Emerging Arrhythmic Risk of Autoimmune and Inflammatory Cardiac Channelopathies

Pietro Enea Lazzerini, Pier Leopoldo Capecchi, Nabil El-Sherif, Franco Laghi-Pasini, Mohamed Boutjdir, Pietro Enea Lazzerini, Pier Leopoldo Capecchi, Nabil El-Sherif, Franco Laghi-Pasini, Mohamed Boutjdir

No abstract available

Keywords: antibody; arrhythmia (mechanisms); inflammation; ion channel.

Figures

Figure 1
Figure 1
Classification of arrhythmogenic cardiac channelopathies. Besides the “classic” inherited forms of cardiac channelopathies related to genetic mutations, a wider spectrum of acquired forms includes not only drug‐induced, but also autoimmune and inflammatory/fever‐induced, cardiac channelopathies.
Figure 2
Figure 2
Cardiac channelopathies and arrhythmias: from the channel to the patient. In a structurally normal heart, both inherited (genetic defects) and acquired (drugs, autoantibodies, and inflammation/fever) factors can induce cardiac ion channel dysfunction, responsible for electrophysiological changes leading to specific electrocardiographic phenotypes and cardiac arrhythmias.

References

    1. Al‐Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Hlatky MA, Granger CB, Hammill SC, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2017. Available at: . Accessed October 3, 2018.
    1. Semsarian C, Ingles J. Molecular autopsy in victims of inherited arrhythmias. J Arrhythm. 2016;32:359–365.
    1. El‐Sherif N, Boutjdir M, Turitto G. Sudden cardiac death in ischemic heart disease: pathophysiology and risk stratification. Card Electrophysiol Clin. 2017;9:681–691.
    1. Cerrone M, Priori SG. Genetics of sudden death: focus on inherited channelopathies. Eur Heart J. 2011;32:2109–2118.
    1. Priori SG, Wilde AA, Horie M, Cho Y, Behr ER, Berul C, Blom N, Brugada J, Chiang CE, Huikuri H, Kannankeril P, Krahn A, Leenhardt A, Moss A, Schwartz PJ, Shimizu W, Tomaselli G, Tracy C. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10:1932–1963.
    1. Turker I, Ai T, Itoh H, Horie M. Drug‐induced fatal arrhythmias: acquired long QT and Brugada syndromes. Pharmacol Ther. 2017;176:48–59.
    1. Lazzerini PE, Capecchi PL, Laghi‐Pasini F, Boutjdir M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat Rev Cardiol. 2017;14:521–535.
    1. Lazzerini PE, Capecchi PL, Laghi‐Pasini F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur Heart J. 2017;38:1717–1727.
    1. Isber N, Restivo M, Gough WB, Yang H, el‐Sherif N. Circus movement atrial flutter in the canine sterile pericarditis model: cryothermal termination from the epicardial site of the slow zone of the reentrant circuit. Circulation. 1993;87:1649–1660.
    1. Ryu K, Li L, Khrestian CM, Matsumoto N, Sahadevan J, Ruehr ML, Van Wagoner DR, Efimov IR, Waldo AL. Effects of sterile pericarditis on connexins 40 and 43 in the atria: correlation with abnormal conduction and atrial arrhythmias. Am J Physiol Heart Circ Physiol. 2007;293:H1231–H1241.
    1. Sadrpour SA, Srinivasan D, Bhimani AA, Lee S, Ryu K, Cakulev I, Khrestian CM, Markowitz AH, Waldo AL, Sahadevan J. Insights into new‐onset atrial fibrillation following open heart surgery and implications for type II atrial flutter. Europace. 2015;17:1834–1839.
    1. Lazzerini PE, Capecchi PL, Guideri F, Acampa M, Galeazzi M, Laghi Pasini F. Connective tissue diseases and cardiac rhythm disorders: an overview. Autoimmun Rev. 2006;5:306–313.
    1. Lazzerini PE, Capecchi PL, Guideri F, Acampa M, Selvi E, Bisogno S, Galeazzi M, Laghi‐Pasini F. Autoantibody‐mediated cardiac arrhythmias: mechanisms and clinical implications. Basic Res Cardiol. 2008;103:1–11.
    1. Korkmaz S, Zitron E, Bangert A, Seyler C, Li S, Hegedüs P, Scherer D, Li J, Fink T, Schweizer PA, Giannitsis E, Karck M, Szabó G, Katus HA, Kaya Z. Provocation of an autoimmune response to cardiac voltage‐gated sodium channel NaV1.5 induces cardiac conduction defects in rats. J Am Coll Cardiol. 2013;62:340–349.
