Functional Imaging to Guide Network-Based TMS Treatments: Toward a Tailored Medicine Approach in Alzheimer's Disease

Chiara Bagattini, Debora Brignani, Sonia Bonnì, Giulia Quattrini, Roberto Gasparotti, Michela Pievani, Chiara Bagattini, Debora Brignani, Sonia Bonnì, Giulia Quattrini, Roberto Gasparotti, Michela Pievani

Abstract

A growing number of studies is using fMRI-based connectivity to guide transcranial magnetic stimulation (TMS) target identification in both normal and clinical populations. TMS has gained increasing attention as a potential therapeutic strategy also in Alzheimer's disease (AD), but an endorsed target localization strategy in this population is still lacking. In this proof of concept study, we prove the feasibility of a tailored TMS targeting approach for AD, which stems from a network-based perspective. Based on functional imaging, the procedure allows to extract individual optimal targets meanwhile accounting for functional variability. Single-subject resting-state fMRI was used to extract individual target coordinates of two networks primarily affected in AD, the default mode and the fronto-parietal network. The localization of these targets was compared to that of traditional group-level approaches and tested against varying degrees of TMS focality. The distance between individual fMRI-derived coordinates and traditionally defined targets was significant for a supposed TMS focality of 12 mm and in some cases up to 20 mm. Comparison with anatomical labels confirmed a lack of 1:1 correspondence between anatomical and functional targets. The proposed network-based fMRI-guided TMS approach, while accounting for inter-individual functional variability, allows to target core AD networks, and might thus represent a step toward tailored TMS interventions for AD.

Keywords: Alzheimer’s disease; connectivity; functional brain networks; repetitive transcranial magnetic stimulation; resting-state fMRI; tailored treatment.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Bagattini, Brignani, Bonnì, Quattrini, Gasparotti and Pievani.

Figures

FIGURE 1
FIGURE 1
Overview of the procedure for the identification and selection of individual DMN and FPN targets based on rs-fMRI; (A) Collected rs-fMRI data were pre-processed removing the first time-points, correcting motion, and susceptibility-induced distortions; (B) DMN and FPN were extracted from individual rs-fMRI scans using independent component analysis (ICA); (C) Networks of interest (in MNI space) were identified using a template matching procedure; (B,C) were repeated multiple times; (D) The most reliable components were identified and back-transformed to subjects’ native T1 space; (E) Each network was decomposed into clusters and the largest cluster in the left IPL and left DLPFC was identified, for the DMN and FPN, respectively; (F) The peaks (local maxima) within these clusters were extracted and the final individual TMS targets were selected according to the following criteria: (i) location specific to the network of interest, i.e., coordinates falling within the spatial maps of both DMN and FPN (yellow areas) were excluded (blue = DMN, red = FPN); (ii) being on a cortical gyrus and not on a sulcus (i.e., overlap with GM); (iii) representing the shortest perpendicular path between scalp and cortex; (G) TMS coil was positioned through a neuronavigation system to target the selected DMN and FPN coordinates.
FIGURE 2
FIGURE 2
(A) Location of the individual targets (overlaid onto the standard MNI template) for default mode network (DMN) stimulation (top panel) and frontoparietal network (FPN) stimulation (bottom panel) in thirteen AD patients. Images are shown in radiological convention (left denotes right). The individual targets (green cross) were extracted from each subject’s 3T rs-fMRI data using ICA. The DMN targets correspond to the left IPL cluster, the FPN targets to the left DLPFC cluster. The individual DMN and FPN maps are shown in orange-yellow. The targets were defined in subjects’ native T1 space and back-transformed to the standard MNI space for computation and visualization purposes; (B) 3D render showing the individual targets (red-yellow) overlaid onto the standard MNI template. For the DMN, green target corresponds to P3 (Herwig et al., 2003), and light-blue to IPL (Cotelli et al., 2012). For the FPN, yellow target corresponds to DLPFC BA9 (Fox et al., 2013), light-blue to DLPFC-5 cm rule (Fox et al., 2013), blue to DLPFC BA46 (Fox et al., 2013), red to F3 (Herwig et al., 2003), green to DLPFC BA8/9 (Cotelli et al., 2010). DMN, default mode network; FPN, fronto-parietal network; BA8/9, Broadmann areas 8 and 9; BA9, Broadmann area 9; BA46, Broadmann area 46; IPL, inferior parietal lobule; DLPFC, dorsolateral prefrontal cortex.
FIGURE 3
FIGURE 3
(A) Location of the individual targets (overlaid onto the standard MNI template) for default mode network (DMN) stimulation (top panel) and frontoparietal network (FPN) stimulation (bottom panel) in eight healthy elderly controls. Images are shown in radiological convention (left denotes right). (B) 3D render showing the individual targets (red-yellow) overlaid onto the standard MNI template. For the DMN, green target corresponds to P3 (Herwig et al., 2003), and light-blue to IPL (Cotelli et al., 2012). For the FPN, yellow target corresponds to DLPFC BA9 (Fox et al., 2013), light-blue to DLPFC-5 cm rule (Fox et al., 2013), blue to DLPFC BA46 (Fox et al., 2013), red to F3 (Herwig et al., 2003), green to DLPFC BA8/9 (Cotelli et al., 2010). DMN, default mode network; FPN, fronto-parietal network; BA8/9, Broadmann areas 8 and 9; BA9, Broadmann area 9; BA46, Broadmann area 46; IPL, inferior parietal lobule; DLPFC, dorsolateral prefrontal cortex.

