Neurofeedback and the Aging Brain: A Systematic Review of Training Protocols for Dementia and Mild Cognitive Impairment

Lucas R Trambaiolli, Raymundo Cassani, David M A Mehler, Tiago H Falk, Lucas R Trambaiolli, Raymundo Cassani, David M A Mehler, Tiago H Falk

Abstract

Dementia describes a set of symptoms that occur in neurodegenerative disorders and that is characterized by gradual loss of cognitive and behavioral functions. Recently, non-invasive neurofeedback training has been explored as a potential complementary treatment for patients suffering from dementia or mild cognitive impairment. Here we systematically reviewed studies that explored neurofeedback training protocols based on electroencephalography or functional magnetic resonance imaging for these groups of patients. From a total of 1,912 screened studies, 10 were included in our final sample (N = 208 independent participants in experimental and N = 81 in the control groups completing the primary endpoint). We compared the clinical efficacy across studies, and evaluated their experimental designs and reporting quality. In most studies, patients showed improved scores in different cognitive tests. However, data from randomized controlled trials remains scarce, and clinical evidence based on standardized metrics is still inconclusive. In light of recent meta-research developments in the neurofeedback field and beyond, quality and reporting practices of individual studies are reviewed. We conclude with recommendations on best practices for future studies that investigate the effects of neurofeedback training in dementia and cognitive impairment.

Keywords: Alzheimer's disease; dementia; electroencephalography; functional magnetic resonance imaging; mild cognitive impairment; neurofeedback.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Trambaiolli, Cassani, Mehler and Falk.

Figures

Figure 1
Figure 1
PRISMA flowchart describing the literature screening.
Figure 2
Figure 2
Summary of cognitive improvement according to standardized cognitive screening scales. The baseline and post-neurofeedback measures normalized as a percentage of the respective scales. In orange are the studies using patients with formal diagnosis of dementia, and in blue patients with mild-cognitive impairment (MCI). If the study did not report a primary outcome, we adopted a conservative approach and included in this chart results from the scale showing lower improvement. Solid bars represent the baseline scores, and dashed lines the post-intervention values. NF, Neurofeedback; NR, Not Reported.
Figure 3
Figure 3
The Consensus on the Reporting and Experimental Design of Neurofeedback studies (CRED-nf) percentage scores (A) per study, and (B) averaged per category. The Joanna Briggs Institute (JBI) averaged percentage scores (C) per study, and (D) averaged per category. **Methodological information detailed in previous publication from Hohenfeld et al. (2017); *Methodological information detailed in previous publication from Gomez-Pilar et al. (2016).

References

    1. Aarts E., Dolan C. V., Verhage M., van der Sluis S. (2015). Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives. BMC Neurosci. 16:94. 10.1186/s12868-015-0228-5
    1. Agüero-Torres H., Fratiglioni L., Guo Z., Viitanen M., Winblad B. (1999). Mortality from dementia in advanced age: a 5-year follow-up study of incident dementia cases. J. Clin. Epidemiol. 52, 737–743. 10.1016/S0895-4356(99)00067-0
    1. Albers C., Lakens D. (2018). When power analyses based on pilot data are biased: inaccurate effect size estimators and follow-up bias. J. Exp. Soc. Psychol. 74, 187–195. 10.1016/j.jesp.2017.09.004
    1. Albuquerque I., Tiwari A., Parent M., Cassani R., Gagnon J. F., Lafond D., et al. . (2020). Wauc: a multi-modal database for mental workload assessment under physical activity. Front. Neurosci. 14:549524. 10.3389/fnins.2020.549524
    1. Algermissen J., Mehler D. M. (2018). May the power be with you: are there highly powered studies in neuroscience, and how can we get more of them? J. Neurophysiol. 119, 2114–2117. 10.1152/jn.00765.2017
    1. Allen C., Mehler D. M. (2019). Open science challenges, benefits and tips in early career and beyond. PLoS Biol. 17:e3000246. 10.1371/journal.pbio.3000246
    1. Andersen K., Lolk A., Martinussen T., Kragh-Sørensen P. (2010). Very mild to severe dementia and mortality: a 14-year follow-up-the odense study. Dement. Geriatr. Cogn. Disord. 29, 61–67. 10.1159/000265553
    1. Andrews J. S., Desai U., Kirson N. Y., Zichlin M. L., Ball D. E., Matthews B. R. (2019). Disease severity and minimal clinically important differences in clinical outcome assessments for alzheimer's disease clinical trials. Alzheimers Dement 5, 354–363. 10.1016/j.trci.2019.06.005