    1. Li J, Maguy A, Duverger JE, Vigneault P, Comtois P, Shi Y, Tardif JC, Thomas D, Nattel S. Induced KCNQ1 autoimmunity accelerates cardiac repolarization in rabbits: potential significance in arrhythmogenesis and antiarrhythmic therapy. Heart Rhythm. 2014;11:2092–2100.
    1. Fabris F, Yue Y, Qu Y, Chahine M, Sobie E, Lee P, Wieczorek R, Jiang XC, Capecchi PL, Laghi‐Pasini F, Lazzerini PE, Boutjdir M. Induction of autoimmune response to the extracellular loop of the HERG channel pore induces QTc prolongation in guinea‐pigs. J Physiol. 2016;594:6175–6187.
    1. Lazzerini PE, Capecchi PL, Laghi‐Pasini F. Long QT syndrome: an emerging role for inflammation and immunity. Front Cardiovasc Med. 2015;2:26.
    1. Drew BJ, Ackerman MJ, Funk M, Gibler WB, Kligfield P, Menon V, Philippides GJ, Roden DM, Zareba W; American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology; Council on Cardiovascular Nursing; American College of Cardiology Foundation . Prevention of torsade de pointes in hospital settings: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. J Am Coll Cardiol. 2010;55:934–947.
    1. El‐Sherif N, Turitto G, Boutjdir M. Congenital long QT syndrome and torsade de pointes. Ann Noninvasive Electrocardiol. 2017;22:e12481.
    1. Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2:185–194.
    1. Obeyesekere MN, Antzelevitch C, Krahn AD. Management of ventricular arrhythmias in suspected channelopathies. Circ Arrhythm Electrophysiol. 2015;8:221–231.
    1. El‐Sherif N, Turitto G, Boutjdir M. Acquired long QT syndrome and torsade de pointes. Pacing Clin Electrophysiol. 2018;41:414–421.
    1. Landstrom AP, Dobrev D, Wehrens XHT. Calcium signaling and cardiac arrhythmias. Circ Res. 2017;120:1969–1993.
    1. Lee HC, Huang KT, Wang XL, Shen WK. Autoantibodies and cardiac arrhythmias. Heart Rhythm. 2011;8:1788–1795.
    1. Lazzerini PE, Laghi‐Pasini F, Bertolozzi I, Morozzi G, Lorenzini S, Simpatico A, Selvi E, Bacarelli MR, Finizola F, Vanni F, Lazaro D, Aromolaran A, El Sherif N, Boutjdir M, Capecchi PL. Systemic inflammation as a novel QT‐prolonging risk factor in patients with torsades de pointes. Heart. 2017;103:1821–1829.
    1. Nakamura K, Katayama Y, Kusano KF, Haraoka K, Tani Y, Nagase S, Morita H, Miura D, Fujimoto Y, Furukawa T, Ueda K, Aizawa Y, Kimura A, Kurachi Y, Ohe T. Anti‐KCNH2 antibody‐induced long QT syndrome: novel acquired form of long QT syndrome. J Am Coll Cardiol. 2007;50:1808–1809.
    1. Yue Y, Castrichini M, Srivastava U, Fabris F, Shah K, Li Z, Qu Y, El‐Sherif N, Zhou Z, January C, Hussain MM, Jiang XC, Sobie EA, Wahren‐Herlenius M, Chahine M, Capecchi PL, Laghi‐Pasini F, Lazzerini PE, Boutjdir M. Pathogenesis of the novel autoimmune‐associated long‐QT syndrome. Circulation. 2015;132:230–240.
    1. Lazzerini PE, Yue Y, Srivastava U, Fabris F, Capecchi PL, Bertolozzi I, Bacarelli MR, Morozzi G, Acampa M, Natale M, El‐Sherif N, Galeazzi M, Laghi‐Pasini F, Boutjdir M. Arrhythmogenicity of anti‐Ro/SSA antibodies in patients with torsades de pointes. Circ Arrhythm Electrophysiol. 2016;9:e003419.
    1. Suzuki S, Satoh T, Yasuoka H, Hamaguchi Y, Tanaka K, Kawakami Y, Suzuki N, Kuwana M. Novel autoantibodies to a voltage‐gated potassium channel Kv1.4 in a severe form of myasthenia gravis. J Neuroimmunol. 2005;170:141–149.
    1. Suzuki S, Baba A, Kaida K, Utsugisawa K, Kita Y, Tsugawa J, Ogawa G, Nagane Y, Kuwana M, Suzuki N. Cardiac involvements in myasthenia gravis associated with anti‐Kv1.4 antibodies. Eur J Neurol. 2014;21:223–230.
    1. Boutjdir M, Lazzerini PE, Capecchi PL, Laghi‐Pasini F, El‐Sherif N. Potassium channel block and novel autoimmune‐associated long QT syndrome. Card Electrophysiol Clin. 2016;8:373–384.