References

    1. Agosta F., Pievani M., Geroldi G., Copetti M., Frisoni G. B., Filippi M. (2012). Resting state FMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol. Aging 33 1564–1578. 10.1016/j.neurobiolaging.2011.06.007
    1. Ahmed M. A., Darwish E. S., Khedr E. M., El Serogy Y. M., Ali A. M. (2012). Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s Dementia. J. Neurol. 259 83–92. 10.1007/s00415-011-6128-4
    1. Alcalá-Lozano R., Morelos-Santana E., Cortés-Sotres J. F., Garza-Villarreal E. A., Sosa-Ortiz A. L., González-Olvera J. J. (2018). Similar clinical improvement and maintenance after RTMS at 5 Hz using a simple vs. Complex protocol in Alzheimer’s Disease. Brain Stimul. 11 625–627. 10.1016/j.brs.2017.12.011
    1. Andersson J. L., Skare S., Ashburner J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20 870–888. 10.1016/S1053-8119(03)00336-7
    1. Bagattini C., Zanni M., Barocco F., Caffarra P., Brignani D., Miniussi C., et al. (2020). Enhancing cognitive training effects in Alzheimer’s Disease: RTMS as an add-on treatment. Brain Stimul. 13 1655–1664. 10.1016/j.brs.2020.09.010
    1. Beckmann C. F., Smith S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23 1169–1172.
    1. Bentwich J., Dobronevsky E., Aichenbaum S., Shorer R., Peretz R., Khaigrekht M., et al. (2011). Beneficial effect of repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s Disease: a proof of concept study. J. Neural Transm. 118 463–471. 10.1007/s00702-010-0578-1
    1. Cash R. F. H., Cocchi L., Lv J., Fitzgerald P. B., Zalesky A. (2020). Functional magnetic resonance imaging-guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry 78 337–339. 10.1001/jamapsychiatry.2020.3794
    1. Chou Y. H., Ton That V., Sundman M. (2019). A systematic review and meta-analysis of rtms effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s Disease. Neurobiol. Aging 86 1–10. 10.1016/j.neurobiolaging.2019.08.020
    1. Cocchi L., Zalesky A. (2018). Personalized transcranial magnetic stimulation in psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3 731–741. 10.1016/j.bpsc.2018.01.008
    1. Cotelli M., Calabria M., Manenti R., Rosini S., Maioli C., Zanetti O., et al. (2012). Brain stimulation improves associative memory in an individual with amnestic mild cognitive impairment. Neurocase 18 217–223. 10.1080/13554794.2011.588176
    1. Cotelli M., Calabria M., Manenti R., Rosini S., Zanetti O., Cappa S. F., et al. (2010). Improved language performance in alzheimer disease following brain stimulation. J. Neurol. Neurosurg. Psychiatry 82 794–797. 10.1136/jnnp.2009.197848
    1. Drumond Marra H. L., Myczkowski M. L., Maia Memória C., Arnaut D., Leite Ribeiro P., Sardinha C. G., et al. (2015). Transcranial magnetic stimulation to address mild cognitive impairment in the elderly: a randomized controlled study. Behav. Neurol. 2015:287843. 10.1155/2015/287843
    1. Dubovik S., Bouzerda-Wahlen A., Nahum L., Gold G., Schnider A., Guggisberg A. G. (2013). Adaptive reorganization of cortical networks in Alzheimer’s Disease. Clin. Neurophysiol. 124 35–43. 10.1016/j.clinph.2012.05.028
    1. Edde M., Leroux G., Altena E., Chanraud S. (2020). Functional brain connectivity changes across the human life span: from fetal development to old age. J. Neurosci. Res. 99 236–262. 10.1002/jnr.24669
    1. Ficek B. N., Wang Z., Zhao Y., Webster K. T., Desmond J. E., Hillis A. E., et al. (2019). The Effect of TDCS on Functional Connectivity in Primary Progressive Aphasia. NeuroImage Clini. 22:101734. 10.1016/j.nicl.2019.101734
    1. Fox M. D., Buckner R. L., White M. P., Greicius M. P., Pascual-Leone A. (2012a). Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72 595–603. 10.1016/j.biopsych.2012.04.028
    1. Fox M. D., Halko M. A., Eldaief M. C., Pascual-Leone A. (2012b). Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (FcMRI) and transcranial magnetic stimulation (TMS). NeuroImage 62 2232–2243. 10.1016/j.neuroimage.2012.03.035
