Training the developing brain: a neurocognitive perspective

Dietsje D Jolles, Eveline A Crone, Dietsje D Jolles, Eveline A Crone

Abstract

DEVELOPMENTAL TRAINING STUDIES ARE IMPORTANT TO INCREASE OUR UNDERSTANDING OF THE POTENTIAL OF THE DEVELOPING BRAIN BY PROVIDING ANSWERS TO QUESTIONS SUCH AS: "Which functions can and which functions cannot be improved as a result of practice?," "Is there a specific period during which training has more impact?," and "Is it always advantageous to train a particular function?"In addition, neuroimaging methods provide valuable information about the underlying mechanisms that drive cognitive plasticity. In this review, we describe how neuroscientific studies of training effects inform us about the possibilities of the developing brain, pointing out that childhood is a special period during which training may have different effects. We conclude that there is much complexity in interpreting training effects in children. Depending on the type of training and the level of maturation of the individual, training may influence developmental trajectories in different ways. We propose that the immature brain structure might set limits on how much can be achieved with training, but that the immaturity can also have advantages, in terms of flexibility for learning.

Keywords: brain maturation; cognitive control; development; executive functions; neuroimaging; plasticity; training.

Figures

Figure 1
Figure 1
This figure shows a simplified, metaphorical description of how training might influence developmental trajectories [based on Denney (1984); see also Hertzog et al. (2009)]. The blue curve shows the potential of cognitive functioning, which increases with age due to maturational changes and common environmental experience. In addition, optimal environmental input and training determine whether the “optimally exercised potential” (i.e., the upper limit of cognitive functioning at a certain age; Denney, 1984) can be reached. Arrow A shows how training may improve cognitive functioning by speeding-up development; arrow B shows how training might improve functioning in a way that deviates from the typical developmental trajectory.

References

    1. Albert N. B., Robertson E. M., Miall R. C. (2009). The resting human brain and motor learning. Curr. Biol. 19, 1023–1027 10.1016/j.cub.2009.04.028
    1. Aylward E. H., Richards T. L., Berninger V. W., Nagy W. E., Field K. M., Grimme A. C., Richards A. L., Thomson J. B., Cramer S. C. (2003). Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology 61, 212–219
    1. Baltes P. B., Kliegl R. (1992). Further testing of limits of cognitive plasticity: negative age differences in a mnemonic skill are robust. Dev. Psychol. 28, 121–125
    1. Bangirana P., Giordani B., John C. C., Page C., Opoka R. O., Boivin M. J. (2009). Immediate neuropsychological and behavioral benefits of computerized cognitive rehabilitation in Ugandan pediatric cerebral malaria survivors. J. Dev. Behav. Pediatr. 30, 310–318 10.1097/DBP.0b013e3181b0f01b
    1. Bavelier D., Green C. S., Dye M. W. (2010). Children, wired: for better and for worse. Neuron 67, 692–701 10.1016/j.neuron.2010.08.035
    1. Beck S. J., Hanson C. A., Puffenberger S. S., Benninger K. L., Benninger W. B. (2010). A controlled trial of working memory training for children and adolescents with ADHD. J. Clin. Child Adolesc. Psychol. 39, 825–836 10.1080/15374416.2010.517162
    1. Bergman Nutley S., Soderqvist S., Bryde S., Thorell L. B., Humphreys K., Klingberg T. (2011). Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: a controlled, randomized study. Dev. Sci. 14, 591–601 10.1111/j.1467-7687.2010.01022.x
    1. Bjorklund D. F., Periss V., Causey K. (2009). The benefits of youth. Eur. J. Dev. Psychol. 6, 120–137
    1. Bor D., Cumming N., Scott C. E. L., Owen A. M. (2004). Prefrontal cortical involvement in verbal encoding strategies. Eur. J. Neurosci. 19, 3365–3370 10.1111/j.1460-9568.2004.03438.x