    1. Hayashi N, Koshiba M, Nishimura K, Sugiyama D, Nakamura T, Morinobu S, Kawano S, Kumagai S. Prevalence of disease‐specific antinuclear antibodies in general population: estimates from annual physical examinations of residents of a small town over a 5‐year period. Mod Rheumatol. 2008;18:153–160.
    1. Lazzerini PE, Acampa M, Guideri F, Capecchi PL, Campanella V, Morozzi G, Galeazzi M, Marcolongo R, Laghi‐Pasini F. Prolongation of the corrected QT interval in adult patients with anti‐Ro/SSA‐positive connective tissue diseases. Arthritis Rheum. 2004;50:1248–1252.
    1. Cimaz R, Stramba‐Badiale M, Brucato A, Catelli L, Panzeri P, Meroni PL. QT interval prolongation in asymptomatic anti‐SSA/Ro‐positive infants without congenital heart block. Arthritis Rheum. 2000;43:1049–1053.
    1. Lazzerini PE, Capecchi PL, Guideri F, Bellisai F, Selvi E, Acampa M, Costa A, Maggio R, Garcia‐Gonzalez E, Bisogno S, Morozzi G, Galeazzi M, Laghi‐Pasini F. Comparison of frequency of complex ventricular arrhythmias in patients with positive versus negative anti‐Ro/SSA and connective tissue disease. Am J Cardiol. 2007;100:1029–1034.
    1. Bourré‐Tessier J, Clarke AE, Huynh T, Bernatsky S, Joseph L, Belisle P, Pineau CA. Prolonged corrected QT interval in anti‐Ro/SSA‐positive adults with systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2011;63:1031–1037.
    1. Lazzerini PE, Capecchi PL, Acampa M, Morozzi G, Bellisai F, Bacarelli MR, Dragoni S, Fineschi I, Simpatico A, Galeazzi M, Laghi‐Pasini F. Anti‐Ro/SSA‐associated corrected QT interval prolongation in adults: the role of antibody level and specificity. Arthritis Care Res (Hoboken). 2011;63:1463–1470.
    1. Gordon PA, Rosenthal E, Khamashta MA, Hughes GR. Absence of conduction defects in the electrocardiograms [correction of echocardiograms] of mothers with children with congenital complete heart block. J Rheumatol. 2001;28:366–369.
    1. Bourré‐Tessier J, Urowitz MB, Clarke AE, Bernatsky S, Krantz MJ, Huynh T, Joseph L, Belisle P, Bae SC, Hanly JG, Wallace DJ, Gordon C, Isenberg D, Rahman A, Gladman DD, Fortin PR, Merrill JT, Romero‐Diaz J, Sanchez‐Guerrero J, Fessler B, Alarcón GS, Steinsson K, Bruce IN, Ginzler E, Dooley MA, Nived O, Sturfelt G, Kalunian K, Ramos‐Casals M, Petri M, Zoma A, Pineau CA. Electrocardiographic findings in systemic lupus erythematosus: data from an international inception cohort. Arthritis Care Res (Hoboken). 2015;67:128–135.
    1. Tufan AN, Sag S, Oksuz MF, Ermurat S, Coskun BN, Gullulu M, Budak F, Baran I, Pehlivan Y, Dalkilic E. Prolonged Tpeak‐Tend interval in anti‐Ro52 antibody‐positive connective tissue diseases. Rheumatol Int. 2017;37:67–73.
    1. Xiao H, Wang M, Du Y, Yuan J, Cheng X, Chen Z, Zou A, Wei F, Zhao G, Liao YH. Arrhythmogenic autoantibodies against calcium channel lead to sudden death in idiopathic dilated cardiomyopathy. Eur J Heart Fail. 2011;13:264–270.
    1. Yu H, Pei J, Liu X, Chen J, Li X, Zhang Y, Li N, Wang Z, Zhang P, Cao K, Pu J. Calcium channel autoantibodies predicted sudden cardiac death and all‐cause mortality in patients with ischemic and nonischemic chronic heart failure. Dis Markers. 2014;2014:796075.
    1. Xiao H, Wang M, Du Y, Yuan J, Zhao G, Tu D, Liao YH. Agonist‐like autoantibodies against calcium channel in patients with dilated cardiomyopathy. Heart Vessels. 2012;27:486–492.
    1. Medenwald D, Kors JA, Loppnow H, Thiery J, Kluttig A, Nuding S, Tiller D, Greiser KH, Werdan K, Haerting J. Inflammation and prolonged QT time: results from the cardiovascular disease, living and ageing in Halle (CARLA) study. PLoS One. 2014;9:e95994.