    1. Angelakis E., Stathopoulou S., Frymiare J. L., Green D. L., Lubar J. F., Kounios J. (2007). EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin. Neuropsychol. 21, 110–129. 10.1080/13854040600744839
    1. Arns M., Batail J. M., Bioulac S., Congedo M., Daudet C., Drapier D., et al. . (2017). Neurofeedback: one of today's techniques in psychiatry? L'Encéphale 43, 135–145. 10.1016/j.encep.2016.11.003
    1. Auer T., Schweizer R., Frahm J. (2015). Training efficiency and transfer success in an extended real-time functional mri neurofeedback training of the somatomotor cortex of healthy subjects. Front. Hum. Neurosci. 9:547. 10.3389/fnhum.2015.00547
    1. Badhwar A., Tam A., Dansereau C., Orban P., Hoffstaedter F., Bellec P. (2017). Resting-state network dysfunction in Alzheimer's disease: a systematic review and meta-analysis. Alzheimer Dement. 8, 73–85. 10.1016/j.dadm.2017.03.007
    1. Balardin J. B., Zimeo Morais G. A., Furucho R. A., Trambaiolli L., Vanzella P., Biazoli Jr C., et al. . (2017). Imaging brain function with functional near-infrared spectroscopy in unconstrained environments. Front. Hum. Neurosci. 11:258. 10.3389/fnhum.2017.00258
    1. Banville H., Falk T. (2016). Recent advances and open challenges in hybrid brain-computer interfacing: a technological review of non-invasive human research. Brain Comput. Interfaces 3, 9–46. 10.1080/2326263X.2015.1134958
    1. Becerra J., Fernandez T., Roca-Stappung M., Diaz-Comas L., Galan L., Bosch J., et al. . (2012). Neurofeedback in healthy elderly human subjects with electroencephalographic risk for cognitive disorder. J. Alzheimers Dis. 28, 357–367. 10.3233/JAD-2011-111055
    1. Birbaumer N., Ruiz S., Sitaram R. (2013). Learned regulation of brain metabolism. Trends Cogn. Sci. 17, 295–302. 10.1016/j.tics.2013.04.009
    1. Boyle P., Wilson R., Aggarwal N., Tang Y., Bennett D. (2006). Mild cognitive impairment: risk of Alzheimer disease and rate of cognitive decline. Neurology 67, 441–445. 10.1212/01.wnl.0000228244.10416.20
    1. Brodaty H., Connors M. H., Ames D., Woodward M., Group P. S. (2014). Progression from mild cognitive impairment to dementia: a 3-year longitudinal study. Aust. N. Zeal. J. Psychiatry 48, 1137–1142. 10.1177/0004867414536237
    1. Cassani R., Estarellas M., San-Martin R., Fraga F. J., Falk T. H. (2018). Systematic review on resting-state EEG for Alzheimer's disease diagnosis and progression assessment. Dis. Markers 2018:5174815. 10.1155/2018/5174815
    1. Cassani R., Falk T. H., Fraga F. J., Cecchi M., Moore D. K., Anghinah R. (2017). Towards automated electroencephalography-based Alzheimer's disease diagnosis using portable low-density devices. Biomed. Signal Process. Control 33, 261–271. 10.1016/j.bspc.2016.12.009
    1. Chandra A., Dervenoulas G., Politis M. (2019). Magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment. J. Neurol. 266, 1293–1302. 10.1007/s00415-018-9016-3
    1. Cicerone K. D., Langenbahn D. M., Braden C., Malec J. F., Kalmar K., Fraas M., et al. . (2011). Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch. Phys. Med. Rehabil. 92, 519–530. 10.1016/j.apmr.2010.11.015
    1. Cisotto G., Trentini A., Zoppis I., Zanga A., Manzoni S., Pietrabissa G., et al. . (2021). Acta: a mobile-health solution for integrated nudge-neurofeedback training for senior citizens. arXiv 2102.08692.
    1. Corrada M., Brookmeyer R., Berlau D., Paganini-Hill A., Kawas C. (2008). Prevalence of dementia after age 90: results from the 90+ study. Neurology 71, 337–343. 10.1212/
    1. Corrada M. M., Brookmeyer R., Paganini-Hill A., Berlau D., Kawas C. H. (2010). Dementia incidence continues to increase with age in the oldest old: the 90+ study. Ann. Neurol. 67, 114–121. 10.1002/ana.21915
    1. Coull J., Middleton H., Robbins T., Sahakian B. (1995). Contrasting effects of clonidine and diazepam on tests of working memory and planning. Psychopharmacology 120, 311–321. 10.1007/BF02311179
    1. Cox W. M., Subramanian L., Linden D. E., Lührs M., McNamara R., Playle R., et al. . (2016). Neurofeedback training for alcohol dependence versus treatment as usual: study protocol for a randomized controlled trial. Trials 17, 1–10. 10.1186/s13063-016-1607-7
    1. Craig D., Mirakhur A., Hart D. J., McIlroy S. P., Passmore A. P. (2005). A cross-sectional study of neuropsychiatric symptoms in 435 patients with Alzheimer's disease. Am. J. Geriatr. Psychiatry 13, 460–468. 10.1097/00019442-200506000-00004
    1. Cummings J. L. (2004). Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations. Focus 11, 131–252. 10.1097/00019442-200303000-00004
    1. Cummings J. L., Frank J. C., Cherry D., Kohatsu N. D., Kemp B., Hewett L., et al. . (2002). Guidelines for managing Alzheimer's disease: part II. treatment. Am. Fam. Physician 65:2525.
