG, Nair P, Phadke C, et al. Locomotor training progression and outcomes after incomplete spinal cord injury. Physical therapy. 2005;85(12):1356–71.
    1. Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol (1985). 2004;96(5):1954–60.
    1. Harkema SJ, Hillyer J, Schmidt-Read M, Ardolino E, Sisto SA, Behrman AL. Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation. Archives of physical medicine and rehabilitation. 2012;93(9):1588–97. doi:
    1. Jayaraman A, Shah P, Gregory C, Bowden M, Stevens J, Bishop M, et al. Locomotor training and muscle function after incomplete spinal cord injury: case series. The journal of spinal cord medicine. 2008;31(2):185–93.
    1. Trimble MH, Behrman AL, Flynn SM, Thigpen MT, Thompson FJ. Acute effects of locomotor training on overground walking speed and H-reflex modulation in individuals with incomplete spinal cord injury. The journal of spinal cord medicine. 2001;24(2):74–80.
    1. Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, et al. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabilitation and neural repair. 2005;19(4):313–24. doi:
    1. Andersson O, Grillner S. Peripheral control of the cat's step cycle. I. Phase dependent effects of ramp-movements of the hip during "fictive locomotion". Acta physiologica Scandinavica. 1981;113(1):89–101. doi:
    1. Andersson O, Grillner S. Peripheral control of the cat's step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during "fictive locomotion.". Acta physiologica Scandinavica. 1983;118(3):229–39. doi:
    1. Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain research. 1987;412(1):84–95.
    1. Conway BA, Hultborn H, Kiehn O. Proprioceptive input resets central locomotor rhythm in the spinal cat. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale. 1987;68(3):643–56.
    1. de Leon RD, Hodgson JA, Roy RR, Edgerton VR. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. Journal of Neurophysiology. 1998;79(3):1329–40. doi:
    1. Duysens J, Pearson KG. Inhibition of flexor burst generation by loading ankle extensor muscles in walking cats. Brain research. 1980;187(2):321–32.
    1. Grillner S, Deliagina T, Ekeberg O, el Manira A, Hill RH, Lansner A, et al. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends in neurosciences. 1995;18(6):270–9.
    1. Grillner S, Dubuc R. Control of locomotion in vertebrates: spinal and supraspinal mechanisms. Advances in neurology. 1988;47:425–53.
    1. Grillner S, Rossignol S. On the initiation of the swing phase of locomotion in chronic spinal cats. Brain research. 1978;146(2):269–77.
    1. Grillner S, Zangger P. On the central generation of locomotion in the low spinal cat. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale. 1979;34(2):241–61.
    1. Lovely RG, Gregor RJ, Roy RR, Edgerton VR. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Experimental Neurology. 1986;92(2):421–35.
    1. Beres-Jones JA, Harkema SJ. The human spinal cord interprets velocity-dependent afferent input during stepping. Brain: a journal of neurology. 2004;127(Pt 10):2232–46.
    1. Beres-Jones JA, Johnson TD, Harkema SJ. Clonus after human spinal cord injury cannot be attributed solely to recurrent muscle-tendon stretch. Experimental brain research Experimentelle Hirnforschung Expérimentation cérébrale. 2003;149(2):222–36. doi:
    1. Dy CJ, Gerasimenko YP, Edgerton VR, Dyhre-Poulsen P, Courtine G, Harkema SJ. Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury. Journal of Neurophysiology. 2010;103(5):2808–20. doi:
    1. Ferris DP, Gordon KE, Beres-Jones JA, Harkema SJ. Muscle activation during unilateral stepping occurs in the nonstepping limb of humans with clinically complete spinal cord injury. Spinal Cord. 2004;42(1):14–23. doi:
    1. Harkema SJ. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. The Neuroscientist: a review journal bringing neurobiology, neurology and psychiatry. 2001;7(5):455–68.
    1. Harkema SJ. Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Research Reviews. 2008;57(1):255–64. doi:
    1. Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR. Human lumbosacral spinal cord interprets loading during stepping. Journal of Neurophysiology. 1997;77(2):797–811. doi:
    1. Maegele M, Muller S, Wernig A, Edgerton VR, Harkema SJ. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury. Journal of neurotrauma. 2002;19(10):1217–29. doi:
    1. Dietz V, Quintern J, Sillem M. Stumbling reactions in man: significance of proprioceptive and pre-programmed mechanisms. The Journal of physiology. 1987;386:149–63.
