Current status and perspective of tumor immunotherapy for head and neck squamous cell carcinoma

Chenhang Yu, Qiang Li, Yu Zhang, Zhi-Fa Wen, Heng Dong, Yongbin Mou, Chenhang Yu, Qiang Li, Yu Zhang, Zhi-Fa Wen, Heng Dong, Yongbin Mou

Abstract

Head and neck squamous cell carcinoma (HNSCC) have a high incidence and mortality rate, and investigating the pathogenesis and potential therapeutic strategies of HNSCC is required for further progress. Immunotherapy is a considerable therapeutic strategy for HNSCC due to its potential to produce a broad and long-lasting antitumor response. However, immune escape, which involves mechanisms including dyregulation of cytokines, perturbation of immune checkpoints, and recruitment of inhibitory cell populations, limit the efficacy of immunotherapy. Currently, multiple immunotherapy strategies for HNSCC have been exploited, including immune checkpoint inhibitors, costimulatory agonists, antigenic vaccines, oncolytic virus therapy, adoptive T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted therapy. Each of these strategies has unique advantages, and the appropriate application of these immunotherapies in HNSCC treatment has significant value for patients. Therefore, this review comprehensively summarizes the mechanisms of immune escape and the characteristics of different immunotherapy strategies in HNSCC to provide a foundation and consideration for the clinical treatment of HNSCC.

Keywords: head and neck cancer; immune escape; immunotherapy; oral squamous cell carcinoma; squamous cell carcinoma.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Yu, Li, Zhang, Wen, Dong and Mou.

Figures

FIGURE 1
FIGURE 1
Current immunotherapy strategies for HNSCC. Current immunotherapies for HNSCC include immune checkpoint inhibitors, costimulatory agonists, antigenic vaccines, oncolytic virus therapy, adoptive T cell transfer (ACT), and epidermal growth factor receptor (EGFR)-targeted monoclonal antibodies (mAbs).
FIGURE 2
FIGURE 2
Schematic diagram describing the mechanisms of HNSCC-evaded immunity. Immune escape mechanisms, including physical blockade, dysregulation of cytokines, perturbation of immune checkpoint, recruitment of inhibitory cell populations, negative influences of exosomes, and competitive metabolism of tumor cells, result in HNSCC becoming a refractory tumor.
FIGURE 3
FIGURE 3
Schematic diagram of immune checkpoint inhibitors in immunotherapy for HNSCC.
FIGURE 4
FIGURE 4
Schematic diagram of costimulatory agonists for HNSCC.
FIGURE 5
FIGURE 5
Schematic diagram of applying DC-based vaccination in HNSCC.
FIGURE 6
FIGURE 6
Immunomodulatory mechanisms of oncolytic viral therapy.
FIGURE 7
FIGURE 7
Preparation of ACT to treat HNSCC. (A) Adoptive transfer of antitumor T cells isolated from within the HNSCC tumor of the patient. (B) Tumor-infiltrating T cells (TILs) are extracted from surgically resected tumor samples and then expanded in vitro, followed by reinfusion into HNSCC patients. (C) T cells from patient peripheral blood are isolated and expanded in culture and genetically modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR). (D) The modified T cell confers the ability to specifically recognize and killing HNSCC tumor cells.

References

    1. Aggarwal C., Cohen R. B., Morrow M. P., Kraynyak K. A., Sylvester A. J., Knoblock D. M., et al. (2019). Immunotherapy targeting HPV16/18 generates potent immune responses in HPV-associated head and neck cancer. Clin. Cancer Res. 25 (1), 110–124. 10.1158/1078-0432.CCR-18-1763
    1. Aggarwal C., Saba N., Algazi A., Sukari A., Seiwert T., Haigentz M., et al. (2020). 916MO Safety and efficacy of MEDI0457 plus durvalumab in patients (pts) with human papillomavirus-associated recurrent/metastatic head and neck squamous cell carcinoma (HPV+ R/M HNSCC). Ann. Oncol. 31, S661–S662. 10.1016/j.annonc.2020.08.1031
    1. Agulnik M. (2012). New approaches to EGFR inhibition for locally advanced or metastatic squamous cell carcinoma of the head and neck (SCCHN). Med. Oncol. 29 (4), 2481–2491. 10.1007/s12032-012-0159-2