    1. Curran E. A., Stokes M. J. (2003). Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn. 51, 326–336. 10.1016/S0278-2626(03)00036-8
    1. da Paz C., Kouzak V., Garcia A., Campos da Paz Neto A., Tomaz C. (2018). Smr neurofeedback training facilitates working memory performance in healthy older adults: a behavioral and EEG study. Front. Behav. Neurosci. 12:321. 10.3389/fnbeh.2018.00321
    1. de Vito A., Calamia M., Greening S., Roye S. (2019). The association of anxiety, depression, and worry symptoms on cognitive performance in older adults. Aging Neuropsychol. Cogn. 26, 161–173. 10.1080/13825585.2017.1416057
    1. De Vos M., Kroesen M., Emkes R., Debener S. (2014). P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier. J. Neural Eng. 11:036008. 10.1088/1741-2560/11/3/036008
    1. Enriquez-Geppert S., Huster R. J., Herrmann C. S. (2017). EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front. Hum. Neurosci. 11:51. 10.3389/fnhum.2017.00051
    1. Erkinjuntti T., Román G., Gauthier S. (2004). Treatment of vascular dementia—evidence from clinical trials with cholinesterase inhibitors. J. Neurol. Sci. 226, 63–66. 10.1016/j.jns.2004.09.018
    1. Evangelisti S., Pittau F., Testa C., Rizzo G., Gramegna L. L., Ferri L., et al. . (2019). L-dopa modulation of brain connectivity in parkinson's disease patients: a pilot EEG-fMRI study. Front. Neurosci. 13:611. 10.3389/fnins.2019.00611
    1. Fazli S., Mehnert J., Steinbrink J., Curio G., Villringer A., Müller K. R., et al. . (2012). Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage 59, 519–529. 10.1016/j.neuroimage.2011.07.084
    1. Feeney J., Savva G. M., O'Regan C., King-Kallimanis B., Cronin H., Kenny R. A. (2016). Measurement error, reliability, and minimum detectable change in the mini-mental state examination, Montreal cognitive assessment, and color trails test among community living middle-aged and older adults. J. Alzheimers Dis. 53, 1107–1114. 10.3233/JAD-160248
    1. Flicker C., Ferris S. H., Reisberg B. (1991). Mild cognitive impairment in the elderly: predictors of dementia. Neurology 41, 1006–1006. 10.1212/WNL.41.7.1006
    1. Ganguli M., Snitz B. E., Saxton J. A., Chang C. C. H., Lee C. W., Vander Bilt J., et al. . (2011). Outcomes of mild cognitive impairment by definition: a population study. Arch. Neurol. 68, 761–767. 10.1001/archneurol.2011.101
    1. Gazzaley A., Nobre A. C. (2012). Top-down modulation: bridging selective attention and working memory. Trends Cogn. Sci. 16, 129–135. 10.1016/j.tics.2011.11.014
    1. Gomez-Pilar J., Corralejo R., Nicolas-Alonso L. F., Álvarez D., Hornero R. (2016). Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly. Med. Biol. Eng. Comput. 54, 1655–1666. 10.1007/s11517-016-1454-4
    1. Gratwicke J., Jahanshahi M., Foltynie T. (2015). Parkinson's disease dementia: a neural networks perspective. Brain 138, 1454–1476. 10.1093/brain/awv104
    1. Greenwood P. M., Parasuraman R. (2016). The mechanisms of far transfer from cognitive training: review and hypothesis. Neuropsychology 30:742. 10.1037/neu0000235
    1. Gruzelier J. H. (2014). EEG-neurofeedback for optimising performance. III: a review of methodological and theoretical considerations. Neurosci. Biobehav. Rev. 44, 159–182. 10.1016/j.neubiorev.2014.03.015
    1. Han J. W., Kim T. H., Lee S. B., Park J. H., Lee J. J., Huh Y., et al. . (2012). Predictive validity and diagnostic stability of mild cognitive impairment subtypes. Alzheimers Dement. 8, 553–559. 10.1016/j.jalz.2011.08.007
    1. Härlein J., Dassen T., Halfens R. J., Heinze C. (2009). Fall risk factors in older people with dementia or cognitive impairment: a systematic review. J. Adv. Nurs. 65, 922–933. 10.1111/j.1365-2648.2008.04950.x
    1. Harms M. P., Somerville L. H., Ances B. M., Andersson J., Barch D. M., Bastiani M., et al. . (2018). Extending the human connectome project across ages: imaging protocols for the lifespan development and aging projects. Neuroimage 183, 972–984. 10.1016/j.neuroimage.2018.09.060
    1. Hawkinson J. E., Ross A. J., Parthasarathy S., Scott D. J., Laramee E. A., Posecion L. J., et al. . (2012). Quantification of adverse events associated with functional MRI scanning and with real-time fMRI-based training. Int. J. Behav. Med. 19, 372–381. 10.1007/s12529-011-9165-6
    1. Hellström I., Nolan M., Nordenfelt L., Lundh U. (2007). Ethical and methodological issues in interviewing persons with dementia. Nurs. Ethics 14, 608–619. 10.1177/0969733007080206