    1. Bor D., Duncan J., Wiseman R. J., Owen A. M. (2003). Encoding strategies dissociate prefrontal activity from working memory demand. Neuron 37, 361–367
    1. Bor D., Owen A. M. (2007a). A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory. Cereb. Cortex. 17, 778–786 10.1093/cercor/bhk035
    1. Bor D., Owen A. M. (2007b). Cognitive training: neural correlates of expert skills. Curr. Biol. 17, R95–R97 10.1016/j.cub.2007.01.019
    1. Bors D. A., Vigneau F. (2001). The effect of practice on Raven's advanced progressive matrices. Learn. Individ. Differ. 13, 291–312
    1. Braver T. S., Paxton J. L., Locke H. S., Barch D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 106, 7351–7356 10.1073/pnas.0808187106
    1. Brefczynski-Lewis J. A., Lutz A., Schaefer H. S., Levinson D. B., Davidson R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proc. Natl. Acad. Sci. U.S.A. 104, 11483–11488 10.1073/pnas.0606552104
    1. Bronfenbrenner U., Ceci S. J. (1994). Nature-nurture reconceptualized in developmental perspective: a bioecological model. Psychol. Rev. 101, 568–586 10.1037/0033-295X.101.4.568
    1. Brooks-Gunn J., Gross R. T., Kraemer H. C., Spiker D., Shapiro S. (1992). Enhancing the cognitive outcomes of low birth weight, premature infants: for whom is the intervention most effective? Pediatrics 89, 1209
    1. Bruer J. T. (1997). Education and the brain: a bridge too far. Educ. Res. 26, 4–16
    1. Bryck R. L., Fisher P. A. (2012). Training the brain: practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science. Am. Psychol. 67, 87–100 10.1037/a0024657
    1. Buchel C., Coull J. T., Friston K. J. (1999). The predictive value of changes in effective connectivity for human learning. Science 283, 1538–1541
    1. Buckner R. L., Ndrews-Hanna J. R., Schacter D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci. 1124, 1–38 10.1196/annals.1440.011
    1. Buschkuehl M., Jaeggi S. M. (2010). Improving intelligence: a literature review. Swiss Med. Wkly. 140, 266–272
    1. Buschkuehl M., Jaeggi S. M., Jonides J. (2012). Neuronal effects following working memory training. Dev. Cogn. Neurosci. 2, S167–S179
    1. Carew T. J., Magsamen S. H. (2010). Neuroscience and education: an ideal partnership for producing evidence-based solutions to Guide 21(st) Century Learning. Neuron 67, 685–688 10.1016/j.neuron.2010.08.028
    1. Case R., Kurland D. M., Goldberg J. (1982). Operational efficiency and the growth of short-term memory span. J. Exp. Child Psychol. 33, 386–404
    1. Casey B. J., Tottenham N., Liston C., Durston S. (2005). Imaging the developing brain: what have we learned about cognitive development? Trends Cogn. Sci. 9, 104–110 10.1016/j.tics.2005.01.011
    1. Ceccarelli A., Rocca M. A., Pagani E., Falini A., Comi G., Filippi M. (2009). Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study. Neuroimage 48, 585–589 10.1016/j.neuroimage.2009.07.009
    1. Changeux J. P., Danchin A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712
    1. Chechik G., Meilijson I., Ruppin E. (1998). Synaptic pruning in development: a computational account. Neural Comput. 10, 1759–1777
    1. Chein J. M., Schneider W. (2005). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Brain Res. Cogn. Brain Res. 25, 607–623 10.1016/j.cogbrainres.2005.08.013
    1. Chenault B., Thomson J., Abbott R. D., Berninger V. W. (2006). Effects of prior attention training on child dyslexics' response to composition instruction. Dev. Neuropsychol. 29, 243–260 10.1207/s15326942dn2901_12
    1. Church J. A., Petersen S. E., Schlaggar B. L. (2010). The “Task B problem” and other considerations in developmental functional neuroimaging. Hum. Brain Mapp. 31, 852–862 10.1002/hbm.21036
    1. Conners F. A., Rosenquist C. J., Arnett L., Moore M. S., Hume L. E. (2008). Improving memory span in children with Down syndrome. J. Intellect. Disabil. Res. 52, 244–255 10.1111/j.1365-2788.2007.01015.x
    1. Crone E. A., Ridderinkhof R. K. (2011). The developing brain: from theory to neuroimaging and back. Dev. Cogn. Neurosci. 1, 101–109 10.1016/j.dcn.2010.12.001