    1. Ahn S.-H., Song S., Kim S. (2020). Adjuvant postoperative CD40 agonist and PD-1 antagonist combination therapy in syngeneic tongue cancer mouse model. Anticancer Res. 40 (5), 2707–2713. 10.21873/anticanres.14242
    1. Ambade A., Mulherkar R. (2008). Adoptive T cell transfer augments IL-2 mediated tumour regression in a HNSCC xenograft nude mouse model. Cancer Lett. 272 (2), 316–324. 10.1016/j.canlet.2008.07.023
    1. Andtbacka R. H. I., Kaufman H. L., Collichio F., Amatruda T., Senzer N., Chesney J., et al. (2015). Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33 (25), 2780–2788. 10.1200/JCO.2014.58.3377
    1. Argiris A., Harrington K., Tahara M., Ferris R., Gillison M., Fayette J., et al. (2021). LBA36 Nivolumab (N) + ipilimumab (I) vs EXTREME as first-line (1L) treatment (tx) for recurrent/metastatic squamous cell carcinoma of the head and neck (R/M SCCHN): Final results of CheckMate 651. Ann. Oncol. 32, S1310–S1311. 10.1016/j.annonc.2021.08.2113
    1. Ariffin A. B., Forde P. F., Jahangeer S., Soden D. M., Hinchion J. (2014). Releasing pressure in tumors: What do we know so far and where do we go from here? A review. Cancer Res. 74 (10), 2655–2662. 10.1158/0008-5472.CAN-13-3696
    1. Atkinson V., Khattak A., Haydon A., Eastgate M., Roy A., Prithviraj P., et al. (2020). Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3) protein plus pembrolizumab in patients with metastatic melanoma. J. Immunother. Cancer 8 (2), e001681. 10.1136/jitc-2020-001681
    1. Balch C. M., Dougherty P. A., Tilden A. B. (1982). Excessive prostaglandin E2 production by suppressor monocytes in head and neck cancer patients. Ann. Surg. 196 (6), 645–650. 10.1097/00000658-198212001-00005
    1. Baruah P., Lee M., Odutoye T., Williamson P., Hyde N., Kaski J. C., et al. (2012). Decreased levels of alternative co-stimulatory receptors OX40 and 4-1BB characterise T cells from head and neck cancer patients. Immunobiology 217 (7), 669–675. 10.1016/j.imbio.2011.11.005
    1. Bastholt L., Specht L., Jensen K., Brun E., Loft A., Petersen J., et al. (2007). Phase I/II clinical and pharmacokinetic study evaluating a fully human monoclonal antibody against EGFr (HuMax-EGFr) in patients with advanced squamous cell carcinoma of the head and neck. Radiother. Oncol. 85 (1), 24–28. 10.1016/j.radonc.2007.06.007
    1. Batlle E., Massagué J. (2019). Transforming growth factor-β signaling in immunity and cancer. Immunity 50 (4), 924–940. 10.1016/j.immuni.2019.03.024
    1. Bauman J. E., Ferris R. L. (2014). Integrating novel therapeutic monoclonal antibodies into the management of head and neck cancer. Cancer 120 (5), 624–632. 10.1002/cncr.28380
    1. Bauml J., Seiwert T. Y., Pfister D. G., Worden F., Liu S. V., Gilbert J., et al. (2017). Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: Results from a single-arm, phase II study. J. Clin. Oncol. 35 (14), 1542–1549. 10.1200/JCO.2016.70.1524
    1. Baysal H., De Pauw I., Zaryouh H., Peeters M., Vermorken J. B., Lardon F., et al. (2021). The right partner in crime: Unlocking the potential of the anti-EGFR antibody cetuximab via combination with natural killer cell chartering immunotherapeutic strategies. Front. Immunol. 12, 737311. 10.3389/fimmu.2021.737311
    1. Bleeker W. K., Lammerts van Bueren J. J., van Ojik H. H., Gerritsen A. F., Pluyter M., Houtkamp M., et al. (2004). Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J. Immunol. 173 (7), 4699–4707. 10.4049/jimmunol.173.7.4699
    1. Bommireddy R., Munoz L. E., Kumari A., Huang L., Fan Y., Monterroza L., et al. (2020). Tumor membrane vesicle vaccine augments the efficacy of anti-PD1 antibody in immune checkpoint inhibitor-resistant squamous cell carcinoma models of head and neck cancer. Vaccines 8 (2), E182. 10.3390/vaccines8020182
    1. Bossi P., Platini F. (2017). Radiotherapy plus EGFR inhibitors: Synergistic modalities. Cancers Head. Neck 2, 2. 10.1186/s41199-016-0020-y