    1. Albert CM, Ma J, Rifai N, Stampfer MJ, Ridker PM. Prospective study of C‐reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation. 2002;105:2595–2599.
    1. Ukena C, Mahfoud F, Kindermann I, Kandolf R, Kindermann M, Böhm M. Prognostic electrocardiographic parameters in patients with suspected myocarditis. Eur J Heart Fail. 2011;13:398–405.
    1. Pisoni CN, Reina S, Arakaki D, Eimon A, Carrizo C, Borda E. Elevated IL‐1β levels in anti‐Ro/SSA connective tissue diseases patients with prolonged corrected QTc interval. Clin Exp Rheumatol. 2015;33:715–720.
    1. Tisdale JE, Jaynes HA, Kingery JR, Mourad NA, Trujillo TN, Overholser BR, Kovacs RJ. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes. 2013;6:479–487.
    1. Lazzerini PE, Acampa M, Capecchi PL, Fineschi I, Selvi E, Moscadelli V, Zimbone S, Gentile D, Galeazzi M, Laghi‐Pasini F. Antiarrhythmic potential of anticytokine therapy in rheumatoid arthritis: tocilizumab reduces corrected QT interval by controlling systemic inflammation. Arthritis Care Res (Hoboken). 2015;67:332–339.
    1. Adlan AM, Panoulas VF, Smith JP, Fisher JP, Kitas GD. Association between corrected QT interval and inflammatory cytokines in rheumatoid arthritis. J Rheumatol. 2015;42:421–428.
    1. Petkova‐Kirova PS, Gursoy E, Mehdi H, McTiernan CF, London B, Salama G. Electrical remodeling of cardiac myocytes from mice with heart failure due to the overexpression of tumor necrosis factor‐alpha. Am J Physiol Heart Circ Physiol. 2006;290:H2098–H2107.
    1. Kawada H, Niwano S, Niwano H, Yumoto Y, Wakisaka Y, Yuge M, Kawahara K, Izumi T. Tumor necrosis factor‐alpha downregulates the voltage gated outward K+ current in cultured neonatal rat cardiomyocytes: a possible cause of electrical remodeling in diseased hearts. Circ J. 2006;70:605–609.
    1. Fernández‐Velasco M, Ruiz‐Hurtado G, Hurtado O, Moro MA, Delgado C. TNF‐alpha downregulates transient outward potassium current in rat ventricular myocytes through iNOS overexpression and oxidant species generation. Am J Physiol Heart Circ Physiol. 2007;293:H238–H245.
    1. Grandy SA, Fiset C. Ventricular K+ currents are reduced in mice with elevated levels of serum TNFalpha. J Mol Cell Cardiol. 2009;47:238–246.
    1. Wang J, Wang H, Zhang Y, Gao H, Nattel S, Wang Z. Impairment of HERG K(+) channel function by tumor necrosis factor‐alpha: role of reactive oxygen species as a mediator. J Biol Chem. 2004;279:13289–13292.
    1. Hatada K, Washizuka T, Horie M, Watanabe H, Yamashita F, Chinushi M, Aizawa Y. Tumor necrosis factor‐alpha inhibits the cardiac delayed rectifier K current via the asphingomyelin pathway. Biochem Biophys Res Commun. 2006;344:189–193.
    1. Monnerat G, Alarcón ML, Vasconcellos LR, Hochman‐Mendez C, Brasil G, Bassani RA, Casis O, Malan D, Travassos LH, Sepúlveda M, Burgos JI, Vila‐Petroff M, Dutra FF, Bozza MT, Paiva CN, Carvalho AB, Bonomo A, Fleischmann BK, de Carvalho AC, Medei E. Macrophage‐dependent IL‐1β production induces cardiac arrhythmias in diabetic mice. Nat Commun. 2016;7:13344.
    1. Li YH, Rozanski GJ. Effects of human recombinant interleukin‐1 on electrical properties of guinea pig ventricular cells. Cardiovasc Res. 1993;27:525–530.
    1. Hagiwara Y, Miyoshi S, Fukuda K, Nishiyama N, Ikegami Y, Tanimoto K, Murata M, Takahashi E, Shimoda K, Hirano T, Mitamura H, Ogawa S. SHP2‐mediated signaling cascade through gp130 is essential for LIF‐dependent I CaL, [Ca2+]i transient, and APD increase in cardiomyocytes. J Mol Cell Cardiol. 2007;43:710–716.
    1. Burashnikov A, Shimizu W, Antzelevitch C. Fever accentuates transmural dispersion of repolarization and facilitates development of early afterdepolarizations and torsade de pointes under long‐QT conditions. Circ Arrhythm Electrophysiol. 2008;1:202–208.