    1. Crone E. A., Wendelken C., Donohue S., van Leijenhorst L., Bunge S. A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proc. Natl. Acad. Sci. U.S.A. 103, 9315–9320 10.1073/pnas.0510088103
    1. Dahlin K. I. E. (2011). Effects of working memory training on reading in children with special needs. Reading Writ. 24, 479–491
    1. Dahlin E., Neely A. S., Larsson A., Backman L., Nyberg L. (2008). Transfer of learning after updating training mediated by the striatum. Science 320, 1510–1512 10.1126/science.1155466
    1. DeGutis J., D'Esposito M. (2009). Network changes in the transition from initial learning to well-practiced visual categorization. Front. Hum. Neurosci. 3:44 10.3389/neuro.09.044.2009
    1. Denney N. W. (1984). A model of cognitive development across the life span. Dev. Rev. 4, 171–191
    1. Diamond A., Lee K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science 333, 959–964 10.1126/science.1204529
    1. Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., May A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312 10.1038/427311a
    1. Draganski B., Gaser C., Kempermann G., Kuhn H. G., Winkler J., Buchel C., May A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 26, 6314–6317 10.1523/JNEUROSCI.4628-05.2006
    1. Duncan J., Owen A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 10.1016/S0166-2236(00)01633-7
    1. Edin F., Klingberg T., Johansson P., McNab F., Tegner J., Compte A. (2009). Mechanism for top-down control of working memory capacity. Proc. Natl. Acad. Sci. U.S.A. 106, 6802–6807 10.1073/pnas.0901894106
    1. Edin F., Macoveanu J., Olesen P., Tegner J., Klingberg T. (2007). Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J. Cogn. Neurosci. 19, 750–760 10.1162/jocn.2007.19.5.750
    1. Elbert T., Pantev C., Wienbruch C., Rockstroh B., Taub E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307 10.1126/science.270.5234.305
    1. Elman J. L. (1993). Learning and development in neural networks: the importance of starting small. Cognition 48, 71–99 10.1016/0010-0277(93)90058-4
    1. Erickson K. I., Boot W. R., Basak C., Neider M. B., Prakash R. S., Voss M. W., Graybiel A. M., Simons D. J., Fabiani M., Gratton G. (2010). Striatal volume predicts level of video game skill acquisition. Cereb. Cortex 20, 2522 10.1093/cercor/bhp293
    1. Fields R. D. (2008). White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 10.1016/j.tins.2008.04.001
    1. Flavell J. H., Beach D. R., Chinsky J. M. (1966). Spontaneous verbal rehearsal in a memory task as a function of age. Child Dev. 37, 283–299
    1. Fletcher P., Buchel C., Josephs O., Friston K., Dolan R. (1999). Learning-related neuronal responses in prefrontal cortex studied with functional neuroimaging. Cereb. Cortex 9, 168–178 10.1093/cercor/9.2.168
    1. Ford C. E., Pelham W. E., Ross A. O. (1984). Selective attention and rehearsal in the auditory short-term memory task performance of poor and normal readers. J. abnorm. child psychol. 12, 127–141
    1. Friston K. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78
    1. Galvan A. (2010). Neural plasticity of development and learning. Hum. Brain Mapp. 31, 879–890 10.1002/hbm.21029
    1. Garavan H., Kelley D., Rosen A., Rao S. M., Stein E. A. (2000). Practice-related functional activation changes in a working memory task. Microsc. Res. Tech. 51, 54–63 10.1002/1097-0029(20001001)51:1<54::AID-JEMT6>;2-J
    1. Gaser C., Schlaug G. (2003). Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245
    1. Ghatala E. S., Levin J. R., Pressley M., Lodico M. G. (1985). Training cognitive strategy-monitoring in children. Am. Educ. Res. J. 22, 199
    1. Giedd J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Ann. N.Y. Acad. Sci. 1021, 77–85 10.1196/annals.1308.009
    1. Giedd J. N., Rapoport J. L. (2010). Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron 67, 728–734 10.1016/j.neuron.2010.08.040