    1. Heunis S., Lamerichs R., Zinger S., Caballero-Gaudes C., Jansen J. F., Aldenkamp B., et al. . (2020). Quality and denoising in real-time functional magnetic resonance imaging neurofeedback: a methods review. Hum. Brain Mapp. 41, 3439–3467. 10.1002/hbm.25010
    1. Hogan D. B., Bailey P., Black S., Carswell A., Chertkow H., Clarke B., et al. . (2008). Diagnosis and treatment of dementia: 5. Nonpharmacologic and pharmacologic therapy for mild to moderate dementia. Can. Med. Assoc. J. 179, 1019–1026. 10.1503/cmaj.081103
    1. Hohenfeld C., Kuhn H., Müller C., Nellessen N., Ketteler S., Heinecke A., et al. . (2020). Changes in brain activation related to visuo-spatial memory after real-time fMRI neurofeedback training in healthy elderly and Alzheimer's disease. Behav. Brain Res. 381:112435. 10.1016/j.bbr.2019.112435
    1. Hohenfeld C., Nellessen N., Dogan I., Kuhn H., Müller C., Papa F., et al. . (2017). Cognitive improvement and brain changes after real-time functional mri neurofeedback training in healthy elderly and prodromal Alzheimer's disease. Front. Neurol. 8:384. 10.3389/fneur.2017.00384
    1. Howard R., Phillips P., Johnson T., O'Brien J., Sheehan B., Lindesay J., et al. . (2011). Determining the minimum clinically important differences for outcomes in the Domino trial. Int. J. Geriatr. Psychiatry 26, 812–817. 10.1002/gps.2607
    1. Jacobs H. I., Radua J., Lückmann H. C., Sack A. T. (2013). Meta-analysis of functional network alterations in Alzheimer's disease: toward a network biomarker. Neurosci. Biobehav. Rev. 37, 753–765. 10.1016/j.neubiorev.2013.03.009
    1. Jang J. H., Kim J., Park G., Kim H., Jung E. S., Cha J. y., et al. . (2019). Beta wave enhancement neurofeedback improves cognitive functions in patients with mild cognitive impairment: a preliminary pilot study. Medicine 98:e18357. 10.1097/MD.0000000000018357
    1. Jiang Y., Abiri R., Zhao X. (2017). Tuning up the old brain with new tricks: attention training via neurofeedback. Front. Aging Neurosci. 9:52. 10.3389/fnagi.2017.00052
    1. Jirayucharoensak S., Israsena P., Pan-ngum S., Hemrungrojn S., Maes M. (2019). A game-based neurofeedback training system to enhance cognitive performance in healthy elderly subjects and in patients with amnestic mild cognitive impairment. Clin. Interv. Aging 14:347. 10.2147/CIA.S189047
    1. Johnston S. J., Boehm S. G., Healy D., Goebel R., Linden D. E. (2010). Neurofeedback: a promising tool for the self-regulation of emotion networks. Neuroimage 49, 1066–1072. 10.1016/j.neuroimage.2009.07.056
    1. Karakaya T., Fußer F., Schroder J., Pantel J. (2013). Pharmacological treatment of mild cognitive impairment as a prodromal syndrome of Alzheimer's disease. Curr. Neuropharmacol. 11, 102–108. 10.2174/157015913804999487
    1. Karbach J., Verhaeghen P. (2014). Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol. Sci. 25, 2027–2037. 10.1177/0956797614548725
    1. Keizer A. W., Verment R. S., Hommel B. (2010). Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. Neuroimage 49, 3404–3413. 10.1016/j.neuroimage.2009.11.023
    1. Kim J., Kim Y. K. (2021). Crosstalk between depression and dementia with resting-state fMRI studies and its relationship with cognitive functioning. Biomedicines 9:82. 10.3390/biomedicines9010082
    1. Kim S., Birbaumer N. (2014). Real-time functional mri neurofeedback: a tool for psychiatry. Curr. Opin. Psychiatry 27, 332–336. 10.1097/YCO.0000000000000087
    1. Klekociuk S. Z., Saunders N. L., Summers M. J. (2016). Diagnosing mild cognitive impairment as a precursor to dementia: fact or fallacy? Aust. Psychol. 51, 366–373. 10.1111/ap.12178
    1. Koberda J. L. (2014). Z-score Loreta neurofeedback as a potential therapy in cognitive dysfunction and dementia. J. Psychol. Clin. Psychiatry 1:00037. 10.15406/jpcpy.2014.01.00037
    1. Kohl S. H., Mehler D., Lührs M., Thibault R. T., Konrad K., Sorger B. (2020). The potential of functional near-infrared spectroscopy-based neurofeedback—a systematic review and recommendations for best practice. Front. Neurosci. 14:594. 10.31234/
    1. Kopecek M., Bezdicek O., Sulc Z., Lukavsky J., Stepankova H. (2017). Montreal cognitive assessment and mini-mental state examination reliable change indices in healthy older adults. Int. J. Geriatr. Psychiatry 32, 868–875. 10.1002/gps.4539
    1. Koyama A., Okereke O. I., Yang T., Blacker D., Selkoe D. J., Grodstein F. (2012). Plasma amyloid-β as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch. Neurol. 69, 824–831. 10.1001/archneurol.2011.1841