    1. Bruchhage K.-L., Heinrichs S., Wollenberg B., Pries R. (2018). IL-10 in the microenvironment of HNSCC inhibits the CpG ODN induced IFN-α secretion of pDCs. Oncol. Lett. 15 (3), 3985–3990. 10.3892/ol.2018.7772
    1. Bunting M. A.-O., Vyas M., Requesens M., Langenbucher A., Schiferle E. B., Manguso R. T., et al. (2022). Extracellular matrix proteins regulate NK cell function in peripheral tissues. Sci. Adv. 8 (11), eabk3327. 10.1126/sciadv.abk3327
    1. Burtness B., Harrington K. J., Greil R., Soulieres D., Tahara M., de Castro G., et al. (2019). Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet (London, Engl. 394 (10212), 1915–1928. 10.1016/S0140-6736(19)32591-7
    1. Buzzatti G., Dellepiane C., Del Mastro L. (2020). New emerging targets in cancer immunotherapy: The role of GITR. ESMO Open 4, e000738. 10.1136/esmoopen-2020-000738
    1. Carotta S. (2016). Targeting NK cells for anticancer immunotherapy: Clinical and preclinical approaches. Front. Immunol. 7, 1664–3224. 10.3389/fimmu.2016.00152
    1. Casucci M., Hawkins R. E., Dotti G., Bondanza A. (2015). Overcoming the toxicity hurdles of genetically targeted T cells. Cancer Immunol. Immunother. 64 (1), 123–130. 10.1007/s00262-014-1641-9
    1. Chandra J., Woo W. P., Finlayson N., Liu H. Y., McGrath M., Ladwa R., et al. (2021). A phase 1, single centre, open label, escalating dose study to assess the safety, tolerability and immunogenicity of a therapeutic human papillomavirus (HPV) DNA vaccine (AMV002) for HPV-associated head and neck cancer (HNC). Cancer Immunol. Immunother. 70 (3), 743–753. 10.1007/s00262-020-02720-7
    1. Chang C.-H., Qiu J., O'Sullivan D., Buck M. D., Noguchi T., Curtis J. D., et al. (2015). Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162 (6), 1229–1241. 10.1016/j.cell.2015.08.016
    1. Chen L., Ma X., Dang M., Dong H., Hu H., Su X., et al. (2019). Simultaneous T cell activation and macrophage polarization to promote potent tumor suppression by iron oxide-embedded large-pore mesoporous organosilica core-shell nanospheres. Adv. Healthc. Mat. 8 (9), e1900039. 10.1002/adhm.201900039
    1. Chen L., Mo D. C., Hu M., Zhao S. J., Yang Q. W., Huang Z. L. (2022). PD-1/PD-L1 inhibitor monotherapy in recurrent or metastatic squamous cell carcinoma of the head and neck: A meta-analysis. Am. J. Otolaryngol. 43 (2), 103324. 10.1016/j.amjoto.2021.103324
    1. Cheng F., Wang H. W., Cuenca A., Huang M., Ghansah T., Brayer J., et al. (2003). A critical role for Stat3 signaling in immune tolerance. Immunity 19 (3), 425–436. 10.1016/s1074-7613(03)00232-2
    1. Chung C. H., Guthrie V. B., Masica D. L., Tokheim C., Kang H., Richmon J., et al. (2015). Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann. Oncol. 26 (6), 1216–1223. 10.1093/annonc/mdv109
    1. Cohen E. E. W., Bell R. B., Bifulco C. B., Burtness B., Gillison M. L., Harrington K. J., et al. (2019). The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J. Immunother. Cancer 7 (1), 184. 10.1186/s40425-019-0662-5
    1. Cohen E. E. W., Soulieres D., Le Tourneau C., Dinis J., Licitra L., Ahn M. J., et al. (2019). Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3 study. Lancet (London, Engl. 393 (10167), 156–167. 10.1016/S0140-6736(18)31999-8
    1. Crombet T., Osorio M., Cruz T., Roca C., del Castillo R., Mon R., et al. (2004). Use of the humanized anti-epidermal growth factor receptor monoclonal antibody h-R3 in combination with radiotherapy in the treatment of locally advanced head and neck cancer patients. J. Clin. Oncol. 22 (9), 1646–1654. 10.1200/JCO.2004.03.089
    1. Davis R. J., Van Waes C., Allen C. T. (2016). Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncol. 58, 59–70. 10.1016/j.oraloncology.2016.05.002
    1. De Palma M., Lewis C. E. (2013). Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 23 (3), 277–286. 10.1016/j.ccr.2013.02.013