    1. Gogtay N., Giedd J. N., Lusk L., Hayashi K. M., Greenstein D., Vaituzis A. C., Nugent T. F., Herman D. H., Clasen L. S., Toga A. W., Rapoport J. L., Thompson P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proc. Natl. Acad. Sci. U.S.A. 101, 8174–8179 10.1073/pnas.0402680101
    1. Goldman-Rakic P. S. (1987). Development of cortical circuitry and cognitive function. Child Dev. 58, 601–622
    1. Golestani N., Paus T., Zatorre R. J. (2002). Anatomical correlates of learning novel speech sounds. Neuron 35, 997–1010
    1. Goodyear B. G., Douglas E. A. (2009). Decreasing task-related brain activity over repeated functional MRI scans and sessions with no change in performance: implications for serial investigations. Exp. Brain Res. 192, 231–239 10.1007/s00221-008-1574-7
    1. Goswami U. (2006). Neuroscience and education: from research to practice? Nat. Rev. Neurosci. 7, 406–411 10.1038/nrn1907
    1. Green C. S., Bavelier D. (2008). Exercising your brain: a review of human brain plasticity and training-induced learning. Psychol. Aging 23, 692–701 10.1037/a0014345
    1. Greenough W. T., Black J. E., Wallace C. S. (1987). Experience and brain development. Child Dev. 58, 539–559
    1. Haier R. J., Karama S., Leyba L., Jung R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Res. Notes 2, 174 10.1186/1756-0500-2-174
    1. Heathcote A., Brown S., Mewhort D. J. (2000). The power law repealed: the case for an exponential law of practice. Psychon. Bull. Rev. 7, 185–207
    1. Hempel A., Giesel F. L., Garcia Caraballo N. M., Amann M., Meyer H., Wustenberg T., Essig M., Schroder J. (2004). Plasticity of cortical activation related to working memory during training. Am. J. Psychiatry 161, 745–747 10.1176/appi.ajp.161.4.745
    1. Hensch T. K. (2004). Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 10.1146/annurev.neuro.27.070203.144327
    1. Hertzog C., Kramer A. F., Wilson R. S., Lindenberger U. (2009). Enrichment effects on adult cognitive development. Can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest 9, 1–65
    1. Hoekzema E., Carmona S., Tremols V., Gispert J. D., Guitart M., Fauquet J., Rovira M., Bielsa A., Soliva J. C., Tomas X., Bulbena A., Ramos-Quiroga A., Casas M., Tobena A., Vilarroya O. (2010). Enhanced neural activity in frontal and cerebellar circuits after cognitive training in children with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 31, 1942–1950 10.1002/hbm.20988
    1. Holmes J., Gathercole S. E., Dunning D. L. (2009a). Adaptive training leads to sustained enhancement of poor working memory in children. Dev. Sci. 12, F9–F15 10.1111/j.1467-7687.2009.00848.x
    1. Holmes J., Gathercole S. E., Dunning D. L., Hilton K. A., Elliott J. G. (2009b). Working memory deficits can be overcome: impacts of training and medication on working memory in children with ADHD. Appl. Cogn. Psychol. 24, 827–836
    1. Huizinga M., Dolan C. V., Van der Molen M. W. (2006). Age-related change in executive function: developmental trends and a latent variable analysis. Neuropsychologia 44, 2017–2036 10.1016/j.neuropsychologia.2006.01.010
    1. Huttenlocher P. R. (2002). Neural Plasticity: The Effects of Environment on the Development of the Cerebral Cortex (Perspectives in Cognitive Neuroscience). Cambridge, MA: Harvard University Press
    1. Huttenlocher P. R. (2003). Basic neuroscience research has important implications for child development. Nat. Neurosci. 6, 541–541 10.1038/nn0603-541
    1. Ilg R., Wohlschlager A. M., Gaser C., Liebau Y., Dauner R., Woller A., Zimmer C., Zihl J., Muhlau M. (2008). Gray matter increase induced by practice correlates with task-specific activation: a combined functional and morphometric magnetic resonance imaging study. J. Neurosci. 28, 4210–4215 10.1523/JNEUROSCI.5722-07.2008
    1. Jaeggi S. M., Buschkuehl M., Jonides J., Shah P. (2011). Short- and long-term benefits of cognitive training. Proc. Natl. Acad. Sci. U.S.A. 108, 10081–10086 10.1073/pnas.1103228108