    1. Fox M. D., Liu H., Pascual-Leone A. (2013). Identification of reproducible individualized targets for treatment of depression with tms based on intrinsic connectivity. NeuroImage 66 151–160. 10.1016/j.neuroimage.2012.10.082
    1. Göttlich M., Münte T. F., Heldmann M., Kasten M., Hagenah J., Krämer U. M. (2013). Altered resting state brain networks in parkinson’s disease. PLoS One 8:e77336. 10.1371/journal.pone.0077336
    1. Haffen E., Chopard G., Pretalli J. B., Magnin E., Nicolier M., Monnin J. (2012). A case report of daily left prefrontal repetitive transcranial magnetic stimulation (RTMS) as an adjunctive treatment for Alzheimer Disease. Brain Stimul. 5 264–266. 10.1016/j.brs.2011.03.003
    1. He L., Wang X., Zhuang K., Qiu J. (2020). Decreased dynamic segregation but increased dynamic integration of the resting-state functional networks during normal aging. Neuroscience 437 54–63. 10.1016/j.neuroscience.2020.04.030
    1. Herwig U., Satrapi P., Schönfeldt-Lecuona C. (2003). Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr. 16 95–99. 10.1023/b:brat.0000006333.93597.9d
    1. Himberg J., Hyvarinen A., Esposito F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage 22 1214–1222. 10.1016/j.neuroimage.2004.03.027
    1. Hoffman R. E., Hampson M., Wu K., Anderson A. W., Gore J. C., Buchanan R. J., et al. (2007). Probing the pathophysiology of auditory/verbal hallucinations by combining functional magnetic resonance imaging and transcranial magnetic stimulation. Cereb. Cortex 17 2733–2743. 10.1093/cercor/bhl183
    1. Koch G., Bonnì S., Pellicciari M. C., Casula E. P., Mancini M., Esposito R. V., et al. (2018). Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s Disease. NeuroImage 169 302–311. 10.1016/j.neuroimage.2017.12.048
    1. Lacadie C. M., Fulbright R. K., Rajeevan N., Constable R. T., Papademetris X. (2008). More accurate talairach coordinates for neuroimaging using nonlinear registration. Neuroimage 42 717–725. 10.1016/j.neuroimage.2008.04.240
    1. Lee J., Choi B. H., Oh E., Sohn E. H., Lee A. Y. (2016). Treatment of Alzheimer’s Disease with repetitive transcranial magnetic stimulation combined with cognitive training: a prospective, randomized, double-blind, placebo-controlled study. J. Clin. Neurol. 12 57–64. 10.3988/jcn.2016.12.1.57
    1. Lefaucheur J. P., Aleman A., Baeken C., Benninger D. H., Brunelin J., Di Lazzaro V., et al. (2020). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (RTMS). Clin. Neurophysiol. 131 474–528. 10.1016/j.clinph.2019.11.002
    1. Lefaucheur J. P., André-Obadia N., Antal A., Ayache S. S., Baeken C., Benninger D. H., et al. (2014). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (RTMS). Clin. Neurophysiol. 125 1–57.
    1. McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 263–269.
    1. Momi D., Neri F., Coiro G., Smeralda C., Veniero D., Sprugnoli S., et al. (2020). Cognitive enhancement via network-targeted cortico-cortical associative brain stimulation. Cereb. Cortex 30 1516–1527. 10.1093/cercor/bhz182
    1. Nguyen J. P., Suarez A., Le Saout E., Meignier M., Nizard J., Lefaucheur J. P. (2018). Combining cognitive training and multi-site RTMS to improve cognitive functions in Alzheimer’s disease. Brain Stimul. 11 651–652. 10.1016/j.brs.2018.02.013
    1. Nilakantan A. S., Mesulam M. M., Weintraub S., Karp E. L., Vanhaerents S., Voss J. L. (2019). Network-targeted stimulation engages neurobehavioral hallmarks of age-related memory decline. Neurology 92 E2349–E2354. 10.1212/WNL.0000000000007502
    1. Ozdemir R. A., Tadayon E., Boucher P., Momi D., Karakhanyan K. A., Fox M. D. (2020). Individualized perturbation of the human connectome reveals reproducible biomarkers of network dynamics relevant to cognition. Proc. Natl. Acad. Sci. U.S.A. 117 8115–8125. 10.1073/pnas.1911240117
    1. Pievani M., Filippini N., van den Heuvel M. P., Cappa S. F., Frisoni G. B. (2014). Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy. Nat. Rev. Neurol. 10 620–633. 10.1038/nrneurol.2014.178
    1. Pläschke R. N., Patil K. R., Cieslik E. C., Alessandra C., Nostro D., Varikuti D. P., et al. (2020). Age differences in predicting working memory performance from network-based functional connectivity. Cortex 132 441–459. 10.1016/j.cortex.2020.08.012