    1. Amin AS, Herfst LJ, Delisle BP, Klemens CA, Rook MB, Bezzina CR, Underkofler HA, Holzem KM, Ruijter JM, Tan HL, January CT, Wilde AA. Fever‐induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome. J Clin Invest. 2008;118:2552–2561.
    1. Zhao Y, Wang T, Guo J, Yang T, Li W, Koichopolos J, Lamothe SM, Kang Y, Ma A, Zhang S. Febrile temperature facilitates hERG/IKr degradation through an altered K(+) dependence. Heart Rhythm. 2016;13:2004–2011.
    1. Mazzanti A, Underwood K, Nevelev D, Kofman S, Priori SG. The new kids on the block of arrhythmogenic disorders: short QT syndrome and early repolarization. J Cardiovasc Electrophysiol. 2017;28:1226–1236.
    1. Shah RR. Drug‐induced QT interval shortening: potential harbinger of proarrhythmia and regulatory perspectives. Br J Pharmacol. 2010;159:58–69.
    1. Li J, Seyler C, Wiedmann F, Schmidt C, Schweizer PA, Becker R, Katus HA, Thomas D. Anti‐KCNQ1 K⁺ channel autoantibodies increase IKs current and are associated with QT interval shortening in dilated cardiomyopathy. Cardiovasc Res. 2013;98:496–503.
    1. Antzelevitch C, Yan GX, Ackerman MJ, Borggrefe M, Corrado D, Guo J, Gussak I, Hasdemir C, Horie M, Huikuri H, Ma C, Morita H, Nam GB, Sacher F, Shimizu W, Viskin S, Wilde AAM. J‐wave syndromes expert consensus conference report: emerging concepts and gaps in knowledge. Europace. 2017;19:665–694.
    1. Sieira J, Dendramis G, Brugada P. Pathogenesis and management of Brugada syndrome. Nat Rev Cardiol. 2016;13:744–756.
    1. Leo‐Macias A, Agullo‐Pascual E, Delmar M. The cardiac connexome: non‐canonical functions of connexin43 and their role in cardiac arrhythmias. Semin Cell Dev Biol. 2016;50:13–21.
    1. Nademanee K, Raju H, de Noronha SV, Papadakis M, Robinson L, Rothery S, Makita N, Kowase S, Boonmee N, Vitayakritsirikul V, Ratanarapee S, Sharma S, van der Wal AC, Christiansen M, Tan HL, Wilde AA, Nogami A, Sheppard MN, Veerakul G, Behr ER. Fibrosis, connexin‐43, and conduction abnormalities in the Brugada syndrome. J Am Coll Cardiol. 2015;66:1976–1986.
    1. Adler A, Topaz G, Heller K, Zeltser D, Ohayon T, Rozovski U, Halkin A, Rosso R, Ben‐Shachar S, Antzelevitch C, Viskin S. Fever‐induced Brugada pattern: how common is it and what does it mean? Heart Rhythm. 2013;10:1375–1382.
    1. Hasdemir C, Payzin S, Kocabas U, Sahin H, Yildirim N, Alp A, Aydin M, Pfeiffer R, Burashnikov E, Wu Y, Antzelevitch C. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia. Heart Rhythm. 2015;12:1584–1594.
    1. Rattanawong P, Vutthikraivit W, Charoensri A, Jongraksak T, Prombandankul A, Kanjanahattakij N, Rungaramsin S, Wisaratapong T, Ngarmukos T. Fever‐induced Brugada syndrome is more common than previously suspected: a cross‐sectional study from an endemic area. Ann Noninvasive Electrocardiol. 2016;21:136–141.
    1. Mizusawa Y, Morita H, Adler A, Havakuk O, Thollet A, Maury P, Wang DW, Hong K, Gandjbakhch E, Sacher F, Hu D, Amin AS, Lahrouchi N, Tan HL, Antzelevitch C, Probst V, Viskin S, Wilde AA. Prognostic significance of fever‐induced Brugada syndrome. Heart Rhythm. 2016;13:1515–1520.
    1. Dumaine R, Towbin JA, Brugada P, Vatta M, Nesterenko DV, Nesterenko VV, Brugada J, Brugada R, Antzelevitch C. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ Res. 1999;85:803–809.
    1. Keller DI, Rougier JS, Kucera JP, Benammar N, Fressart V, Guicheney P, Madle A, Fromer M, Schläpfer J, Abriel H. Brugada syndrome and fever: genetic and molecular characterization of patients carrying SCN5A mutations. Cardiovasc Res. 2005;67:510–519.
