Energy Imbalance Gap, Anthropometric Measures, Lifestyle, and Sociodemographic Correlates in Latin American Adults-Results from the ELANS Study

Martha Cecilia Yépez García, Marianella Herrera-Cuenca, Gerson Ferrari, Lilia Yadira Cortés Sanabria, Pablo Hernández, Rafaela Yépez Almeida, Mónica Villar Cáceres, Georgina Gómez, Rossina Pareja, Attilio Rigotti, Irina Kovalskys, Mauro Fisberg, Martha Cecilia Yépez García, Marianella Herrera-Cuenca, Gerson Ferrari, Lilia Yadira Cortés Sanabria, Pablo Hernández, Rafaela Yépez Almeida, Mónica Villar Cáceres, Georgina Gómez, Rossina Pareja, Attilio Rigotti, Irina Kovalskys, Mauro Fisberg

Abstract

Overweight and obesity are often explained by an imbalance between energy intake and expenditure. This, in addition to metabolic effects, makes it difficult to assess the real state of individual energy balance. This study aims to analyze the energy gaps between intake and expenditure in the adult population of Latin America, as well as its relationships with sociodemographic variables and nutrition status, to draw an epidemiological perspective based on the trends observed. The energy imbalance gap was used to this end. The difference between energy intake and expenditure can be applied as a reference to explain whether weight equilibrium can prevent weight gain. Moreover, the energy imbalance gap allows for a better understanding of the design of public health policies. Using data from the Latin American Study of Nutrition and Health, the energy imbalance gap in adult population from eight Latin-American countries was assessed in 5994 subjects aged from 19-65. Usual dietary intake was measured using two non-consecutive 24 h dietary recalls. The sociodemographic questionnaire was supplemented by anthropometric measurements. Physical activity was measured through the long International Physical Activity Questionnaire. Energy expenditure was obtained using the basal metabolic rate. For the overall sample, the mean energy intake was 1939.1 kcal (95% CI: 1926.9; 1951.3), the mean of energy expenditure was 1915.7 kcal (95% CI: 1906.4; 1924.9), and the mean of energy imbalance gap was 23.4 kcal (95% CI: 11.9; 35.0). Results show that energy intake and expenditure were higher in men. Moreover, subjects aged 19-34, of high socioeconomic level, who completed high school, were mestizos and were of normal weight consumed the highest number of calories. Overall, a positive energy imbalance gap was observed. Overweight and obese from Argentina, Costa Rica, Ecuador, Peru, and Venezuela showed a significantly lower energy imbalance gap than underweight subjects. These findings confirm the high variability of energy imbalance gap and the accompanying correlates of energy intake and expenditure. Further research is needed to specifically address interventions in low and middle-income countries such as many in Latin America, to help reduce the prevalence of obesity and eradicate undernutrition.

Trial registration: ClinicalTrials.gov NCT02226627.

Keywords: energy balance; energy expenditure; energy intake.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart of selection of ELANS participants.
Figure 2
Figure 2
Energy intake (A), energy expenditure (B), and energy imbalance (C) gap percentiles by country.