    1. Quattrini G., Pini L., Pievani M., Magni L. R., Lanfredi M., Ferrari C., et al. (2019). Abnormalities in functional connectivity in borderline personality disorder: correlations with metacognition and emotion dysregulation. Psychiatry Res. Neuroimaging 283 118–124. 10.1016/j.pscychresns.2018.12.010
    1. Rabey J. M., Dobronevsky E., Aichenbaum S., Gonen O., Marton R. G., Khaigrekht M. (2013). Repetitive transcranial magnetic stimulation combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: a randomized, double-blind study. J. Neural Transm. 120 813–819. 10.1007/s00702-012-0902-z
    1. Rabey J. M., Dobronevsky E. (2016). Repetitive transcranial magnetic stimulation (RTMS) combined with cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease: clinical experience. J. Neural Transm. 123 1449–1455. 10.1007/s00702-016-1606-6
    1. Romero M. C., Davare M., Armendariz M., Janssen P. (2019). Neural effects of transcranial magnetic stimulation at the single-cell level. Nat. Commun. 10 1–11.
    1. Ruff C. C., Driver J., Bestmann S. (2009). Combining TMS and FMRI: from ‘virtual Lesions’ to functional-network accounts of cognition. Cortex 45 1043–1049. 10.1016/j.cortex.2008.10.012
    1. Sabbagh M., Sadowsky C., Tousi B., Agronin M. E., Alva G., Armon C., et al. (2020). effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer’s disease. Alzheimers Dement. 16 641–650. 10.1016/j.jalz.2019.08.197
    1. Santarnecchi E., Momi D., Sprugnoli G., Neri F., Pascual-Leone A., Rossi A., et al. (2018). Modulation of network-to-network connectivity via spike-timing-dependent noninvasive brain stimulation. Hu. Brain Mapp. 39 4870–4883. 10.1002/hbm.24329
    1. Shirer W. R., Ryali S., Rykhlevskaia E., Menon V., Greicius M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22 158–165. 10.1093/cercor/bhr099
    1. Siebner H. R., Bergmann T. O., Bestmann S., Massimini M., Johansen-Berg H., Mochizuki H., et al. (2009). Consensus paper: combining transcranial stimulation with neuroimaging. Brain Stimul. 2 58–80.
    1. Smith S. M., Jenkinson M., Woolrich M. W., Beckmann C. F., Behrens T. E., Johansen-Berg H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 (Suppl. 1) 208–219.
    1. Thielscher A., Kammer T. (2004). Electric field properties of two commercial figure-8 coils in TMS: calculation of focality and efficiency. Clin. Neurophysiol. 115 1697–1708. 10.1016/j.clinph.2004.02.019
    1. Turriziani P., Smirni D., Mangano D. R., Zappalà G., Giustiniani A., Cipolotti L., et al. (2019). Low-frequency repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex enhances recognition memory in Alzheimer’s disease. J. Alzheimers Dis. 72 1–10.
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15 273–289. 10.1006/nimg.2001.0978
    1. Wang J. X., Rogers L. M., Gross E. Z., Ryals A. J., Dokucu M. E., Brandstatt K. L., et al. (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory.”. Science 345 1054–1057. 10.1126/science.1252900
    1. Wassermann E. M., Epstein C. M., Ziemann U., Walsh V., Paus T., Lisanby S. H. (eds) (2008). The Oxford Handbook of Transcranial Stimulation. First. New York: Oxford University Press, Inc.
    1. Weigand A., Horn A., Caballero R., Cooke D., Stern A. P., Taylor S. F., et al. (2018). Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biolo. Psychiatry 84 28–37. 10.1016/j.biopsych.2017.10.028
    1. Weiler M., Stieger K. C., Long J. M., Rapp P. R. (2020). Transcranial magnetic stimulation in alzheimer’s disease: are we ready? eNeuro 7 ENEURO.235–ENEURO.219. 10.1523/ENEURO.0235-19.2019
    1. Zhao J., Li Z., Cong Y., Zhang J., Tan M., Zhang H. (2017). Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer’s disease patients. Oncotarget 8 33864–33871.
    1. Zhou J., Greicius M. D., Gennatas E. D., Growdon M. E., Jang J. Y., Rabinovici G. D. (2010). divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133 1352–1367. 10.1093/brain/awq075

Source: PubMed

3
订阅