    1. Delafoy A., Uguen A., Lemasson G., Conan-Charlet V., Pradier O., Lucia F., et al. (2022). PD-L1 expression in recurrent head and neck squamous cell carcinoma. Eur. Arch. Otorhinolaryngol. 279 (1), 343–351. 10.1007/s00405-021-06777-7
    1. Deng W.-W., Mao L., Yu G. T., Bu L. L., Ma S. R., Liu B., et al. (2016). LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncoimmunology 5 (11), e1239005. 10.1080/2162402X.2016.1239005
    1. Deng W. W., Wu L., Sun Z. J. (2018). Co-inhibitory immune checkpoints in head and neck squamous cell carcinoma. Oral Dis. 24 (1-2), 120–123. 10.1111/odi.12746
    1. Dennis K. L., Blatner N. R., Gounari F., Khazaie K. (2013). Current status of interleukin-10 and regulatory T-cells in cancer. Curr. Opin. Oncol. 25 (6), 637–645. 10.1097/CCO.0000000000000006
    1. Ding M., Song Y., Jing J., Tian M., Ding L., Li Q., et al. (2021). The ratio of preoperative serum biomarkers predicts prognosis in patients with oral squamous cell carcinoma. Front. Oncol. 11, 719513. 10.3389/fonc.2021.719513
    1. Domingos-Pereira S., Roh V., Hiou-Feige A., Galliverti G., Simon C., Tolstonog G. V., et al. (2021). Vaccination with a nanoparticle E7 vaccine can prevent tumor recurrence following surgery in a human papillomavirus head and neck cancer model. Oncoimmunology 10 (1), 1912473. 10.1080/2162402X.2021.1912473
    1. Dong H., Su H., Chen L., Liu K., Hu H. M., Yang W., et al. (2018). Immunocompetence and mechanism of the DRibble-DCs vaccine for oral squamous cell carcinoma. Cancer Manag. Res. 10 (1179-1322), 493–501. 10.2147/CMAR.S155914
    1. Dong H., Wen Z. F., Chen L., Zhou N., Liu H., Dong S., et al. (2018). Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells. Int. J. Nanomedicine 13, 3353–3365. 10.2147/IJN.S164097
    1. Duhen R., Ballesteros-Merino C., Frye A. K., Tran E., Rajamanickam V., Chang S. C., et al. (2021). Neoadjuvant anti-OX40 (MEDI6469) therapy in patients with head and neck squamous cell carcinoma activates and expands antigen-specific tumor-infiltrating T cells. Nat. Commun. 12 (1), 1047. 10.1038/s41467-021-21383-1
    1. Elbers J. B. W., Al-Mamgani A., Tesseslaar M. E. T., van den Brekel M. W. M., Lange C. A. H., van der Wal J. E., et al. (2020). Immuno-radiotherapy with cetuximab and avelumab for advanced stage head and neck squamous cell carcinoma: Results from a phase-I trial. Radiother. Oncol. 142, 79–84. 10.1016/j.radonc.2019.08.007
    1. Fernandez E., Vernet R., Charrier E., Migliorini D., Joerger M., Belkouch M. C., et al. (2021). MVX-ONCO-1 in advanced refractory cancers: Safety, feasibility, and preliminary efficacy results from all HNSCC patients treated in two ongoing clinical trials. J. Clin. Oncol. 39, e18005. 10.1200/jco.2021.39.15_suppl.e18005
    1. Ferris R. L., Blumenschein G., Fayette J., Guigay J., Colevas A. D., Licitra L., et al. (2016). Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375 (19), 1856–1867. 10.1056/NEJMoa1602252
    1. Ferris R. L., Blumenschein G., Fayette J., Guigay J., Colevas A. D., Licitra L., et al. (2018). Nivolumab vs investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 81, 45–51. 10.1016/j.oraloncology.2018.04.008
    1. Ferris R. L., Haddad R., Even C., TaharaM., DvorkinM., Ciuleanu T. E., et al. (2020). Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study. Ann. Oncol. 31 (7), 942–950. 10.1016/j.annonc.2020.04.001
    1. Ferris R. L., Lenz H. J., Trotta A. M., Garcia-Foncillas J., Schulten J., Audhuy F., et al. (2018). Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation. Cancer Treat. Rev. 63, 48–60. 10.1016/j.ctrv.2017.11.008
    1. Ferris R. L., Licitra L., Fayette J., Even C., Blumenschein G., Harrington K. J., et al. (2019). Nivolumab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: Efficacy and safety in CheckMate 141 by prior cetuximab use. Clin. Cancer Res. 25 (17), 5221–5230. 10.1158/1078-0432.CCR-18-3944
    1. Ferris R. L., Moskovitz J., Kunning S., Ruffin A. T., Reeder C., Ohr J., et al. (2022). Phase I trial of cetuximab, radiation therapy, and ipilimumab in locally advanced head and neck cancer. Clin. cancer Res. official J. Am. Assoc. Cancer Res. 28, 1335–1344. 10.1158/1078-0432.CCR-21-0426