    1. Sherwood AM, Dimitrijevic MR, McKay WB. Evidence of subclinical brain influence in clinically complete spinal cord injury: discomplete SCI. Journal of the neurological sciences. 1992;110(1–2):90–8.
    1. Dietz V, Colombo G, Jensen L. Locomotor activity in spinal man. Lancet. 1994;344(8932):1260–3.
    1. Dietz V, Colombo G, Jensen L, Baumgartner L. Locomotor capacity of spinal cord in paraplegic patients. Annals of neurology. 1995;37(5):574–82. doi:
    1. Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R. A physiological basis for the development of rehabilitative strategies for spinally injured patients. J Am Paraplegia Soc. 1991;14(4):150–7.
    1. Forssberg H, Grillner S, Halbertsma J. The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta physiologica Scandinavica. 1980;108(3):269–81. doi:
    1. Colombo G, Wirz M, Dietz V. Effect of locomotor training related to clinical and electrophysiological examinations in spinal cord injured humans. Annals of the New York Academy of Sciences. 1998;860:536–8.
    1. Dietz V. Locomotor recovery after spinal cord injury. Trends in neurosciences. 1997;20(8):346–7.
    1. Dietz V, Wirz M, Curt A, Colombo G. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord. 1998;36(6):380–90.
    1. Beaumont E, Kaloustian S, Rousseau G, Cormery B. Training improves the electrophysiological properties of lumbar neurons and locomotion after thoracic spinal cord injury in rats. Neuroscience research. 2008;62(3):147–54. doi:
    1. Button DC, Kalmar JM, Gardiner K, Marqueste T, Zhong H, Roy RR, et al. Does elimination of afferent input modify the changes in rat motoneurone properties that occur following chronic spinal cord transection? The Journal of physiology. 2008;586(2):529–44. Epub 2007/11/17. doi:
    1. Cope TC, Bodine SC, Fournier M, Edgerton VR. Soleus motor units in chronic spinal transected cats: physiological and morphological alterations. Journal of Neurophysiology. 1986;55(6):1202–20. doi:
    1. Gardiner PF. Changes in alpha-motoneuron properties with altered physical activity levels. Exerc Sport Sci Rev. 2006;34(2):54–8.
    1. Denny-Brown D, Robertson E. The state of the bladder and its sphincter in complete transverse lesions of the spinal cord and cauda equina. Brain. 1933;56:397–469.
    1. Mai J, Pedersen E. Clonus depression by propranolol. Acta neurologica Scandinavica. 1976;53(5):395–8.
    1. Jolesz FA, Cheng-Tao X, Ruenzel PW, Henneman E. Flexor reflex control of the external sphincter of the urethra in paraplegia. Science. 1982;216(4551):1243–5.
    1. Sato A, Sato Y, Sugimoto H, Tervi N. Reflex changes in the urinary bladder after mechanical and thermal stimulation of the skin at various segmental levels in cats. Neuroscience. 1977;2(1):111–7.
    1. Pedersen E, Petersen T, Schroder HD. Relation between flexor spasms, uninhibited detrusor contractions and anal sphincter activity. Journal of neurology, neurosurgery, and Psychiatry. 1986;49(3):273–7.
    1. Ward PJ, Herrity AN, Smith RR, Willhite A, Harrison BJ, Petruska JC, et al. Novel multi-system functional gains via task specific training in spinal cord injured male rats. Journal of neurotrauma. 2014;31(9):819–33. doi:
    1. Kruse MN, Bray LA, de Groat WC. Influence of spinal cord injury on the morphology of bladder afferent and efferent neurons. J Auton Nerv Syst. 1995;54(3):215–24.
    1. Steers WD, Kolbeck S, Creedon D, Tuttle JB. Nerve growth factor in the urinary bladder of the adult regulates neuronal form and function. The Journal of clinical investigation. 1991;88(5):1709–15. doi:
    1. Marino RJ, Barros T, Biering-Sorensen F, Burns SP, Donovan WH, Graves DE, et al. International standards for neurological classification of spinal cord injury. The journal of spinal cord medicine. 2003;26 Suppl 1:S50–6.
    1. Waring WP 3rd, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A, et al. _ 2009 review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med. 2010;33(4):346–52.