References

    1. Leme A., Haines J., Tang L., Dunker K., Philippi S., Fisberg M., Ferrari G., Fisberg R. Impact of Strategies for Preventing Obesity and Risk Factors for Eating Disorders among Adolescents: A Systematic Review. Nutrients. 2020;12:3134. doi: 10.3390/nu12103134.
    1. Beaulieu K., Blundell J.E., van Baak M.A., Battista F., Busetto L., Carraça E.V., Dicker D., Encantado J., Ermolao A., Farpour-Lambert N., et al. Effect of exercise training interventions on energy intake and appetite control in adults with overweight or obesity: A systematic review and meta-analysis. Obes. Rev. 2021:e13251. doi: 10.1111/obr.13251.
    1. Lamb K.E., Thornton L.E., King T.L., Ball K., White S., Bentley R., Coffee N.T., Daniel M. Methods for accounting for neighbourhood self-selection in physical activity and dietary behaviour research: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020;17:45. doi: 10.1186/s12966-020-00947-2.
    1. Ferrari G., Werneck A.O., da Silva D.R., Kovalskys I., Gómez G., Rigotti A., Sanabria L.Y.C., García M.Y., Pareja R.G., Herrera-Cuenca M., et al. Is the perceived neighborhood built environment associated with domain-specific physical activity in Latin American adults? An eight-country observational study. Int. J. Behav. Nutr. Phys. Act. 2020;17:125. doi: 10.1186/s12966-020-01030-6.
    1. Durao S., E Visser M., Ramokolo V., Oliveira J.M., Schmidt B.-M., Balakrishna Y., Brand A., Kristjansson E., Schoonees A. Community-level interventions for improving access to food in low- and middle-income countries. Cochrane Database Syst. Rev. 2020;28:CD011504. doi: 10.1002/14651858.CD011504.
    1. Berthoud H.-R., Morrison C., Münzberg H. The obesity epidemic in the face of homeostatic body weight regulation: What went wrong and how can it be fixed? Physiol. Behav. 2020;222:112959. doi: 10.1016/j.physbeh.2020.112959.
    1. Shaw E., Leung G.K., Jong J., Coates A., Davis R., Blair M., Huggins C.E., Dorrian J., Banks S., Kellow N., et al. The Impact of Time of Day on Energy Expenditure: Implications for Long-Term Energy Balance. Nutrients. 2019;11:2383. doi: 10.3390/nu11102383.
    1. Shetty P. Energy requirements of adults. Public Health Nutr. 2005;8:994–1009. doi: 10.1079/PHN2005792.
    1. Nardocci M., Polsky J.Y., Moubarac J.-C. Consumption of ultra-processed foods is associated with obesity, diabetes and hypertension in Canadian adults. Can. J. Public Health. 2020;112:421–429. doi: 10.17269/s41997-020-00429-9.
    1. van Draanen J., Prelip M., Upchurch D.M. Consumption of fast food, sugar-sweetened beverages, artificially-sweetened beverages and allostatic load among young adults. Prev. Med. Rep. 2017;10:212–217. doi: 10.1016/j.pmedr.2017.11.004.
    1. Von Philipsborn P., Stratil J.M., Burns J., Busert L.K., Pfadenhauer L.M., Polus S., Holzapfel C., Hauner H., Rehfuess E. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 2019;2019:CD012292. doi: 10.1002/14651858.CD012292.pub2.
    1. Bosy-Westphal A., Hägele F.A., Müller M.J. What Is the Impact of Energy Expenditure on Energy Intake? Nutrients. 2021;13:3508. doi: 10.3390/nu13103508.
    1. Richardson A.S., Chen C., Sturm R., Azhar G., Miles J., Larkin J., Motala A., Hempel S. Obesity Prevention Interventions and Implications for Energy Balance in the United States and Mexico: A Systematic Review of the Evidence and Meta-Analysis. Obesity. 2019;27:1390–1403. doi: 10.1002/oby.22540.
    1. Blundell J.E., Baker J.L., Boyland E., Blaak E., Charzewska J., De Henauw S., Frühbeck G., Gonzalez-Gross M., Hebebrand J., Holm L., et al. Variations in the Prevalence of Obesity Among European Countries, and a Consideration of Possible Causes. Obes. Facts. 2017;10:25–37. doi: 10.1159/000455952.
    1. Stanhope K.L., Goran M.I., Bosy-Westphal A., King J.C., Schmidt L.A., Schwarz J.-M., Stice E., Sylvetsky A.C., Turnbaugh P.J., Bray G.A., et al. Pathways and mechanisms linking dietary components to cardiometabolic disease: Thinking beyond calories. Obes. Rev. 2018;19:1205–1235. doi: 10.1111/obr.12699.