    1. Konigstein M, Rosso R, Topaz G, Postema PG, Friedensohn L, Heller K, Zeltser D, Belhassen B, Adler A, Viskin S. Drug‐induced Brugada syndrome: clinical characteristics and risk factors. Heart Rhythm. 2016;13:1083–1087.
    1. Chung FP, Raharjo SB, Lin YJ, Chang SL, Lo LW, Hu YF, Tuan TC, Chao TF, Liao JN, Lin CY, Chang YT, Hung Y, Te A, Yamada S, Tasaka H, Wang CT, Chen SA. A novel method to enhance phenotype, epicardial functional substrates, and ventricular tachyarrhythmias in Brugada syndrome. Heart Rhythm. 2017;14:508–517.
    1. Frustaci A, Priori SG, Pieroni M, Chimenti C, Napolitano C, Rivolta I, Sanna T, Bellocci F, Russo MA. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation. 2005;112:3680–3687.
    1. Bonny A, Tonet J, Márquez MF, De Sisti A, Temfemo A, Himbert C, Gueffaf F, Larrazet F, Ditah I, Frank R, Hidden‐Lucet F, Fontaine G. C‐reactive protein levels in the Brugada syndrome. Cardiol Res Pract. 2011;2011:341521.
    1. Li A, Tung R, Shivkumar K, Bradfield JS. Brugada syndrome‐malignant phenotype associated with acute cardiac inflammation? HeartRhythm Case Rep. 2017;3:384–388.
    1. Baum JR, Long B, Cabo C, Duffy HS. Myofibroblasts cause heterogeneous Cx43 reduction and are unlikely to be coupled to myocytes in the healing canine infarct. Am J Physiol Heart Circ Physiol. 2012;302:H790–H800.
    1. Fernandez‐Cobo M, Gingalewski C, Drujan D, De Maio A. Downregulation of connexin 43 gene expression in rat heart during inflammation: the role of tumour necrosis factor. Cytokine. 1999;11:216–224.
    1. De Jesus NM, Wang L, Lai J, Rigor RR, Francis Stuart SD, Bers DM, Lindsey ML, Ripplinger CM. Antiarrhythmic effects of interleukin 1 inhibition after myocardial infarction. Heart Rhythm. 2017;14:727–736.
    1. Imberti JF, Underwood K, Mazzanti A, Priori SG. Clinical challenges in catecholaminergic polymorphic ventricular tachycardia. Heart Lung Circ. 2016;25:777–783.
    1. Berte B, Eyskens B, Meyfroidt G, Willems R. Bidirectional ventricular tachycardia in fulminant myocarditis. Europace. 2008;10:767–768.
    1. Kim E, Tam M, Siems WF, Kang C. Effects of drugs with muscle‐related side effects and affinity for calsequestrin on the calcium regulatory function of sarcoplasmic reticulum microsomes. Mol Pharmacol. 2005;68:1708–1715.
    1. Sanchez EJ, Hayes RP, Barr JT, Lewis KM, Webb BN, Subramanian AK, Nissen MS, Jones JP, Shelden EA, Sorg BA, Fill M, Schenk JO, Kang C. Potential role of cardiac calsequestrin in the lethal arrhythmic effects of cocaine. Drug Alcohol Depend. 2013;133:344–351.
    1. London B, Baker LC, Lee JS, Shusterman V, Choi BR, Kubota T, McTiernan CF, Feldman AM, Salama G. Calcium‐dependent arrhythmias in transgenic mice with heart failure. Am J Physiol Heart Circ Physiol. 2003;284:H431–H441.
    1. Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM. TNF‐alpha and IL‐1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium. 2010;47:378–386.
    1. Francis Stuart SD, De Jesus NM, Lindsey ML, Ripplinger CM. The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. J Mol Cell Cardiol. 2016;91:114–122.
    1. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin‐1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest. 1995;96:1093–1099.
    1. Stumpf C, Simon M, Wilhelm M, Zimmermann S, Rost C, Achenbach S, Brem MH. Left atrial remodeling, early repolarization pattern, and inflammatory cytokines in professional soccer players. J Cardiol. 2016;68:64–70.
    1. Visser M, van der Heijden JF, Doevendans PA, Loh P, Wilde AA, Hassink RJ. Idiopathic ventricular fibrillation: the struggle for definition, diagnosis, and follow‐up. Circ Arrhythm Electrophysiol. 2016;9:e003817.
    1. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P; ESC Scientific Document Group . 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37:2893–2962.
    1. Hucker WJ, Saini H, Lubitz SA, Ellinor PT. Atrial fibrillation genetics: is there a practical clinical value now or in the future? Can J Cardiol. 2016;32:1300–1305.
    1. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12:230–243.