    1. Harkema SJ, Schmidt-Read M, Lorenz DJ, Edgerton VR, Behrman AL. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Archives of physical medicine and rehabilitation. 2012;93(9):1508–17. doi:
    1. Rejc E, Angeli C, Harkema S. Effects of Lumbosacral Spinal Cord Epidural Stimulation for Standing after Chronic Complete Paralysis in Humans. PLoS One. 2015;10(7):e0133998 doi:
    1. Schafer W, Abrams P, Liao L, Mattiasson A, Pesce F, Spangberg A, et al. Good urodynamic practices: uroflowmetry, filling cystometry, and pressure-flow studies. Neurourology and urodynamics. 2002;21(3):261–74.
    1. Blaivas JG, Awad SA, Bissada N, Khanna OP, Krane RJ, Wein AJ, et al. Urodynamic procedures: Recommendations of the Urodynamic Society. I. Procedures that should be available for routine urologic practice. Neurourology and urodynamics. 1982;1(1):51–5.
    1. Winters JC, Dmochowski RR, Goldman HB, Herndon CD, Kobashi KC, Kraus SR, et al. Urodynamic studies in adults: AUA/SUFU guideline. J Urol. 2012;188(6 Suppl):2464–72. 3.
    1. Gammie A, Clarkson B, Constantinou C, Damaser M, Drinnan M, Geleijnse G, et al. International Continence Society guidelines on urodynamic equipment performance. Neurourol Urodyn. 2014;33(4):370–9. doi:
    1. Rosier PF. The evidence for urodynamic investigation of patients with symptoms of urinary incontinence. F1000prime reports. 2013;5:8 doi:
    1. Acute management of autonomic dysreflexia: individuals with spinal cord injury presenting to health-care facilities. J Spinal Cord Med. 2002;25 Suppl 1:S67–88.
    1. Krassioukov A, Warburton DE, Teasell R, Eng JJ. A systematic review of the management of autonomic dysreflexia after spinal cord injury. Arch Phys Med Rehabil. 2009;90(4):682–95. doi:
    1. Biering-Sorensen F, Craggs M, Kennelly M, Schick E, Wyndaele JJ. International urodynamic basic spinal cord injury data set. Spinal Cord. 2008;46(7):513–6. doi:
    1. Biering-Sorensen F, Craggs M, Kennelly M, Schick E, Wyndaele JJ. International lower urinary tract function basic spinal cord injury data set. Spinal Cord. 2008;46(5):325–30. doi:
    1. Krogh K, Perkash I, Stiens SA, Biering-Sorensen F. International bowel function basic spinal cord injury data set. Spinal Cord. 2009;47(3):230–4. doi:
    1. Krogh K, Perkash I, Stiens SA, Biering-Sorensen F. International bowel function extended spinal cord injury data set. Spinal Cord. 2009;47(3):235–41. doi:
    1. Alexander MS, Biering-Sorensen F, Elliott S, Kreuter M, Sonksen J. International spinal cord injury female sexual and reproductive function basic data set. Spinal Cord. 2011;49(7):787–90. doi:
    1. Alexander MS, Brackett NL, Bodner D, Elliott S, Jackson A, Sonksen J. Measurement of sexual functioning after spinal cord injury: preferred instruments. J Spinal Cord Med. 2009;32(3):226–36.
    1. Alexander MS, Biering-Sorensen F, Elliott S, Kreuter M, Sonksen J. International spinal cord injury male sexual function basic data set. Spinal Cord. 2011;49(7):795–8. doi:
    1. Rosen RC, Althof SE, Giuliano F. Research instruments for the diagnosis and treatment of patients with erectile dysfunction. Urology. 2006;68(3 Suppl):6–16.
    1. Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourology and urodynamics. 2002;21(2):167–78.
    1. Monti PR, Lara RC, Dutra MA, de Carvalho JR. New techniques for construction of efferent conduits based on the Mitrofanoff principle. Urology. 1997;49(1):112–5. doi:
    1. Liu N, Fougere R, Zhou MW, Nigro MK, Krassioukov AV. Autonomic dysreflexia severity during urodynamics and cystoscopy in individuals with spinal cord injury. Spinal Cord. 2013;51(11):863–7. doi:
    1. Milligan J, Lee J, McMillan C, Klassen H. Autonomic dysreflexia: recognizing a common serious condition in patients with spinal cord injury. Can Fam Physician. 2012;58(8):831–5.
    1. Wyndaele JJ. The normal pattern of perception of bladder filling during cystometry studied in 38 young healthy volunteers. J Urol. 1998;160(2):479–81.
    1. Lukacz ES, Sampselle C, Gray M, Macdiarmid S, Rosenberg M, Ellsworth P, et al. A healthy bladder: a consensus statement. Int J Clin Pract. 2011;65(10):1026–36. doi:
    1. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain: a journal of neurology. 2014;137(Pt 5):1394–409.