    1. Ananthapavan J., Sacks G., Brown V., Moodie M., Nguyen P., Veerman L., Herrera A.M.M., Lal A., Peeters A., Carter R. Priority-setting for obesity prevention—The Assessing Cost-Effectiveness of obesity prevention policies in Australia (ACE-Obesity Policy) study. PLoS ONE. 2020;15:e0234804. doi: 10.1371/journal.pone.0234804.
    1. Wang Y.-Q., Zhang Y.-Q., Zhang F., Zhang Y.-W., Li R., Chen G.-X. Increased Eating Frequency Is Associated with Lower Obesity Risk, But Higher Energy Intake in Adults: A Meta-Analysis. Int. J. Environ. Res. Public Health. 2016;13:603. doi: 10.3390/ijerph13060603.
    1. Nishida Y., Tanaka S., Nakae S., Yamada Y., Shirato H., Hirano H., Sasaki S., Katsukawa F. Energy Gap between Doubly Labeled Water-Based Energy Expenditure and Calculated Energy Intake from Recipes and Plate Waste, and Subsequent Weight Changes in Elderly Residents in Japanese Long-Term Care Facilities: CLEVER Study. Nutrients. 2020;12:2677. doi: 10.3390/nu12092677.
    1. Fisberg M., The ELANS Study Group. Kovalskys I., Gómez G., Rigotti A., Cortés L.Y., Herrera-Cuenca M., Yépez M.C., Pareja R.G., Guajardo V., et al. Latin American Study of Nutrition and Health (ELANS): Rationale and study design. BMC Public Health. 2015;16:93. doi: 10.1186/s12889-016-2765-y.
    1. Kovalskys I., Fisberg M., Gómez G., Rigotti A., Cortes L.Y., Yépez M.C., Pareja R.G., Herrera-Cuenca M., Zimberg I.Z., Tucker K.L., et al. Standardization of the Food Composition Database Used in the Latin American Nutrition and Health Study (ELANS) Nutrients. 2015;7:7914–7924. doi: 10.3390/nu7095373.
    1. National Center for Health Statistics Analytic and Reporting Guidelines: The Third National Health and Nutrition Examination Survey. National Center for Health Statistics; Atlanta, GE, USA: 1996.
    1. Guthold R., Stevens G.A., Riley L.M., Bull F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health. 2020;4:23–35. doi: 10.1016/S2352-4642(19)30323-2.
    1. Hallal P.C., Andersen L.B., Bull F.C., Guthold R., Haskell W., Ekelund U., Lancet Physical Activity Series Working Group Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–257. doi: 10.1016/S0140-6736(12)60646-1.
    1. Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Willett W.C. Nutritional Epidemiology. 3rd ed. Oxford University Press; USA: 2012.
    1. Kovalskys I., Fisberg M., Gómez G., Pareja R.G., García M.C.Y., Sanabria L.Y.C., Herrera-Cuenca M., Rigotti A., Guajardo V., Zimberg I.Z., et al. Energy intake and food sources of eight Latin American countries: Results from the Latin American Study of Nutrition and Health (ELANS) Public Health Nutr. 2018;21:2535–2547. doi: 10.1017/S1368980018001222.
    1. Harttig U., Haubrock J., Knüppel S., Boeing H., on behalf of the EFCOVAL Consortium The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011;65:S87–S91. doi: 10.1038/ejcn.2011.92.
    1. Previdelli A.N., Gómez G., Kovalskys I., Fisberg M., Cortés L.Y., Pareja R.G., Liria M.R., García M.C.Y., Herrera-Cuenca M., Rigotti A., et al. Prevalence and determinants of misreporting of energy intake among Latin American populations: Results from ELANS study. Nutr. Res. 2019;68:9–18. doi: 10.1016/j.nutres.2019.05.007.
    1. Hallal P., Gómez L., Parra D., Lobelo F., Mosquera J., Florindo A. Lecciones aprendidas después de 10 Años del uso de IPAQ en Brasil y Colombia. J. Phys. Act. Health. 2010;7:259–264. doi: 10.1123/jpah.7.s2.s259.
    1. Salvo D., Reis R.S., Sarmiento O.L., Pratt M. Overcoming the challenges of conducting physical activity and built environment research in Latin America: IPEN Latin America. Prev. Med. 2014;69:S86–S92. doi: 10.1016/j.ypmed.2014.10.014.
    1. Medina C., Barquera S., Janssen I. Validity and reliability of the International Physical Activity Questionnaire among adults in Mexico. Rev. Panam. Salud Pública. 2013;34:21–28.