    1. Saba S, Janczewski AM, Baker LC, Shusterman V, Gursoy EC, Feldman AM, Salama G, McTiernan CF, London B. Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac‐specific overexpression of tumor necrosis factor‐{alpha}. Am J Physiol Heart Circ Physiol. 2005;289:H1456–H1467.
    1. Zuo S, Li LL, Ruan YF, Jiang L, Li X, Li SN, Wen SN, Bai R, Liu N, Du X, Dong JZ, Ma CS. Acute administration of tumour necrosis factor‐α induces spontaneous calcium release via the reactive oxygen species pathway in atrial myocytes. Europace. 2017. Available at: . Accessed October 3, 2018.
    1. Sawaya SE, Rajawat YS, Rami TG, Szalai G, Price RL, Sivasubramanian N, Mann DL, Khoury DS. Downregulation of connexin40 and increased prevalence of atrial arrhythmias in transgenic mice with cardiac‐restricted overexpression of tumor necrosis factor. Am J Physiol Heart Circ Physiol. 2007;292:H1561–H1567.
    1. Liew R, Khairunnisa K, Gu Y, Tee N, Yin NO, Naylynn TM, Moe KT. Role of tumor necrosis factor‐α in the pathogenesis of atrial fibrosis and development of an arrhythmogenic substrate. Circ J. 2013;77:1171–1179.
    1. Sun Z, Zhou D, Xie X, Wang S, Wang Z, Zhao W, Xu H, Zheng L. Cross‐talk between macrophages and atrial myocytes in atrial fibrillation. Basic Res Cardiol. 2016;111:63.
    1. Rao F, Xue YM, Wei W, Yang H, Liu FZ, Chen SX, Kuang SJ, Zhu JN, Wu SL, Deng CY. Role of tumour necrosis factor‐a in the regulation of T‐type calcium channel current in HL‐1 cells. Clin Exp Pharmacol Physiol. 2016;43:706–711.
    1. Zhao Y, Sun Q, Zeng Z, Li Q, Zhou S, Zhou M, Xue Y, Cheng X, Xia Y, Wang Q, Tu X. Regulation of SCN3B/scn3b by interleukin 2 (IL‐2): IL‐2 modulates SCN3B/scn3b transcript expression and increases sodium current in myocardial cells. BMC Cardiovasc Disord. 2016;16:1.
    1. Mangrum JM, DiMarco JP. The evaluation and management of bradycardia. N Engl J Med. 2000;342:703–709.
    1. Rezazadeh S, Duff HJ. Genetic determinants of hereditary bradyarrhythmias: a contemporary review of a diverse group of disorders. Can J Cardiol. 2017;33:758–767.
    1. Dobrzynski H, Anderson RH, Atkinson A, Borbas Z, D'Souza A, Fraser JF, Inada S, Logantha SJ, Monfredi O, Morris GM, Moorman AF, Nikolaidou T, Schneider H, Szuts V, Temple IP, Yanni J, Boyett MR. Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues. Pharmacol Ther. 2013;139:260–288.
    1. Delmar M, Makita N. Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol. 2012;27:236–241.
    1. Osmonov D, Erdinler I, Ozcan KS, Altay S, Turkkan C, Yildirim E, Hasdemir H, Alper AT, Cakmak N, Satilmis S, Gurkan K. Management of patients with drug‐induced atrioventricular block. Pacing Clin Electrophysiol. 2012;35:804–810.
    1. Karnabi E, Boutjdir M. Role of calcium channels in congenital heart block. Scand J Immunol. 2010;72:226–234.
    1. Brito‐Zerón P, Izmirly PM, Ramos‐Casals M, Buyon JP, Khamashta MA. The clinical spectrum of autoimmune congenital heart block. Nat Rev Rheumatol. 2015;11:301–312.
    1. Xiao GQ, Hu K, Boutjdir M. Direct inhibition of expressed cardiac L‐ and T‐type calcium channels by IgG from mothers whose children have congenital heart block. Circulation. 2001;103:1599–1604.
    1. Karnabi E, Qu Y, Wadgaonkar R, Mancarella S, Yue Y, Chahine M, Clancy RM, Buyon JP, Boutjdir M. Congenital heart block: identification of autoantibody binding site on the extracellular loop (domain I, S5‐S6) of alpha(1D) L‐type Ca channel. J Autoimmun. 2010;34:80–86.
    1. Lazzerini PE, Capecchi PL, Laghi‐Pasini F. Isolated atrioventricular block of unknown origin in adults and anti‐Ro/SSA antibodies: clinical evidence, putative mechanisms, and therapeutic implications. Heart Rhythm. 2015;12:449–454.