    1. Ferris R. L., Spanos W. C., Leidner R., Goncalves A., Martens U. M., Kyi C., et al. (2021). Neoadjuvant nivolumab for patients with resectable HPV-positive and HPV-negative squamous cell carcinomas of the head and neck in the CheckMate 358 trial. J. Immunother. Cancer 9 (6), e002568. 10.1136/jitc-2021-002568
    1. Fu Y., Lin Q., Zhang Z., Zhang L. (2020). Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm. Sin. B 10 (3), 414–433. 10.1016/j.apsb.2019.08.010
    1. Gao T., Cen Q., Lei H. (2020). A review on development of MUC1-based cancer vaccine. Biomed. Pharmacother. 132, 110888. 10.1016/j.biopha.2020.110888
    1. Garcia J., Hurwitz H. I., Sandler A. B., Miles D., Coleman R. L., Deurloo R., et al. (2020). bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook. Cancer Treat. Rev. 86, 102017. 10.1016/j.ctrv.2020.102017
    1. Gillison M. L., Koch W. M., Capone R. B., SpaffordM., Westra W. H., Wu L., et al. (2000). Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl. Cancer Inst. 92 (9), 709–720. 10.1093/jnci/92.9.709
    1. Glisson B. S., Leidner R. S., Ferris R. L., Powderly J., Rizvi N. A., Keam B., et al. (2020). Safety and clinical activity of MEDI0562, a humanized OX40 agonist monoclonal antibody, in adult patients with advanced solid tumors. Clin. Cancer Res. 26 (20), 5358–5367. 10.1158/1078-0432.CCR-19-3070
    1. Goel B., Tiwari A. K., Pandey R. K., Singh A. P., Kumar S., Sinha A., et al. (2022). Therapeutic approaches for the treatment of head and neck squamous cell carcinoma-An update on clinical trials. Transl. Oncol. 21, 101426. 10.1016/j.tranon.2022.101426
    1. Goradel N. H., Baker A. T., Arashkia A., Ebrahimi N., Ghorghanlu S., Negahdari B. (2021). Oncolytic virotherapy: Challenges and solutions. Curr. Probl. Cancer 45 (1), 100639. 10.1016/j.currproblcancer.2020.100639
    1. Guigay J., Lee K. W., Patel M. R., Daste A., Wong D. J., Goel S., et al. (2021). Avelumab for platinum-ineligible/refractory recurrent and/or metastatic squamous cell carcinoma of the head and neck: Phase Ib results from the JAVELIN solid tumor trial. J. Immunother. Cancer 9 (10), e002998. 10.1136/jitc-2021-002998
    1. Harding J. J., Patnaik A., Moreno V., Stein M., Jankowska A. M., Velez de Mendizabal N., et al. (2019). A phase Ia/Ib study of an anti-TIM-3 antibody (LY3321367) monotherapy or in combination with an anti-PD-L1 antibody (LY3300054): Interim safety, efficacy, and pharmacokinetic findings in advanced cancers. J. Clin. Oncol. 37, 12. 10.1200/jco.2019.37.8_suppl.12
    1. Harjunpää H., Guillerey C. (2020). TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol. 200 (2), 108–119. 10.1111/cei.13407
    1. Harrington K. J., Kong A., Mach N., Chesney J. A., Fernandez B. C., Rischin D., et al. (2020). Talimogene laherparepvec and pembrolizumab in recurrent or metastatic squamous cell carcinoma of the head and neck (MASTERKEY-232): A multicenter, phase 1b study. Clin. Cancer Res. 26 (19), 5153–5161. 10.1158/1078-0432.CCR-20-1170
    1. Huang S. M., Harari P. M. (2000). Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: Inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin. Cancer Res. 6 (6), 2166–2174.
    1. Huang Y., Kanada M., Ye J., Deng Y., He Q., Lei Z., et al. (2022). Exosome-mediated remodeling of the tumor microenvironment: From local to distant intercellular communication. Cancer Lett. 543, 215796. 10.1016/j.canlet.2022.215796
    1. Huang Y., Lan Y., Zhang Z., Xiao X., Huang T. (2022). An update on the immunotherapy for oropharyngeal squamous cell carcinoma. Front. Oncol. 12, 800315. 10.3389/fonc.2022.800315
    1. Huard B., MastRangeli R., Prigent P., Bruniquel D., Donini S., El-TayarN., et al. (1997). Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc. Natl. Acad. Sci. U. S. A. 94 (11), 5744–5749. 10.1073/pnas.94.11.5744