    1. Ainsworth B.E., Haskell W.L., Whitt M.C., Irwin M.L., Swartz A.M., Strath S.J., O’Brien W.L., Bassett D.R., Jr., Schmitz K.H., Emplaincourt P.O., et al. Compendium of Physical Activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000;32:S498–S516. doi: 10.1097/00005768-200009001-00009.
    1. Ainsworth B.E., Haskell W.L., Herrmann S.D., Meckes N., Bassett D.R., Tudor-Locke C., Greer J.L., Vezina J., Whitt-Glover M.C., Leon A.S. 2011 compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011;43:1575–1581. doi: 10.1249/MSS.0b013e31821ece12.
    1. Human Energy Requirements. FAO; Rome, Italy: 2001.
    1. Gerrior S., Juan W., Peter B. An Easy Approach to Calculating Estimated Energy Requirements. Prev. Chronic Dis. 2006;3:A129.
    1. Fallah-Fini S., Rahmandad H., Huang T.T.-K., Bures R.M., Glass T.A. Modeling US Adult Obesity Trends: A System Dynamics Model for Estimating Energy Imbalance Gap. Am. J. Public Health. 2014;104:1230–1239. doi: 10.2105/AJPH.2014.301882.
    1. Watanabe D., Nanri H., Sagayama H., Yoshida T., Itoi A., Yamaguchi M., Yokoyama K., Watanabe Y., Goto C., Ebine N., et al. Estimation of Energy Intake by a Food Frequency Questionnaire: Calibration and Validation with the Doubly Labeled Water Method in Japanese Older People. Nutrients. 2019;11:1546. doi: 10.3390/nu11071546.
    1. Hall K.D., Guo J., Chen K.Y., Leibel R.L., Reitman M.L., Rosenbaum M., Smith S.R., Ravussin E. Methodologic considerations for measuring energy expenditure differences between diets varying in carbohydrate using the doubly labeled water method. Am. J. Clin. Nutr. 2019;109:1328–1334. doi: 10.1093/ajcn/nqy390.
    1. Moonen H.P.F.X., Beckers K.J.H., van Zanten A.R.H. Energy expenditure and indirect calorimetry in critical illness and convalescence: Current evidence and practical considerations. J. Intensiv. Care. 2021;9:8. doi: 10.1186/s40560-021-00524-0.
    1. Cifuentes L., Camilleri M., Acosta A. Gastric Sensory and Motor Functions and Energy Intake in Health and Obesity—Therapeutic Implications. Nutrients. 2021;13:1158. doi: 10.3390/nu13041158.
    1. Bray G.A., Heisel W.E., Afshin A., Jensen M.D., Dietz W.H., Long M., Kushner R.F., Daniels S.R., Wadden T.A., Tsai A.G., et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018;39:79–132. doi: 10.1210/er.2017-00253.
    1. Haynes A., Hardman C.A., Halford J.C.G., Jebb S.A., Mead B., Robinson E. Reductions to main meal portion sizes reduce daily energy intake regardless of perceived normality of portion size: A 5 day cross-over laboratory experiment. Int. J. Behav. Nutr. Phys. Act. 2020;17:21. doi: 10.1186/s12966-020-0920-4.
    1. Lourida I., Boer J., Teh R., Kerse N., Mendonça N., Rolleston A., Sette S., Tapanainen H., Turrini A., Virtanen S., et al. Association of Daily Physical Activity and Sedentary Behaviour with Protein Intake Patterns in Older Adults: A Multi-Study Analysis across Five Countries. Nutrients. 2021;13:2574. doi: 10.3390/nu13082574.
    1. Herreros-Irarrázabal D., Guzmán-Habinger J., Matsudo S.M., Kovalskys I., Gómez G., Rigotti A., Cortés L.Y., García M.C.Y., Pareja R.G., Herrera-Cuenca M., et al. Association between Active Transportation and Public Transport with an Objectively Measured Meeting of Moderate-to-Vigorous Physical Activity and Daily Steps Guidelines in Adults by Sex from Eight Latin American Countries. Int. J. Environ. Res. Public Health. 2021;18:11553. doi: 10.3390/ijerph182111553.
    1. Kurpad A.V., Muthayya S., Vaz M. Consequences of inadequate food energy and negative energy balance in humans. Public Health Nutr. 2005;8:1053–1076. doi: 10.1079/PHN2005796.
    1. Fallah-Fini S., Ikeda N., Nishi N. Trends in Energy Imbalance Gap and Body Weight Status in the Japanese Adult Population: A System Dynamics Approach. J. Epidemiology. 2021;31:335–342. doi: 10.2188/jea.JE20190330.
    1. Fallah-Fini S., Vandevijvere S., Rezaei T., Heke I., Swinburn B. Three Decades of New Zealand Adults Obesity Trends: An Estimation of Energy Imbalance Gaps Using System Dynamics Modeling. Obesity. 2019;27:1141–1149. doi: 10.1002/oby.22497.