    1. Roden DM. Repolarization reserve: a moving target. Circulation. 2008;118:981–982.
    1. Otway R, Vandenberg JI, Fatkin D. Atrial fibrillation: a new cardiac channelopathy. Heart Lung Circ. 2007;16:356–360.
    1. Otway R, Vandenberg JI, Guo G, Varghese A, Castro ML, Liu J, Zhao J, Bursill JA, Wyse KR, Crotty H, Baddeley O, Walker B, Kuchar D, Thorburn C, Fatkin D. Stretch‐sensitive KCNQ1 mutation A link between genetic and environmental factors in the pathogenesis of atrial fibrillation? J Am Coll Cardiol. 2007;49:578–586.
    1. Karnabi E, Qu Y, Mancarella S, Boutjdir M. Rescue and worsening of congenital heart block‐associated electrocardiographic abnormalities in two transgenic mice. J Cardiovasc Electrophysiol. 2011;22:922–930.
    1. Silva Marques J, Veiga A, Nóbrega J, Correia MJ, de Sousa J. Electrical storm induced by H1N1 A influenza infection. Europace. 2010;12:294–295.
    1. Lim SM, Pak HN, Lee MH, Kim SS, Joung B. Fever‐induced QTc prolongation and ventricular fibrillation in a healthy young man. Yonsei Med J. 2011;52:1025–1027.
    1. Amin AS, Klemens CA, Verkerk AO, Meregalli PG, Asghari‐Roodsari A, de Bakker JM, January CT, Wilde AA, Tan HL. Fever‐triggered ventricular arrhythmias in Brugada syndrome and type 2 long‐QT syndrome. Neth Heart J. 2010;18:165–169.
    1. Streitner F, Kuschyk J, Veltmann C, Brueckmann M, Streitner I, Brade J, Neumaier M, Bertsch T, Schumacher B, Borggrefe M, Wolpert C. Prospective study of interleukin‐6 and the risk of malignant ventricular tachyarrhythmia in ICD‐recipients: a pilot study. Cytokine. 2007;40:30–34.
    1. Wu KC, Gerstenblith G, Guallar E, Marine JE, Dalal D, Cheng A, Marbán E, Lima JA, Tomaselli GF, Weiss RG. Combined cardiac magnetic resonance imaging and C‐reactive protein levels identify a cohort at low risk for defibrillator firings and death. Circ Cardiovasc Imaging. 2012;5:178–186.
    1. Ajijola OA, Hoover DB, Simerly TM, Brown TC, Yanagawa J, Biniwale RM, Lee JM, Sadeghi A, Khanlou N, Ardell JL, Shivkumar K. Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI Insight. 2017;2:94715.
    1. Rizzo S, Basso C, Troost D, Aronica E, Frigo AC, Driessen AH, Thiene G, Wilde AA, van der Wal AC. T‐cell‐mediated inflammatory activity in the stellate ganglia of patients with ion‐channel disease and severe ventricular arrhythmias. Circ Arrhythm Electrophysiol. 2014;7:224–229.
    1. Santos‐Pardo I, Martínez‐Morillo M, Villuendas R, Bayes‐Genis A. Anti‐Ro antibodies and reversible atrioventricular block. N Engl J Med. 2013;368:2335–2337.
    1. Lazzerini PE, Brucato A, Capecchi PL, Baldi L, Bacarelli MR, Nucci C, Moscadelli V, Morozzi G, Boutjdir M, Laghi‐Pasini F. Isolated atrioventricular block of unknown origin in the adult and autoimmunity: diagnostic and therapeutic considerations exemplified by 3 anti‐Ro/SSA‐associated cases. HeartRhythm Case Rep. 2015;1:293–299.
    1. Saxena A, Izmirly PM, Mendez B, Buyon JP, Friedman DM. Prevention and treatment in utero of autoimmune‐associated congenital heart block. Cardiol Rev. 2014;22:263–267.
    1. Ho KM, Tan JA. Benefits and risks of corticosteroid prophylaxis in adult cardiac surgery: a dose‐response meta‐analysis. Circulation. 2009;119:1853–1866.
    1. Salih M, Smer A, Charnigo R, Ayan M, Darrat YH, Traina M, Morales GX, DiBiase L, Natale A, Elayi CS. Colchicine for prevention of post‐cardiac procedure atrial fibrillation: meta‐analysis of randomized controlled trials. Int J Cardiol. 2017;243:258–262.
    1. Saribayev M, Tufan F, Oz F, Erer B, Ozpolat T, Ozturk GB, Akin S, Saka B, Erten N, Tascioglu C, Karan A. Corticosteroid treatment normalizes QTc prolongation and improves heart block in an elderly patient with anti‐Ro‐positive systemic lupus erythematosus. Aging Clin Exp Res. 2014;26:337–339.

Source: PubMed

3
订阅