    1. Jansma J. M., Ramsey N. F., Slagter H. A., Kahn R. S. (2001). Functional anatomical correlates of controlled and automatic processing. J. Cogn. Neurosci. 13, 730–743 10.1162/08989290152541403
    1. Johnson M. H. (2001). Functional brain development in humans. Nat. Rev. Neurosci. 2, 475–483 10.1038/35081509
    1. Johnson M. H. (2011). Interactive specialization: a domain-general framework for human functional brain development? Dev. Cogn. Neurosci. 1, 7–21 10.1016/j.dcn.2010.07.003
    1. Johnstone S. J., Roodenrys S., Phillips E., Watt A. J., Mantz S. (2010). A pilot study of combined working memory and inhibition training for children with AD/HD. Atten. Defic. Hyperact. Disord. 2, 31–42 10.1007/s12402-009-0017-z
    1. Jolles D. D., Grol M. J., van Buchem M. A., Rombouts S. A., Crone E. A. (2010). Practice effects in the brain: changes in cerebral activation after working memory practice depend on task demands. Neuroimage 52, 658–668 10.1016/j.neuroimage.2010.04.028
    1. Jolles D. D., van Buchem M. A., Crone E. A., Rombouts S. A. (2011). Functional brain connectivity at rest changes after working memory training. Hum. Brain Mapp. [Epub ahead of print] 10.1002/hbm.21444
    1. Jolles D. D., van Buchem M. A., Rombouts S. A. R. B., Crone E. A. (2012). Practice effects in the developing brain: a pilot study. Dev. Cogn. Neurosci. 2S, S180–S191
    1. Jonides J. (2004). How does practice makes perfect? Nat. Neurosci. 7, 10–11 10.1038/nn0104-10
    1. Karbach J., Kray J. (2009). How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev. Sci. 12, 978–990 10.1111/j.1467-7687.2009.00846.x
    1. Karmiloff-Smith A. (2009). Nativism versus neuroconstructivism: rethinking the study of developmental disorders. Dev. Psychol. 45, 56–63 10.1037/a0014506
    1. Keeney T. J., Cannizzo S. R., Flavell J. H. (1967). Spontaneous and induced verbal rehearsal in a recall task. Child Dev. 38, 953–966
    1. Kelly A. M., Garavan H. (2005). Human functional neuroimaging of brain changes associated with practice. Cereb. Cortex 15, 1089–1102 10.1093/cercor/bhi005
    1. Klingberg T. (2006). Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia 44, 2171–2177 10.1016/j.neuropsychologia.2005.11.019
    1. Klingberg T. (2010). Training and plasticity of working memory. Trends Cogn. Sci. 14, 317–324 10.1016/j.tics.2010.05.002
    1. Klingberg T., Fernell E., Olesen P. J., Johnson M., Gustafsson P., Dahlstrom K., Gillberg C. G., Forssberg H., Westerberg H. (2005). Computerized training of working memory in children with ADHD–a randomized, controlled trial. J. Am. Acad. Child Adolesc. Psychiatry 44, 177–186 10.1097/00004583-200502000-00010
    1. Klingberg T., Forssberg H., Westerberg H. (2002). Training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24, 781–791 10.1076/jcen.24.6.781.8395
    1. Kolb B., Teskey G. C., Gibb R. (2010). Factors influencing cerebral plasticity in the normal and injured brain. Front. Hum. Neurosci. 4:204 10.3389/fnhum.2010.00204
    1. Kowatari Y., Lee S. H., Yamamura H., Nagamori Y., Levy P., Yamane S., Yamamoto M. (2009). Neural networks involved in artistic creativity. Hum. Brain Mapp. 30, 1678–1690 10.1002/hbm.20633
    1. Kramarski B., Mevarech Z. R. (2003). Enhancing mathematical reasoning in the classroom: the effects of cooperative learning and metacognitive training. Am. Educ. Res. J. 40, 281
    1. Kucian K., Grond U., Rotzer S., Henzi B., Schonmann C., Plangger F., Galli M., Martin E., von Aster M. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage 57, 782–795 10.1016/j.neuroimage.2011.01.070
    1. Landau S. M., Schumacher E. H., Garavan H., Druzgal T. J., D'esposito M. (2004). A functional MRI study of the influence of practice on component processes of working memory. Neuroimage 22, 211–221 10.1016/j.neuroimage.2004.01.003
    1. Lewis C. M., Baldassarre A., Committeri G., Romani G. L., Corbetta M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. U.S.A. 106, 17558–17563 10.1073/pnas.0902455106