    1. Kessler TM, La Framboise D, Trelle S, Fowler CJ, Kiss G, Pannek J, et al. Sacral neuromodulation for neurogenic lower urinary tract dysfunction: systematic review and meta-analysis. Eur Urol. 2010;58(6):865–74. doi:
    1. Lombardi G, Del Popolo G. Clinical outcome of sacral neuromodulation in incomplete spinal cord injured patients suffering from neurogenic lower urinary tract symptoms. Spinal Cord. 2009;47(6):486–91. doi:
    1. Laessoe L, Sonksen J, Bagi P, Biering-Sorensen F, Ohl DA, McGuire EJ, et al. Effects of ejaculation by penile vibratory stimulation on bladder capacity in men with spinal cord lesions. The Journal of urology. 2003;169(6):2216–9. doi:
    1. Lane TM, Shah PJ. Leak-point pressures. BJU Int. 2000;86(8):942–9.
    1. McGuire EJ, Woodside JR, Borden TA, Weiss RM. Prognostic value of urodynamic testing in myelodysplastic patients. J Urol. 1981;126(2):205–9.
    1. Spinal cord injury facts and figures at a glance. The journal of spinal cord medicine. 2013;36(1):1–2. doi:
    1. Krhut J, Tintera J, Bilkova K, Holy P, Zachoval R, Zvara P, et al. Brain activity on fMRI associated with urinary bladder filling in patients with a complete spinal cord injury. Neurourol Urodyn. 2015.
    1. Komisaruk BR, Gerdes CA, Whipple B. 'Complete' spinal cord injury does not block perceptual responses to genital self-stimulation in women. Arch Neurol. 1997;54(12):1513–20.
    1. Komisaruk BR, Whipple B, Crawford A, Liu WC, Kalnin A, Mosier K. Brain activation during vaginocervical self-stimulation and orgasm in women with complete spinal cord injury: fMRI evidence of mediation by the vagus nerves. Brain Res. 2004;1024(1–2):77–88. doi:
    1. Herrity AN, Petruska JC, Stirling DP, Rau KK, Hubscher CH. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons. American journal of physiology Regulatory, integrative and comparative physiology. 2015;308(12):R1021–33. doi:
    1. Herrity AN, Rau KK, Petruska JC, Stirling DP, Hubscher CH. Identification of bladder and colon afferents in the nodose ganglia of male rats. The Journal of Comparative Neurology. 2014;522(16):3667–82. doi:
    1. Ward PJ, Hubscher CH. Persistent polyuria in a rat spinal contusion model. Journal of neurotrauma. 2012;29(15):2490–8. doi:
    1. Hubscher CH, Montgomery LR, Fell JD, Armstrong JE, Poudyal P, Herrity AN, et al. Effects of exercise training on urinary tract function after spinal cord injury. Am J Physiol Renal Physiol. 2016;310(11):F1258–68. doi:
    1. Antunes-Rodrigues J, de Castro M, Elias LL, Valenca MM, McCann SM. Neuroendocrine control of body fluid metabolism. Physiological reviews. 2004;84(1):169–208. doi:
    1. Kilinc S, Akman MN, Levendoglu F, Ozker R. Diurnal variation of antidiuretic hormone and urinary output in spinal cord injury. Spinal Cord. 1999;37(5):332–5.
    1. Szollar SM, Dunn KL, Brandt S, Fincher J. Nocturnal polyuria and antidiuretic hormone levels in spinal cord injury. Archives of physical medicine and rehabilitation. 1997;78(5):455–8.
    1. Kooner JS, Frankel HL, Mirando N, Peart WS, Mathias CJ. Haemodynamic, hormonal and urinary responses to postural change in tetraplegic and paraplegic man. Paraplegia. 1988;26(4):233–7. doi:
    1. Mathias CJ, Fosbraey P, da Costa DF, Thornley A, Bannister R. The effect of desmopressin on nocturnal polyuria, overnight weight loss, and morning postural hypotension in patients with autonomic failure. British medical journal (Clinical research ed). 1986;293(6543):353–4.