    1. Laborda-Sánchez F., Cansino S. (2021). The effects of neurofeedback on aging-associated cognitive decline: a systematic review. Appl. Psychophysiol. Biofeedb. 46, 1–10. 10.1007/s10484-020-09497-6
    1. Lavy Y., Dwolatzky T., Kaplan Z., Guez J., Todder D. (2019). Neurofeedback improves memory and peak alpha frequency in individuals with mild cognitive impairment. Appl. Psychophysiol. Biofeedb. 44, 41–49. 10.1007/s10484-018-9418-0
    1. Lecomte G., Juhel J. (2011). The effects of neurofeedback training on memory performance in elderly subjects. Psychology 2:846. 10.4236/psych.2011.28129
    1. Li X., Zhang J., Li X. D., Cui W., Su R. (2020). Neurofeedback training for brain functional connectivity improvement in mild cognitive impairment. J. Med. Biol. Eng. 40, 489–495. 10.1007/s40846-020-00531-w
    1. Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gøtzsche P. C., Ioannidis J. P., et al. . (2009). The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann. Intern. Med. 151:W-65. 10.7326/0003-4819-151-4-200908180-00136
    1. Linden D. E. (2014). Neurofeedback and networks of depression. Dialog. Clin. Neurosci. 16:103. 10.31887/DCNS.2014.16.1/dlinden
    1. Linden D. E., Turner D. L. (2016). Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Curr. Opin. Neurol. 29:412. 10.1097/WCO.0000000000000340
    1. Linhartová P., Látalová A., Kóša B., Kašpárek T., Schmahl C., Paret C. (2019). fMRI neurofeedback in emotion regulation: a literature review. Neuroimage 193, 75–92. 10.1016/j.neuroimage.2019.03.011
    1. Livingston G., Sommerlad A., Orgeta V., Costafreda S. G., Huntley J., Ames D., et al. . (2017). Dementia prevention, intervention, and care. Lancet 390, 2673–2734. 10.1016/S0140-6736(17)31363-6
    1. Lubianiker N., Goldway N., Fruchtman-Steinbok T., Paret C., Keynan J. N., Singer N., et al. . (2019). Process-based framework for precise neuromodulation. Nat. Hum. Behav. 3, 436–445. 10.1038/s41562-019-0573-y
    1. Luijmes R. E., Pouwels S., Boonman J. (2016). The effectiveness of neurofeedback on cognitive functioning in patients with Alzheimer's disease: preliminary results. Clin. Neurophysiol. 46, 179–187. 10.1016/j.neucli.2016.05.069
    1. Lyketsos C. G., Lee H. B. (2004). Diagnosis and treatment of depression in Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 17, 55–64. 10.1159/000074277
    1. Mariani E., Monastero R., Mecocci P. (2007). Mild cognitive impairment: a systematic review. J. Alzheimers Dis. 12, 23–35. 10.3233/JAD-2007-12104
    1. Marlats F., Bao G., Chevallier S., Boubaya M., Djabelkhir-Jemmi L., Wu Y. H., et al. . (2020). SMR/theta neurofeedback training improves cognitive performance and EEG activity in elderly with mild cognitive impairment: a pilot study. Front. Aging Neurosci. 12:147. 10.3389/fnagi.2020.00147
    1. McDermott L. M., Ebmeier K. P. (2009). A meta-analysis of depression severity and cognitive function. J. Affect. Disord. 119, 1–8. 10.1016/j.jad.2009.04.022
    1. McFarland D. J., McCane L. M., Wolpaw J. R. (1998). EEG-based communication and control: short-term role of feedback. IEEE Trans. Rehabil. Eng. 6, 7–11. 10.1109/86.662615
    1. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. (1984). Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group* under the auspices of department of health and human services task force on Alzheimer's disease. Neurology 34, 939–939. 10.1212/WNL.34.7.939
    1. Mehler D., Williams A. N., Whittaker J. R., Krause F., Lührs M., Kunas S., et al. . (2020). Graded fmri neurofeedback training of motor imagery in middle cerebral artery stroke patients: a preregistered proof-of-concept study. Front. Hum. Neurosci. 14:226. 10.3389/fnhum.2020.00226
    1. Mehler D. M., Edelsbrunner P. A., Matić K. (2019). Appreciating the significance of non-significant findings in psychology. J. Eur. Psychol. Stud. 10, 1–7. 10.5334/e2019a
    1. Mehler D. M., Kunas S. L., Sokunbi M. O., Goebel R., Linden D. E. (2021). Trajectories for mood states during a multi-session neurofeedback training intervention in major depressive disorder. PsyArXiv. 10.31234/
    1. Mehler D. M., Sokunbi M. O., Habes I., Barawi K., Subramanian L., Range M., et al. . (2018). Targeting the affective brain—a randomized controlled trial of real-time fmri neurofeedback in patients with depression. Neuropsychopharmacology 43, 2578–2585. 10.1038/s41386-018-0126-5
    1. Mehler D. M. A., Kording K. P. (2018). The lure of misleading causal statements in functional connectivity research. arXiv 1812.03363.