    1. Jiang E., Xu Z., Wang M., Yan T., Huang C., Zhou X., et al. (2019). Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. FASEB J. official Publ. Fed. Am. Soc. Exp. Biol. 33 (4), 5690–5703. 10.1096/fj.201802226R
    1. Jiang P., Zhang Y., J Archibald S., Wang H. (2015). Adoptive cell transfer after chemotherapy enhances survival in patients with resectable HNSCC. Int. Immunopharmacol. 28 (1), 208–214. 10.1016/j.intimp.2015.05.042
    1. Jie H.-B., Srivastava R. M., Argiris A., Bauman J. E., Kane L. P., Ferris R. L. (2017). Increased PD-1+ and TIM-3+ TILs during cetuximab therapy inversely correlate with response in head and neck cancer patients. Cancer Immunol. Res. 5 (5), 408–416. 10.1158/2326-6066.CIR-16-0333
    1. Jie H. B., GildeNer-LeapmaNN., Li J., Srivastava R. M., Gibson S. P., Whiteside T. L., et al. (2013). Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br. J. Cancer 109 (10), 2629–2635. 10.1038/bjc.2013.645
    1. Jung K. H., LoRusso P., Burris H., Gordon M., Bang Y. J., Hellmann M. D., et al. (2019). Phase I study of the indoleamine 2, 3-dioxygenase 1 (Ido1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (atezolizumab) in advanced solid tumors. Clin. Cancer Res. 25 (11), 3220–3228. 10.1158/1078-0432.CCR-18-2740
    1. Kawakita D., Matsuo K. (2017). Alcohol and head and neck cancer. Cancer Metastasis Rev. 36 (3), 425–434. 10.1007/s10555-017-9690-0
    1. Kitamura N. A.-O., Sento S., Yoshizawa Y., Sasabe E., Kudo Y., Yamamoto T. (2020). Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int. J. Mol. Sci. 22 (1), 240. 10.3390/ijms22010240
    1. Klöss S., Chambron N., Gardlowski T., Weil S., Koch J., Esser R., et al. (2015). Cetuximab reconstitutes pro-inflammatory cytokine secretions and tumor-infiltrating capabilities of sMICA-inhibited NK cells in HNSCC tumor spheroids. Front. Immunol. 6, 543. 10.3389/fimmu.2015.00543
    1. Labiano S., Roh V., Godfroid C., Hiou-Feige A., Romero J., Sum E., et al. (2021). CD40 agonist targeted to fibroblast activation protein α synergizes with radiotherapy in murine HPV-positive head and neck tumors. Clin. Cancer Res. 27 (14), 4054–4065. 10.1158/1078-0432.CCR-20-4717
    1. Lamont J. P., Nemunaitis J., Kuhn J. A., Landers S. A., McCarty T. M. (2000). A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann. Surg. Oncol. 7 (8), 588–592. 10.1007/BF02725338
    1. Lee N. Y., Ferris R. L., Psyrri A., Haddad R. I., Tahara M., Bourhis J., et al. (2021). Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: A randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet. Oncol. 22 (4), 450–462. 10.1016/S1470-2045(20)30737-3
    1. Li P., Chen C. H., Li S., Givi B., Yu Z., Zamarin D., et al. (2011). Therapeutic effects of a fusogenic newcastle disease virus in treating head and neck cancer. Head. Neck 33 (10), 1394–1399. 10.1002/hed.21609
    1. Li Q., Dong H., Yang G., Song Y., Mou Y., Ni Y. (2020). Mouse tumor-bearing models as preclinical study platforms for oral squamous cell carcinoma. Front. Oncol. 10, 212. 10.3389/fonc.2020.00212
    1. Li Y.-Y., Tao Y. W., Gao S., Li P., Zheng J. M., Zhang S. E., et al. (2018). Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMedicine 36, 209–220. 10.1016/j.ebiom.2018.09.006
    1. Liao C., An J., Tan Z., Xu F., Liu J., Wang Q. (2021). Changes in protein glycosylation in head and neck squamous cell carcinoma. J. Cancer 12 (5), 1455–1466. 10.7150/jca.51604
    1. Liao P., Wang H., Tang Y. L., Tang Y. J., Liang X. H. (2019). The common costimulatory and coinhibitory signaling molecules in head and neck squamous cell carcinoma. Front. Immunol. 10, 2457. 10.3389/fimmu.2019.02457
    1. Liu H., Dong H., Zhou N., Dong S., Chen L., Zhu Y., et al. (2018). SPIO enhance the cross-presentation and migration of DCs and anionic SPIO influence the nanoadjuvant effects related to interleukin-1β. Nanoscale Res. Lett. 13 (1), 409. 10.1186/s11671-018-2802-0