    1. Convertino VA, Brock PJ, Keil LC, Bernauer EM, Greenleaf JE. Exercise training-induced hypervolemia: role of plasma albumin, renin, and vasopressin. J Appl Physiol Respir Environ Exerc Physiol. 1980;48(4):665–9. doi:
    1. Hew-Butler T, Noakes TD, Soldin SJ, Verbalis JG. Acute changes in arginine vasopressin, sweat, urine and serum sodium concentrations in exercising humans: does a coordinated homeostatic relationship exist? Br J Sports Med. 2010;44(10):710–5. doi:
    1. Wade CE. Response, regulation, and actions of vasopressin during exercise: a review. Medicine and science in sports and exercise. 1984;16(5):506–11.
    1. Wade CE, Claybaugh JR. Plasma renin activity, vasopressin concentration, and urinary excretory responses to exercise in men. J Appl Physiol Respir Environ Exerc Physiol. 1980;49(6):930–6. doi:
    1. Glickman S, Kamm MA. Bowel dysfunction in spinal-cord-injury patients. Lancet. 1996;347(9016):1651–3.
    1. Fajardo NR, Pasiliao RV, Modeste-Duncan R, Creasey G, Bauman WA, Korsten MA. Decreased colonic motility in persons with chronic spinal cord injury. Am J Gastroenterol. 2003;98(1):128–34. doi:
    1. De Looze DA, De Muynck MC, Van Laere M, De Vos MM, Elewaut AG. Pelvic floor function in patients with clinically complete spinal cord injury and its relation to constipation. Dis Colon Rectum. 1998;41(6):778–86.
    1. Valles M, Mearin F. Pathophysiology of bowel dysfunction in patients with motor incomplete spinal cord injury: comparison with patients with motor complete spinal cord injury. Dis Colon Rectum. 2009;52(9):1589–97. doi:
    1. Creasey GH, Grill JH, Korsten M, U HS, Betz R, Anderson R, et al. An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: a multicenter trial. Arch Phys Med Rehabil. 2001;82(11):1512–9. doi:
    1. Anderson KD, Borisoff JF, Johnson RD, Stiens SA, Elliott SL. The impact of spinal cord injury on sexual function: concerns of the general population. Spinal Cord. 2007;45(5):328–37. doi:
    1. Ide M, Fugl-Meyer AR. Life satisfaction in persons with spinal cord injury: a comparative investigation between Sweden and Japan. Spinal Cord. 2001;39(7):387–93. doi:
    1. Kreuter M, Sullivan M, Dahllof AG, Siosteen A. Partner relationships, functioning, mood and global quality of life in persons with spinal cord injury and traumatic brain injury. Spinal Cord. 1998;36(4):252–61.
    1. Reitz A, Tobe V, Knapp PA, Schurch B. Impact of spinal cord injury on sexual health and quality of life. Int J Impot Res. 2004;16(2):167–74. doi:
    1. Miranda EP, Gomes CM, de Bessa J Jr., Najjar Abdo CH, Suzuki Bellucci CH, de Castro Filho JE, et al. Evaluation of Sexual Dysfunction in Men With Spinal Cord Injury Using the Male Sexual Quotient. Arch Phys Med Rehabil. 2016;97(6):947–52. doi:
    1. Lara LA, Ramos FK, Kogure GS, Costa RS, Silva de Sa MF, Ferriani RA, et al. Impact of Physical Resistance Training on the Sexual Function of Women with Polycystic Ovary Syndrome. J Sex Med. 2015;12(7):1584–90. doi:
    1. Maio G, Saraeb S, Marchiori A. Physical activity and PDE5 inhibitors in the treatment of erectile dysfunction: results of a randomized controlled study. J Sex Med. 2010;7(6):2201–8. doi:
    1. Bodner DR, Lindan R, Leffler E, Kursh ED, Resnick MI. The application of intracavernous injection of vasoactive medications for erection in men with spinal cord injury. J Urol. 1987;138(2):310–1.
    1. Courtois FJ, Charvier KF, Leriche A, Raymond DP. Sexual function in spinal cord injury men. I. Assessing sexual capability. Paraplegia. 1993;31(12):771–84. doi:
    1. Suh DD, Yang CC, Clowers DE. Nocturnal penile tumescence and effects of complete spinal cord injury: possible physiologic mechanisms. Urology. 2003;61(1):184–9.
    1. Fode M, Krogh-Jespersen S, Brackett NL, Ohl DA, Lynne CM, Sonksen J. Male sexual dysfunction and infertility associated with neurological disorders. Asian journal of andrology. 2012;14(1):61–8. doi:
    1. Yavetz H, Yogev L, Hauser R, Lessing JB, Paz G, Homonnai ZT. Retrograde ejaculation. Hum Reprod. 1994;9(3):381–6.

Source: PubMed

3
订阅