    1. Mendoza Laiz N., Del Valle Diaz S., Rioja Collado N., Gomez-Pilar J., Hornero R. (2018). Potential benefits of a cognitive training program in mild cognitive impairment (MCI). Restor. Neurol. Neurosci. 36, 207–213. 10.3233/RNN-170754
    1. Micoulaud-Franchi J. A., Batail J. M., Fovet T., Philip P., Cermolacce M., Jaumard-Hakoun A., et al. . (2019). Towards a pragmatic approach to a psychophysiological unit of analysis for mental and brain disorders: an EEG-copeia for neurofeedback. Appl. Psychophysiol. Biofeedb. 44, 151–172. 10.1007/s10484-019-09440-4
    1. Micoulaud-Franchi J. A., Fovet T. (2018). A framework for disentangling the hyperbolic truth of neurofeedback: comment on Thibault and Raz (2017). Am. Psychol. 73, 933–935. 10.1037/amp0000340
    1. Min B. K., Marzelli M. J., Yoo S. S. (2010). Neuroimaging-based approaches in the brain-computer interface. Trends Biotechnol. 28, 552–560. 10.1016/j.tibtech.2010.08.002
    1. Mirmiran M., Van Someren E., Swaab D. (1996). Is brain plasticity preserved during aging and in Alzheimer's disease? Behav. Brain Res. 78, 43–48. 10.1016/0166-4328(95)00217-0
    1. Moher D., Hopewell S., Schulz K. F., Montori V., Gøtzsche P. C., Devereaux P., et al. . (2012). Consort 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 10, 28–55. 10.1016/j.ijsu.2011.10.001
    1. Nichols T. E., Das S., Eickhoff S. B., Evans A. C., Glatard T., Hanke M., et al. . (2017). Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20, 299–303. 10.1038/nn.4500
    1. Nijholt A., Allison B. Z., Jacob R. J. (2011). “Brain-computer interaction: can multimodality help?” in Proceedings of the 13th International Conference on Multimodal Interfaces (Alicante: ), 35–40. 10.1145/2070481.2070490
    1. Novek S., Wilkinson H. (2019). Safe and inclusive research practices for qualitative research involving people with dementia: a review of key issues and strategies. Dementia 18, 1042–1059. 10.1177/1471301217701274
    1. Orengo C. A., Khan J., Kunik M. E., Snow A. L., Morgan R., Steele A., et al. . (2008). Aggression in individuals newly diagnosed with dementia. Am. J. Alzheimers Dis. Dement. 23, 227–232. 10.1177/1533317507313373
    1. Parent M., Albuquerque I., Tiwari A., Cassani R., Gagnon J. F., Lafond D., et al. . (2020). Pass: a multimodal database of physical activity and stress for mobile passive body/brain-computer interface research. Front. Neurosci. 14:1274. 10.3389/fnins.2020.542934
    1. Paret C., Goldway N., Zich C., Keynan J. N., Hendler T., Linden D., et al. . (2019). Current progress in real-time functional magnetic resonance-based neurofeedback: methodological challenges and achievements. Neuroimage 202:116107. 10.1016/j.neuroimage.2019.116107
    1. Parkkonen L. (2015). “Real-time magnetoencephalography for neurofeedback and closed-loop experiments,” in Clinical Systems Neuroscience, eds K. Kansaku, L. Cohen, and N. Birbaumer (Tokyo: Springer; ), 315–330. 10.1007/978-4-431-55037-2_17
    1. Paterniti S., Verdier-Taillefer M. H., Dufouil C., Alpérovitch A. (2002). Depressive symptoms and cognitive decline in elderly people: longitudinal study. Br. J. Psychiatry 181, 406–410. 10.1192/bjp.181.5.406
    1. Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194. 10.1111/j.1365-2796.2004.01388.x
    1. Petersen R. C. (2011). Clinical practice. Mild cognitive impairment. N. Engl. J. Med. 364:2227. 10.1056/NEJMcp0910237
    1. Pfurtscheller G., Allison B. Z., Bauernfeind G., Brunner C., Solis Escalante T., Scherer R., et al. . (2010). The hybrid BCI. Front. Neurosci. 4:3. 10.3389/fnpro.2010.00003
    1. Plassman B. L., Langa K. M., Fisher G. G., Heeringa S. G., Weir D. R., Ofstedal M. B., et al. . (2007). Prevalence of dementia in the united states: the aging, demographics, and memory study. Neuroepidemiology 29, 125–132. 10.1159/000109998
    1. Prichep L. S. (2007). Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Ann. N. Y. Acad. Sci. 1097, 156–167. 10.1196/annals.1379.008
    1. Prince M., Wimo A., Guerchet M., Ali G., Wu Y., Prina M., et al. . (2015). The Global Impact of Dementia. World Alzheimer Report. Alzheimer's Disease International (ADI), 1–82.