    1. Loosli S. V., Buschkuehl M., Perrig W. J., Jaeggi S. M. (2011). Working memory training improves reading processes in typically developing children. Child Neuropsychol. 1–17 10.1080/09297049.2011.575772
    1. Lövdén M., Backman L., Lindenberger U., Schaefer S., Schmiedek F. (2010a). A theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 136, 659–676 10.1037/a0020080
    1. Lövdén M., Bodammer N. C., Kuhn S., Kaufmann J., Schutze H., Tempelmann C., Heinze H. J., Duzel E., Schmiedek F., Lindenberger U. (2010b). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia 48, 3878–3883 10.1016/j.neuropsychologia.2010.08.026
    1. Luna B. (2004). Algebra and the adolescent brain. Trends Cogn. Sci. 8, 437–439 10.1016/j.tics.2004.08.004
    1. Luna B., Velanova K., Geier C. F. (2010). Methodological approaches in developmental neuroimaging studies. Hum. Brain Mapp. 31, 863–871 10.1002/hbm.21073
    1. Lustig C., Shah P., Seidler R., Reuter-Lorenz P. A. (2009). Aging, training, and the brain: a review and future directions. Neuropsychol. Rev. 19, 504–522 10.1007/s11065-009-9119-9
    1. Lutz A., Brefczynski-Lewis J., Johnstone T., Davidson R. J. (2008). Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PLoS One 3:e1897 10.1371/journal.pone.0001897
    1. Mackey A. P., Hill S. S., Stone S. I., Bunge S. A. (2011). Dissociable effects of reasoning and speed training in children. Dev. Sci. 14, 582–590 10.1111/j.1467-7687.2010.01005.x
    1. Macoveanu J., Klingberg T., Tegner J. (2006). A biophysical model of multiple-item working memory: a computational and neuroimaging study. Neuroscience 141, 1611–1618 10.1016/j.neuroscience.2006.04.080
    1. Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S., Frith C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U.S.A. 97, 4398–4403 10.1073/pnas.070039597
    1. Maguire E. A., Woollett K., Spiers H. J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16, 1091–1101 10.1002/hipo.20233
    1. Mangels J. A., Butterfield B., Lamb J., Good C., Dweck C. S. (2006). Why do beliefs about intelligence influence learning success? A social cognitive neuroscience model. Soc. Cogn. Affect. Neurosci. 1, 75–86 10.1093/scan/nsl013
    1. McNab F., Varrone A., Farde L., Jucaite A., Bystritsky P., Forssberg H., Klingberg T. (2009). Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323, 800–802 10.1126/science.1166102
    1. Mercado E. (2008). Neural and cognitive plasticity: from maps to minds. Psychol. Bull. 134, 109 10.1037/0033-2909.134.1.109
    1. Mezzacappa E., Buckner J. C. (2010). Working memory training for children with attention problems or hyperactivity: a school-based pilot study. Sch. Ment. Health 2, 202–208
    1. Miotto E. C., Savage C. R., Evans J. J., Wilson B. A., Martins M. G., Iaki S., Amaro E. Jr. (2006). Bilateral activation of the prefrontal cortex after strategic semantic cognitive training. Hum. Brain Mapp. 27, 288–295 10.1002/hbm.20184
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 10.1006/cogp.1999.0734
    1. Morrison A. B., Chein J. M. (2010). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychon. Bull. Rev. 18, 46–60 10.3758/s13423-010-0034-0
    1. Munakata Y., Casey B. J., Diamond A. (2004). Developmental cognitive neuroscience: progress and potential. Trends Cogn. Sci. 8, 122–128 10.1016/j.tics.2004.01.005
    1. Munakata Y., Pfaffly J. (2004). Hebbian learning and development. Dev. Sci. 7, 141–148
    1. Newport E. L. (1990). Maturational constraints on language learning. Cogn. Sci. 14, 11–28
    1. Noack H., Lövdén M., Schmiedek F., Lindenberger U. (2009). Cognitive plasticity in adulthood and old age: gauging the generality of cognitive intervention effects. Restor. Neurol. Neurosci. 27, 435–453 10.3233/RNN-2009-0496
    1. Nyberg L., Dahlin E., Stigsdotter N. A., Backman L. (2009). Neural correlates of variable working memory load across adult age and skill: dissociative patterns within the fronto-parietal network. Scand. J. Psychol. 50, 41–46 10.1111/j.1467-9450.2008.00678.x