    1. Loick S. M., Frohlich A., Gabrielpillai J., Franzen A., Vogt T. J., Dietrich J., et al. (2022). DNA methylation and mRNA expression of OX40 (TNFRSF4) and GITR (TNFRSF18, AITR) in head and neck squamous cell carcinoma correlates with HPV status, mutational load, an interferon-γ signature, signatures of immune infiltrates, and survival. J. Immunother. 45, 194–206. 10.1097/CJI.0000000000000407
    1. Lu S.-L., Reh D., Li A. G., Woods J., Corless C. L., Kulesz-Martin M., et al. (2004). Overexpression of transforming growth factor beta1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res. 64 (13), 4405–4410. 10.1158/0008-5472.CAN-04-1032
    1. Ludwig N., Yerneni S. S., Azambuja J. H., Razzo B. M., Hinck C. S., Pietrowska M., et al. (2020). Abstract B34: TGF-β-rich tumor-derived exosomes promote a proangiogenic phenotype in HNSCC. Clin. Cancer Res. 26, B34. 10.1158/1557-3265.aacrahns19-b34
    1. Ludwig N., Yerneni S. S., Razzo B. M., Whiteside T. L. (2018). Exosomes from HNSCC promote angiogenesis through reprogramming of endothelial cells. Mol. Cancer Res. 16 (11), 1798–1808. 10.1158/1541-7786.MCR-18-0358
    1. Lugano R., Ramachandran M., Dimberg A. (2020). Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77 (9), 1745–1770. 10.1007/s00018-019-03351-7
    1. Luke J. J., Barlesi F., Chung K., Tolcher A. W., Kelly K., Hollebecque A., et al. (2021). Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. J. Immunother. Cancer 9 (2), e002015. 10.1136/jitc-2020-002015
    1. Matta A., Ralhan R. (2009). Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head. Neck Oncol. 1, 1758–3284. 10.1186/1758-3284-1-6
    1. McDermott J. D., Bowles D. W. (2019). Epidemiology of head and neck squamous cell carcinomas: Impact on staging and prevention strategies. Curr. Treat. Options Oncol. 20 (5), 43. 10.1007/s11864-019-0650-5
    1. McDermott J. D., Bowles D. W. (2019). Epidemiology of head and neck squamous cell carcinomas: Impact on staging and prevention strategies. Curr. Treat. Options Oncol. 20 (5), 43. 10.1007/s11864-019-0650-5
    1. Mehra R., Seiwert T. Y., Gupta S., Weiss J., Gluck I., Eder J. P., et al. (2018). Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: Pooled analyses after long-term follow-up in KEYNOTE-012. Br. J. Cancer 119 (2), 153–159. 10.1038/s41416-018-0131-9
    1. Melief C. J. M., van Hall T., Arens R., Ossendorp F., van der Burg S. H. (2015). Therapeutic cancer vaccines. J. Clin. Investig. 125 (9), 3401–3412. 10.1172/JCI80009
    1. Mishra A. K., Kadoishi T., Wang X., Driver E., Chen Z., Wang X. J., et al. (2016). Squamous cell carcinomas escape immune surveillance via inducing chronic activation and exhaustion of CD8+ T Cells co-expressing PD-1 and LAG-3 inhibitory receptors. Oncotarget 7 (49), 81341–81356. 10.18632/oncotarget.13228
    1. Mondal M., Guo J., He P., Zhou D. (2020). Recent advances of oncolytic virus in cancer therapy. Hum. Vaccin. Immunother. 16 (10), 2389–2402. 10.1080/21645515.2020.1723363
    1. Monteiro de Oliveira Novaes J. A., Hirz T., Guijarro I., Nilsson M., Pisegna M. A., Poteete A., et al. (2021)., 14. Philadelphia, Pa, 313–324. 10.1158/1940-6207.CAPR-20-0418 Targeting of CD40 and PD-L1 pathways inhibits progression of oral premalignant lesions in a carcinogen-induced model of oral squamous cell carcinoma Cancer Prev. Res. 3
    1. Moy J. D., Moskovitz J. M., Ferris R. L. (2017). Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma. Eur. J. Cancer 76, 152–166. 10.1016/j.ejca.2016.12.035
    1. Myers K. V., Amend S. R., Pienta K. J. (2019). Targeting Tyro3, axl and MerTK (TAM receptors): Implications for macrophages in the tumor microenvironment. Mol. Cancer 18 (1), 94. 10.1186/s12943-019-1022-2
    1. Nair S., Bonner J. A., Bredel M. A.-O. (2022). EGFR mutations in head and neck squamous cell carcinoma. Int. J. Mol. Sci. 23 (7), 3818. 10.3390/ijms23073818
    1. Nemunaitis J., Ganly I., KhuriF., Arseneau J., Kuhn J., McCarTy T., et al. (2000). Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: A phase II trial. Cancer Res. 60 (22), 6359–6366.