    1. Ramirez R., Palencia-Lefler M., Giraldo S., Vamvakousis Z. (2015). Musical neurofeedback for treating depression in elderly people. Front. Neurosci. 9:354. 10.3389/fnins.2015.00354
    1. Rana M., Varan A. Q., Davoudi A., Cohen R. A., Sitaram R., Ebner N. C. (2016). Real-time fmri in neuroscience research and its use in studying the aging brain. Front. Aging Neurosci. 8:239. 10.3389/fnagi.2016.00239
    1. Rance M., Walsh C., Sukhodolsky D. G., Pittman B., Qiu M., Kichuk S. A., et al. . (2018). Time course of clinical change following neurofeedback. Neuroimage 181, 807–813. 10.1016/j.neuroimage.2018.05.001
    1. Reis J., Portugal A. M., Fernandes L., Afonso N., Pereira M., Sousa N., et al. . (2016). An alpha and theta intensive and short neurofeedback protocol for healthy aging working-memory training. Front. Aging Neurosci. 8:157. 10.3389/fnagi.2016.00157
    1. Richard E., Andrieu S., Solomon A., Mangialasche F., Ahtiluoto S., van Charante E. P. M., et al. . (2012). Methodological challenges in designing dementia prevention trials—the European Dementia Prevention Initiative (EDPI). J. Neurol. Sci. 322, 64–70. 10.1016/j.jns.2012.06.012
    1. Ries A. J., Touryan J., Vettel J., McDowell K., Hairston W. D. (2014). A comparison of electroencephalography signals acquired from conventional and mobile systems. J. Neurosci. Neuroeng. 3, 10–20. 10.1166/jnsne.2014.1092
    1. Ritchie C. W., Terrera G. M., Quinn T. J. (2015). Dementia trials and dementia tribulations: methodological and analytical challenges in dementia research. Alzheimers Res. Ther. 7, 1–11. 10.1186/s13195-015-0113-6
    1. Robineau F., Meskaldji D. E., Koush Y., Rieger S. W., Mermoud C., Morgenthaler S., et al. . (2017). Maintenance of voluntary self-regulation learned through real-time fMRI neurofeedback. Front. Hum. Neurosci. 11:131. 10.3389/fnhum.2017.00131
    1. Ros T., Enriquez-Geppert S., Zotev V., Young K. D., Wood G., Whitfield-Gabrieli S., et al. . (2019). Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 143, 1674–1685. 10.1093/brain/awaa009
    1. Ros T., J Baars B., Lanius R. A., Vuilleumier P. (2014). Tuning pathological brain oscillations with neurofeedback: a systems neuroscience framework. Front. Hum. Neurosci. 8:1008. 10.3389/fnhum.2014.01008
    1. Ruan Q., D'Onofrio G., Sancarlo D., Bao Z., Greco A., Yu Z. (2016). Potential neuroimaging biomarkers of pathologic brain changes in mild cognitive impairment and Alzheimer's disease: a systematic review. BMC Geriatr. 16:104. 10.1186/s12877-016-0281-7
    1. Scheinost D., Stoica T., Wasylink S., Gruner P., Saksa J., Pittenger C., et al. . (2014). Resting state functional connectivity predicts neurofeedback response. Front. Behav. Neurosci. 8:338. 10.3389/fnbeh.2014.00338
    1. Schneider J. A., Arvanitakis Z., Bang W., Bennett D. A. (2007). Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69, 2197–2204. 10.1212/01.wnl.0000271090.28148.24
    1. Schönbrodt F. D., Wagenmakers E. J. (2018). Bayes factor design analysis: planning for compelling evidence. Psychonom. Bull. Rev. 25, 128–142. 10.3758/s13423-017-1230-y
    1. Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., et al. . (2017). Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18:86. 10.1038/nrn.2016.164
    1. Skouras S., Torner J., Anderson P., Koush Y., Falcon C., Minguillon C., et al. . (2019). The effect of apoe genotype and streamline density volume, on hippocampal ca1 down-regulation: a real-time fMRI virtual reality neurofeedback study. bioRxiv 643577. 10.1101/643577
    1. Skouras S., Torner J., Andersson P., Koush Y., Falcon C., Minguillon C., et al. . (2020). Earliest amyloid and tau deposition modulate the influence of limbic networks during closed-loop hippocampal downregulation. Brain 143, 976–992. 10.1093/brain/awaa011
    1. Sorger B., Scharnowski F., Linden D. E., Hampson M., Young K. D. (2019). Control freaks: towards optimal selection of control conditions for fmri neurofeedback studies. Neuroimage 186, 256–265. 10.1016/j.neuroimage.2018.11.004
    1. Steffens D. C., Maytan M., Helms M. J., Plassman B. L. (2005). Prevalence and clinical correlates of neuropsychiatric symptoms in dementia. Am. J. Alzheimers Dis. Dement. 20, 367–373. 10.1177/153331750502000611
    1. Stewart S., O'Riley A., Edelstein B., Gould C. (2012). A preliminary comparison of three cognitive screening instruments in long term care: the MMSE, SLUMS, and MoCA. Clin. Gerontol. 35, 57–75. 10.1080/07317115.2011.626515
    1. Subramanian L., Morris M. B., Brosnan M., Turner D. L., Morris H. R., Linden D. E. (2016). Functional magnetic resonance imaging neurofeedback-guided motor imagery training and motor training for Parkinson's disease: randomized trial. Front. Behav. Neurosci. 10:111. 10.3389/fnbeh.2016.00111