    1. Nyberg L., Sandblom J., Jones S., Neely A. S., Petersson K. M., Ingvar M., Backman L. (2003). Neural correlates of training-related memory improvement in adulthood and aging. Proc. Natl. Acad. Sci. U.S.A. 100, 13728–13733 10.1073/pnas.1735487100
    1. Olesen P. J., Westerberg H., Klingberg T. (2004). Increased prefrontal and parietal activity after training of working memory. Nat. Neurosci. 7, 75–79 10.1038/nn1165
    1. Owen A. M., Mcmillan K. M., Laird A. R., Bullmore E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain. Mapp. 25, 46–59 10.1002/hbm.20131
    1. Paus T. (2010). Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn. 72, 26–35 10.1016/j.bandc.2009.06.002
    1. Poldrack R. A. (2000). Imaging brain plasticity: conceptual and methodological issues–a theoretical review. Neuroimage 12, 1–13 10.1006/nimg.2000.0596
    1. Poldrack R. A. (2010). Interpreting developmental changes in neuroimaging signals. Hum. Brain Mapp. 31, 872–878 10.1002/hbm.21039
    1. Posner M. I., Rothbart M. K. (2005). Influencing brain networks: implications for education. Trends Cogn. Sci. 9, 99–103 10.1016/j.tics.2005.01.007
    1. Qin Y., Carter C. S., Silk E. M., Stenger V. A., Fissell K., Goode A., Anderson J. R. (2004). The change of the brain activation patterns as children learn algebra equation solving. Proc. Natl. Acad. Sci. U.S.A. 101, 5686–5691 10.1073/pnas.0401227101
    1. Qin Y., Sohn M. H., Anderson J. R., Stenger V. A., Fissell K., Goode A., Carter C. S. (2003). Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task. Proc. Natl. Acad. Sci. U.S.A. 100, 4951–4956 10.1073/pnas.0431053100
    1. Rabiner D. L., Murray D. W., Skinner A. T., Malone P. S. (2010). A randomized trial of two promising computer-based interventions for students with attention difficulties. J. Abnorm. Child Psychol. 38, 131–142 10.1007/s10802-009-9353-x
    1. Raichle M. E., Macleod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–682 10.1073/pnas.98.2.676
    1. Ramscar M., Gitcho N. (2007). Developmental change and the nature of learning in childhood. Trends Cogn. Sci. 11, 274–279 10.1016/j.tics.2007.05.007
    1. Rueda M. R., Rothbart M. K., Mccandliss B. D., Saccomanno L., Posner M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proc. Natl. Acad. Sci. U.S.A. 102, 14931–14936 10.1073/pnas.0506897102
    1. Sayala S., Sala J. B., Courtney S. M. (2006). Increased neural efficiency with repeated performance of a working memory task is information-type dependent. Cereb. Cortex 16, 609–617 10.1093/cercor/bhj007
    1. Schmiedek F., Lövdén M., Lindenberger U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Front. Aging Neurosci. 2:27 10.3389/fnagi.2010.00027
    1. Schneiders J. A., Opitz B., Krick C. M., Mecklinger A. (2011). Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cereb. Cortex 21, 2555–2564 10.1093/cercor/bhr037
    1. Scholz J., Klein M. C., Behrens T. E., Johansen-Berg H. (2009). Training induces changes in white-matter architecture. Nat. Neurosci. 12, 1370–1371 10.1038/nn.2412
    1. Shalev L., Tsal Y., Mevorach C. (2007). Computerized progressive attentional training (CPAT) program: effective direct intervention for children with ADHD. Child Neuropsychol. 13, 382–388 10.1080/09297040600770787
    1. Shaw P., Greenstein D., Lerch J., Clasen L., Lenroot R., Gogtay N., Evans A., Rapoport J., Giedd J. (2006). Intellectual ability and cortical development in children and adolescents. Nature 440, 676–679 10.1038/nature04513
    1. Shaywitz B. A., Shaywitz S. E., Blachman B. A., Pugh K. R., Fulbright R. K., Skudlarski P., Mencl W. E., Constable R. T., Holahan J. M., Marchione K. E., Fletcher J. M., Lyon G. R., Gore J. C. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically- based intervention. Biol. Psychiatry 55, 926–933 10.1016/j.biopsych.2003.12.019
    1. Simos P. G., Fletcher J. M., Bergman E., Breier J. I., Foorman B. R., Castillo E. M., Davis R. N., Fitzgerald M., Papanicolaou A. C. (2002). Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology 58, 1203–1213
