Smartphone ECG Monitoring System Helps Lower Emergency Room and Clinic Visits in Post-Atrial Fibrillation Ablation Patients

Mossab Aljuaid, Qussay Marashly, Jad AlDanaf, Ibrahim Tawhari, Michel Barakat, Rody Barakat, Brittany Zobell, William Cho, Mihail G Chelu, Nassir F Marrouche, Mossab Aljuaid, Qussay Marashly, Jad AlDanaf, Ibrahim Tawhari, Michel Barakat, Rody Barakat, Brittany Zobell, William Cho, Mihail G Chelu, Nassir F Marrouche

Abstract

Aim: To evaluate the effectiveness of using a smartphone-based electrocardiography (ECG) monitoring device (ECG Check) on the frequency of clinic or emergency room visits in patients who underwent ablation of atrial fibrillation (AF).

Methods: Two groups of patients were identified and compared: The conventional monitoring group (CM group) included patients who were prescribed conventional event monitoring or Holter monitoring systems. The ECG Check group (EC group) included patients who were prescribed the ECG Check device for continuous monitoring in addition to conventional event monitoring. The primary outcome was the number of patient visits to clinic or emergency room. The feasibility, accuracy, and detection rate of mobile ECG Check were also evaluated.

Results: Ninety patients were studied (mean age: 66.2 ± 11 years, 64 males, mean CHA2DS2-VASc score: 2.6 ± 2). In the EC group, forty-five patients sent an average of 52.8 ± 6 ECG records for either routine monitoring or symptoms of potential AF during the follow-up period. The rhythm strips identified sinus rhythm (84.7%), sinus tachycardia (8.4%), AF (4.2%), and atrial flutter (0.9%). Forty-two EC transmissions (1.8%) were uninterpretable. Six patients (13%) in the EC group were seen in the clinic or emergency room over a 100-day study period versus 16 (33%) in the standard care arm (P value < 0.001).

Conclusions: Use of smartphone-based ECG monitoring led to a significant reduction in AF-related visits to clinic or emergency department in the postablation period.

Keywords: Mobile ECG; atrial ablation; atrial fibrillation.

Conflict of interest statement

Declaration of Conflicting Interest:Dr N.F.M. has received consulting fees from Abbott, Biotronik, Wavelet Health, Cardiac Design, Medtronic, Preventice, Vytronus, Biosense Webster, Marrek, Inc., and Boston Scientific; has received research funding from Abbott, Boston Scientific, GE Healthcare, Siemens, Biotronik, Vytronus, and Biosense Webster; has an ownership interest in Marrek, Inc., and Cardiac Designs; and has conducted contracted research with Biosense Webster, Medtronic, St. Jude Medical, and Boston Scientific. Dr M.G.C. has received research funding from Wavelet Health, Biotronik, Medtronic, and Boston Scientific. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.

© The Author(s) 2020.

Figures

Figure 1.
Figure 1.
Transmission of ECG Check device ECG recordings. ECG indicates electrocardiography.
Figure 2.
Figure 2.
ECG Check clinical algorithm. AAD indicates antiarrhythmic drug; AF, atrial fibrillation; CP, chest pain; DCCV, DC cardioversion; ED, emergency department.
Figure 3.
Figure 3.
Patient-provider communication to manage AF episode detected on ECG Check device. AF indicates atrial fibrillation; ECG, electrocardiography.
Figure 4.
Figure 4.
Total ECG recordings transmitted via ECG Check devices over 100 days. AF indicates atrial fibrillation; ECG, electrocardiography.
Figure 5.
Figure 5.
Number of AF-related outpatient department (OPD) and ED visits for EC group and conventional group. AF indicates atrial fibrillation; CM, conventional monitoring; EC, ECG Check; ECG, electrocardiography; ED, emergency department.