    1. Sulzer J., Haller S., Scharnowski F., Weiskopf N., Birbaumer N., Blefari M. L., et al. . (2013). Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76, 386–399. 10.1016/j.neuroimage.2013.03.033
    1. Surmeli T., Eralp E., Mustafazade I., Kos H., Özer G. E., Surmeli O. H. (2016). Quantitative EEG neurometric analysis-guided neurofeedback treatment in dementia: 20 cases. How neurometric analysis is important for the treatment of dementia and as a biomarker? Clin. EEG Neurosci. 47, 118–133. 10.1177/1550059415590750
    1. Teipel S. J., Wohlert A., Metzger C., Grimmer T., Sorg C., Ewers M., et al. . (2017). Multicenter stability of resting state fMRI in the detection of Alzheimer's disease and amnestic MCI. Neuroimage Clin. 14, 183–194. 10.1016/j.nicl.2017.01.018
    1. Thibault R. T., Lifshitz M., Raz A. (2017). Neurofeedback or neuroplacebo? Brain 140, 862–864. 10.1093/brain/awx033
    1. Thibault R. T., MacPherson A., Lifshitz M., Roth R. R., Raz A. (2018). Neurofeedback with fMRI: a critical systematic review. Neuroimage 172, 786–807. 10.1016/j.neuroimage.2017.12.071
    1. Thibault R. T., Raz A. (2017). The psychology of neurofeedback: clinical intervention even if applied placebo. Am. Psychol. 72:679. 10.1037/amp0000118
    1. Tolin D. F., Davies C. D., Moskow D. M., Hofmann S. G. (2020). Biofeedback and neurofeedback for anxiety disorders: a quantitative and qualitative systematic review. Anxiety Disord. 1191, 265–289. 10.1007/978-981-32-9705-0_16
    1. Trambaiolli L. R., Kohl S. H., Linden D. E., Mehler D. M. (2021). Neurofeedback training in major depressive disorder: a systematic review of clinical efficacy, study quality and reporting practices. Neurosci. Biobehav. Rev. 125, 33–56. 10.1016/j.neubiorev.2021.02.015
    1. Trzepacz P. T., Hochstetler H., Wang S., Walker B., Saykin A. J., Initiative A. D. N., et al. . (2015). Relationship between the Montreal cognitive assessment and mini-mental state examination for assessment of mild cognitive impairment in older adults. BMC Geriatr. 15:107. 10.1186/s12877-015-0103-3
    1. Tufanaru C., Munn Z., Aromataris E., Campbell J., Hopp L. (2017). “Chapter 3: Systematic reviews of effectiveness,” in Joanna Briggs Institute Reviewer's Manual, eds E. Aromataris and Z. Munn (The Joanna Briggs Institute). Available online at:
    1. Tursic A., Eck J., Lührs M., Linden D. E., Goebel R. (2020). A systematic review of fmri neurofeedback reporting and effects in clinical populations. Neuroimage Clin. 28:102496. 10.1016/j.nicl.2020.102496
    1. von Lühmann A., Wabnitz H., Sander T., Müller K. R. (2016). M3ba: a mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid BCI and monitoring. IEEE Trans. Biomed. Eng. 64, 1199–1210. 10.1109/TBME.2016.2594127
    1. Wang J. R., Hsieh S. (2013). Neurofeedback training improves attention and working memory performance. Clin. Neurophysiol. 124, 2406–2420. 10.1016/j.clinph.2013.05.020
    1. Wang T., Mantini D., Gillebert C. R. (2018). The potential of real-time fMRI neurofeedback for stroke rehabilitation: a systematic review. Cortex 107, 148–165. 10.1016/j.cortex.2017.09.006
    1. Wasay M., Grisold W., Carroll W., Shakir R. (2016). World brain day 2016: celebrating brain health in an ageing population. Lancet Neurol. 15:1008. 10.1016/S1474-4422(16)30171-5
    1. Weiskopf N. (2012). Real-time fMRI and its application to neurofeedback. Neuroimage 62, 682–692. 10.1016/j.neuroimage.2011.10.009
    1. Whall A. L., Black M. E., Groh C. J., Yankou D. J., Kupferschmid B. J., Foster N. L. (1997). The effect of natural environments upon agitation and aggression in late stage dementia patients. Am. J. Alzheimers Dis. 12, 216–220. 10.1177/153331759701200506
    1. Witte M., Kober S. E., Ninaus M., Neuper C., Wood G. (2013). Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front. Hum. Neurosci. 7:478. 10.3389/fnhum.2013.00478
    1. World Health Organization (2012). Dementia: A Public Health Priority. Geneva: World Health Organization.
    1. Yeh W. H., Hsueh J. J., Shaw F. Z. (2020). Neurofeedback of alpha activity on memory in healthy participants: a systematic review and meta-analysis. Front. Hum. Neurosci. 14:588. 10.3389/fnhum.2020.562360
    1. Young K. D., Siegle G. J., Zotev V., Phillips R., Misaki M., Yuan H., et al. . (2017). Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: effects on symptoms and autobiographical memory recall. Am. J. Psychiatry 174, 748–755. 10.1176/appi.ajp.2017.16060637
    1. Zhang R., Xiao W., Ding Y., Feng Y., Peng X., Shen L., et al. . (2020). Recording brain activities in unshielded earth's field with optically pumped atomic magnetometers. Sci. Adv. 6:eaba8792. 10.1126/sciadv.aba8792

Source: PubMed

3
订阅