    1. Sowell E. R., Peterson B. S., Thompson P. M., Welcome S. E., Henkenius A. L., Toga A. W. (2003). Mapping cortical change across the human life span. Nat. Neurosci. 6, 309–315 10.1038/nn1008
    1. Sowell E. R., Thompson P. M., Tessner K. D., Toga A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J. Neurosci. 21, 8819–8829
    1. St. Clair-Thompson H., Stevens R., Hunt A., Bolder E. (2010). Improving children's working memory and classroom performance. Educ. Psychol. 30, 203–219
    1. Stevens C., Fanning J., Coch D., Sanders L., Neville H. (2008). Neural mechanisms of selective auditory attention are enhanced by computerized training: electrophysiological evidence from language-impaired and typically developing children. Brain Res. 1205, 55–69 10.1016/j.brainres.2007.10.108
    1. Stiles J. (2008). The Fundamentals of Brain Development; Integrating Nature and Nurture. Cambridge, MA: Harvard University Press
    1. Swanson H. L., Kehler P., Jerman O. (2010). Working memory, strategy knowledge, and strategy instruction in children with reading disabilities. J. learn. Disabil. 43, 24 10.1177/0022219409338743
    1. Takeuchi H., Sekiguchi A., Taki Y., Yokoyama S., Yomogida Y., Komuro N., Yamanouchi T., Suzuki S., Kawashima R. (2010). Training of working memory impacts structural connectivity. J. Neurosci. 30, 3297–3303 10.1523/JNEUROSCI.4611-09.2010
    1. Takeuchi H., Taki Y., Sassa Y., Hashizume H., Sekiguchi A., Fukushima A., Kawashima R. (2011). Working memory training using mental calculation impacts regional gray matter of the frontal and parietal regions. PLoS One 6:e23175 10.1371/journal.pone.0023175
    1. Temple E., Deutsch G. K., Poldrack R. A., Miller S. L., Tallal P., Merzenich M. M., Gabrieli J. D. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 100, 2860–2865 10.1073/pnas.0030098100
    1. Thomas M., Karmiloff-Smith A. (2002). Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. Behav. Brain Sci. 25, 727–750; discussion 750–787.
    1. Tomasi D., Ernst T., Caparelli E. C., Chang L. (2004). Practice-induced changes of brain function during visual attention: a parametric fMRI study at 4 Tesla. Neuroimage 23, 1414–1421 10.1016/j.neuroimage.2004.07.065
    1. Thompson-Schill S. L., Ramscar M., Chrysikou E. G. (2009). Cognition without control: when a little frontal lobe goes a long way. Curr. Dir. Psychol. Sci. 18, 259–263 10.1111/j.1467-8721.2009.01648.x
    1. Thorell L. B., Lindqvist S., Bergman Nutley S., Bohlin G., Klingberg T. (2009). Training and transfer effects of executive functions in preschool children. Dev. Sci. 12, 106–113 10.1111/j.1467-7687.2008.00745.x
    1. Uylings H. B. M. (2006). Development of the human cortex and the concept of “critical” or “sensitive” periods. Lang. Learn. 56, 59–90
    1. Van der Molen M. J., van Luit J. E., Van der Molen M. W., Klugkist I., Jongmans M. J. (2010). Effectiveness of a computerised working memory training in adolescents with mild to borderline intellectual disabilities. J. Intellect. Disabil. Res. 54, 433–447 10.1111/j.1365-2788.2010.01285.x
    1. van't Hooft I., Andersson K., Bergman B., Sejersen T., von Wendt L., Bartfai A. (2005). Beneficial effect from a cognitive training programme on children with acquired brain injuries demonstrated in a controlled study. Brain Inj. 19, 511–518
    1. van't Hooft I., Andersson K., Sejersen T., Bartfai A., von Wendt L. (2003). Attention and memory training in children with acquired brain injuries. Acta Paediatr. 92, 935–940
    1. Wager T. D., Smith E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cogn. Affect. Behav. Neurosci. 3, 255–274
    1. Willis S. L., Schaie K. W. (2009). Cognitive training and plasticity: theoretical perspective and methodological consequences. Restor. Neurol Neurosci. 27, 375–389 10.3233/RNN-2009-0527
    1. Zelazo P. D. (2004). The development of conscious control in childhood. Trends Cogn. Sci. 8, 12–17 10.1016/j.tics.2003.11.001

Source: PubMed

3
订阅