References

    1. Zimetbaum P. Atrial fibrillation. Ann Intern Med. 2017;166:ITC33-ITC48.
    1. Go AS, Hylek EM, Phillips KA, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) study. JAMA. 2001;285:2370-2375.
    1. Kannel WB, Benjamin EJ. Current perceptions of the epidemiology of atrial fibrillation. Cardiol Clin. 2009;27:13-24, vii.
    1. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart study. Circulation. 1998;98:946-952.
    1. Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 1998;82:2N-9N.
    1. Wang TJ, Larson MG, Levy D, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart study. Circulation. 2003;107:2920-2925.
    1. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002;113:359-364.
    1. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64:e1-e76.
    1. Wazni OM, Marrouche NF, Martin DO, et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA. 2005;293:2634-2640.
    1. Stabile G, Bertaglia E, Senatore G, et al. Catheter ablation treatment in patients with drug-refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (catheter ablation for the cure of atrial fibrillation study). Eur Heart J. 2006;27:216-221.
    1. Mohanty S, Mohanty P, Di Biase L, et al. Results from a single-blind, randomized study comparing the impact of different ablation approaches on long-term procedure outcome in coexistent atrial fibrillation and flutter (APPROVAL). Circulation. 2013;127:1853-1860.
    1. Forleo GB, Mantica M, De Luca L, et al. Catheter ablation of atrial fibrillation in patients with diabetes mellitus type 2: results from a randomized study comparing pulmonary vein isolation versus antiarrhythmic drug therapy. J Cardiovasc Electrophysiol. 2009;20:22-28.
    1. Verma A, Champagne J, Sapp J, et al. Discerning the incidence of symptomatic and asymptomatic episodes of atrial fibrillation before and after catheter ablation (DISCERN AF): a prospective, multicenter study. JAMA Intern Med. 2013;173:149-156.
    1. Hindricks G, Piorkowski C, Tanner H, et al. Perception of atrial fibrillation before and after radiofrequency catheter ablation: relevance of asymptomatic arrhythmia recurrence. Circulation. 2005;112:307-313.
    1. Vasamreddy CR, Dalal D, Dong J, et al. Symptomatic and asymptomatic atrial fibrillation in patients undergoing radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 2006;17:134-139.
    1. Gaztañaga L, Frankel DS, Kohari M, Kondapalli L, Zado ES, Marchlinski FE. Time to recurrence of atrial fibrillation influences outcome following catheter ablation. Heart Rhythm. 2013;10:2-9.
    1. Das M, Wynn GJ, Morgan M, et al. Recurrence of atrial tachyarrhythmia during the second month of the blanking period is associated with more extensive pulmonary vein reconnection at repeat electrophysiology study. Circ Arrhythm Electrophysiol. 2015;8:846-852.
    1. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace. 2018;20:e1-e160.
    1. Forleo GB, Casella M, Russo AD, et al. Monitoring atrial fibrillation after catheter ablation. J Atr Fibrillation. 2014;6:1040.
    1. Wokhlu A, Monahan KH, Hodge DO, et al. Long-term quality of life after ablation of atrial fibrillation the impact of recurrence, symptom relief, and placebo effect. J Am Coll Cardiol. 2010;55:2308-2316.
    1. Janse PA, van Belle YL, Theuns DA, Rivero-Ayerza M, Scholten MF, Jordaens LJ. Symptoms versus objective rhythm monitoring in patients with paroxysmal atrial fibrillation undergoing pulmonary vein isolation. Eur J Cardiovasc Nurs. 2008;7:147-151.
    1. Ziegler PD, Koehler JL, Mehra R. Comparison of continuous versus intermittent monitoring of atrial arrhythmias. Heart Rhythm. 2006;3:1445-1452.
    1. Mulder AA, Wijffels MC, Wever EF, Kelder JC, Boersma LV. Arrhythmia detection after atrial fibrillation ablation: value of incremental monitoring time. Pacing Clin Electrophysiol. 2012;35:164-169.
    1. Piccini JP, Mittal S, Snell J, Prillinger JB, Dalal N, Varma N. Impact of remote monitoring on clinical events and associated health care utilization: a nationwide assessment. Heart Rhythm. 2016;13:2279-2286.
    1. Mittal S, Piccini JP, Snell J, Prillinger JB, Dalal N, Varma N. Improved survival in patients enrolled promptly into remote monitoring following cardiac implantable electronic device implantation. J Interv Card Electrophysiol. 2016;46:129-136.
    1. Varma N, Piccini JP, Snell J, Fischer A, Dalal N, Mittal S. The relationship between level of adherence to automatic wireless remote monitoring and survival in pacemaker and defibrillator patients. J Am Coll Cardiol. 2015;65:2601-2610.
    1. Ricci RP, Morichelli L, Santini M. Remote control of implanted devices through home monitoring technology improves detection and clinical management of atrial fibrillation. Europace. 2009;11:54-61.
    1. Tarakji KG, Wazni OM, Callahan T, et al. Using a novel wireless system for monitoring patients after the atrial fibrillation ablation procedure: the iTransmit study. Heart Rhythm. 2015;12:554-559.
    1. Cardiac Designs Inc. ECG Check. . Accessed September 10, 2019
    1. Alhede C, Johannessen A, Dixen U, et al. Higher burden of supraventricular ectopic complexes early after catheter ablation for atrial fibrillation is associated with increased risk of recurrent atrial fibrillation. Europace. 2018;20:50-57.
    1. Liang JJ, Elafros MA, Chik WW, et al. Early recurrence of atrial arrhythmias following pulmonary vein antral isolation: timing and frequency of early recurrences predicts long-term ablation success. Heart Rhythm. 2015;12:2461-2468.
    1. Brachmann J, Marrouche N. Atrial Fibrillation Burden and Impact on Mortality and Hospitalization—The CASTLE-AF Trial. Boston, MA: Heart Rhythm Society; 2018.
    1. Calkins H, Hindricks G, Cappato R, et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. J Interv Card Electrophysiol. 2017;50:1-55.
    1. Israel CW, Gronefeld G, Ehrlich JR, Li YG, Hohnloser SH. Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device: implications for optimal patient care. J Am Coll Cardiol. 2004;43:47-52.
    1. Lowres N, Neubeck L, Salkeld G, et al. Feasibility and cost-effectiveness of stroke prevention through community screening for atrial fibrillation using iPhone ECG in pharmacies. The SEARCH-AF study. Thromb Haemost. 2014;111:1167-1176.
    1. Desteghe L, Engelhard L, Raymaekers Z, et al. Knowledge gaps in patients with atrial fibrillation revealed by a new validated knowledge questionnaire. Int J Cardiol. 2016;223:906-914.
    1. Hickey KT, Biviano AB, Garan H, et al. Evaluating the utility of mHealth ECG heart monitoring for the detection and management of atrial fibrillation in clinical practice. J Atr Fibrillation. 2017;9:1546.
    1. Hickey KT, Hauser NR, Valente LE, et al. A single-center randomized, controlled trial investigating the efficacy of a mHealth ECG technology intervention to improve the detection of atrial fibrillation: the iHEART study protocol. BMC Cardiovasc Disord. 2016;16:152.

Source: PubMed

3
订阅