    1. Mullie P., Deliens T., Clarys P. East-Greenland traditional nutrition: A reanalysis of the Inuit energy balance and the macronutrient consumption from the Høygaard nutritional data (1936–1937) Int. J. Circumpolar Health. 2021;80:1932184. doi: 10.1080/22423982.2021.1932184.
    1. Owen C.G., Limb E.S., Nightingale C.M., Rudnicka A.R., Ram B., Shankar A., Cummins S., Lewis D., Clary C., Cooper A.R., et al. Active design of built environments for increasing levels of physical activity in adults: The ENABLE London natural experiment study. Public Health Res. 2020;8:1–162. doi: 10.3310/phr08120.
    1. Paravidino V.B., Mediano M.F.F., Silva I.C.M., Wendt A., Del Vecchio F.B., Neves F.A., Terra B.D.S., Gomes E.A.C., Moura A.S., Sichieri R. Effect of physical exercise on spontaneous physical activity energy expenditure and energy intake in overweight adults (the EFECT study): A study protocol for a randomized controlled trial. Trials. 2018;19:167. doi: 10.1186/s13063-018-2445-6.
    1. Grandjean P., Heindel J.J. In Utero and Early-Life Conditions and Adult Health and Disease. N. Engl. J. Med. 2008;359:1523–1524. doi: 10.1056/NEJMc081629.
    1. Jaacks L.M., Vandevijvere S., Pan A., McGowan C., Wallace C., Imamura F., Mozaffarian D., Swinburn B., Ezzati M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7:231–240. doi: 10.1016/S2213-8587(19)30026-9.
    1. Bo S., Fadda M., Fedele D., Pellegrini M., Ghigo E., Pellegrini N. A Critical Review on the Role of Food and Nutrition in the Energy Balance. Nutrients. 2020;12:1161. doi: 10.3390/nu12041161.
    1. Uauy R., Díaz E. Consequences of food energy excess and positive energy balance. Public Health Nutr. 2005;8:1077–1099. doi: 10.1079/PHN2005797.
    1. Dugas L.R., Harders R., Merrill S., Ebersole K., A Shoham D., Rush E.C., Assah F.K., Forrester T., A Durazo-Arvizu R., Luke A. Energy expenditure in adults living in developing compared with industrialized countries: A meta-analysis of doubly labeled water studies. Am. J. Clin. Nutr. 2010;93:427–441. doi: 10.3945/ajcn.110.007278.
    1. Lewis R.A. Estimating my equilibrium energy intake during lockdown: Very introspective study. BMJ. 2020;371:m4561. doi: 10.1136/bmj.m4561.
    1. Alkerwi A., Crichton G.E., Hébert J.R. Consumption of ready-made meals and increased risk of obesity: Findings from the Observation of Cardiovascular Risk Factors in Luxembourg (ORISCAV-LUX) study. Br. J. Nutr. 2014;113:270–277. doi: 10.1017/S0007114514003468.
    1. Mei K., Huang H., Xia F., Hong A., Chen X., Zhang C., Qiu G., Chen G., Wang Z., Wang C., et al. State-of-the-art of measures of the obesogenic environment for children. Obes. Rev. 2020;22:e13093. doi: 10.1111/obr.13093.
    1. Perera B., Faulk C., Svoboda L.K., Goodrich J.M., Dolinoy D.C. The role of environmental exposures and the epigenome in health and disease. Environ. Mol. Mutagen. 2019;61:176–192. doi: 10.1002/em.22311.
    1. Dhurandhar N.V., Schoeller D., Brown A.W., Heymsfield S.B., Thomas D., Sørensen T.I.A., Speakman J.R., Jeansonne M., Allison D.B., the Energy Balance Measurement Working Group Energy balance measurement: When something is not better than nothing. Int. J. Obes. 2014;39:1109–1113. doi: 10.1038/ijo.2014.199.
    1. Carroll R.J., Midthune D., Subar A.F., Shumakovich M., Freedman L.S., Thompson F.E., Kipnis V. Taking Advantage of the Strengths of 2 Different Dietary Assessment Instruments to Improve Intake Estimates for Nutritional Epidemiology. Am. J. Epidemiology. 2012;175:340–347. doi: 10.1093/aje/kwr317.
    1. Satija A., Yu E., Willett W.C., Hu F.B. Objective measures are complementary to, rather than a replacement for, self-reported methods. Int. J. Obes. 2015;39:1179. doi: 10.1038/ijo.2015.80.
    1. Herrera-Cuenca M., Kovalskys I., Gerardi A., Hernandez P., Sifontes Y., Gómez G., García M.C.Y., Méndez-Pérez B., Landaeta-Jimenez M., Pareja R., et al. Anthropometric Profile of Latin American Population: Results From the ELANS Study. Front. Nutr. 2021;8:740361. doi: 10.3389/fnut.2021.740361.

Source: PubMed

3
订阅