    1. Nemunaitis J., KhuriF., Ganly I., Arseneau J., PosnerM., VokEs E., et al. (2001). Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol. 19 (2), 289–298. 10.1200/JCO.2001.19.2.289
    1. Nishikawa H., Sakaguchi S. (2014). Regulatory T cells in cancer immunotherapy. Curr. Opin. Immunol. 27, 1–7. 10.1016/j.coi.2013.12.005
    1. Ogasawara M., Miyashita M., Yamagishi Y., Ota S. (2019). Phase I/II pilot study of Wilms' tumor 1 peptide-pulsed dendritic cell vaccination combined with conventional chemotherapy in patients with head and neck cancer. Ther. Apher. Dial. 23 (3), 279–288. 10.1111/1744-9987.12831
    1. Ohl K., Tenbrock K. (2018). Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front. Immunol. 9, 2499. 10.3389/fimmu.2018.02499
    1. Panda A., Rosenfeld J. A., Singer E. A., Bhanot G., Ganesan S. (2020). Genomic and immunologic correlates of LAG-3 expression in cancer. Oncoimmunology 9 (1), 1756116. 10.1080/2162402X.2020.1756116
    1. Pang X., Tang Y.-L., Liang X.-H. (2018). Transforming growth factor-β signaling in head and neck squamous cell carcinoma: Insights into cellular responses. Oncol. Lett. 16 (4), 4799–4806. 10.3892/ol.2018.9319
    1. Pang X., Wang S. S., Zhang M., Jiang J., Fan H. Y., Wu J. S., et al. (2021). OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway. Cancer Immunol. Immunother. 70 (4), 1015–1029. 10.1007/s00262-020-02741-2
    1. Patel J. J., Levy D. A., Nguyen S. A., Knochelmann H. M., Day T. A. (2020). Impact of PD-L1 expression and human papillomavirus status in anti-PD1/PDL1 immunotherapy for head and neck squamous cell carcinoma-Systematic review and meta-analysis. Head. Neck 42 (4), 774–786. 10.1002/hed.26036
    1. Peng D. H., Rodriguez B. L., Diao L., Chen L., Wang J., Byers L. A., et al. (2020). Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T cell exhaustion. Nat. Commun. 11 (1), 4520. 10.1038/s41467-020-18298-8
    1. Peng M., Mo Y., Wang Y., Wu P., Zhang Y., Xiong F., et al. (2019). Neoantigen vaccine: An emerging tumor immunotherapy. Mol. Cancer 18 (1), 128. 10.1186/s12943-019-1055-6
    1. Propper D. A.-O., Balkwill F. A.-O. (2022). Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19 (4), 237–253. 10.1038/s41571-021-00588-9
    1. Rapoport A. P., Stadtmauer E. A., Binder-Scholl G. K., Goloubeva O., Vogl D. T., Lacey S. F., et al. (2015). NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21 (8), 914–921. 10.1038/nm.3910
    1. Reuschenbach M., Pauligk C., Karbach J., Rafiyan M. R., Kloor M., Prigge E. S., et al. (2016). A phase 1/2a study to test the safety and immunogenicity of a p16(INK4a) peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer 122 (9), 1425–1433. 10.1002/cncr.29925
    1. Rodríguez M. O., Rivero T. C., del Castillo Bahi R., Muchuli C. R., Bilbao M. A., Vinageras E. N., et al. (2010). Nimotuzumab plus radiotherapy for unresectable squamous-cell carcinoma of the head and neck. Cancer Biol. Ther. 9 (5), 343–349. 10.4161/cbt.9.5.10981
    1. Rosenberg S. A., Restifo N. P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348 (6230), 62–68. 10.1126/science.aaa4967
    1. Rowshanravan B., Halliday N., Sansom D. M. (2018). CTLA-4: A moving target in immunotherapy. Blood 131 (1), 58–67. 10.1182/blood-2017-06-741033
    1. Sanchez-Paulete A. R., Labiano S., Rodriguez-Ruiz M. E., Azpilikueta A., Etxeberria I., Bolanos E., et al. (2016). Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur. J. Immunol. 46 (3), 513–522. 10.1002/eji.201445388
    1. Sandulache V. C., Ow T. J., Pickering C. R., Frederick M. J., Zhou G., Fokt I., et al. (2011). Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells. Cancer 117 (13), 2926–2938. 10.1002/cncr.25868
    1. Sathawane D., Kharat R. S., Halder S., Roy S., Swami R., Patel R., et al. (2013). Monocyte CD40 expression in head and neck squamous cell carcinoma (HNSCC). Hum. Immunol. 74 (1), 1–5. 10.1016/j.humimm.2012.09.004
    1. Schaaf M. B., Garg A. D., Agostinis P. (2018). Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell. Death Dis. 9 (2), 115. 10.1038/s41419-017-0061-0
    1. Schoenfeld J. D., Hanna G. J., Jo V. Y., Rawal B., Chen Y. H., Catalano P. S., et al. (2020). Neoadjuvant nivolumab or nivolumab plus ipilimumab in untreated oral cavity squamous cell carcinoma: A phase 2 open-label randomized clinical trial. JAMA Oncol. 6 (10), 1563–1570. 10.1001/jamaoncol.2020.2955
    1. Schuler P. J., Harasymczuk M., Visus C., Deleo A., Trivedi S., Lei Y., et al. (2014). Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin. Cancer Res. 20 (9), 2433–2444. 10.1158/1078-0432.CCR-13-2617
    1. Segal N. H., Logan T. F., Hodi F. S., McDermott D., Melero I., Hamid O., et al. (2017). Results from an integrated safety analysis of urelumab, an agonist anti-cd137 monoclonal antibody. Clin. Cancer Res. 23 (8), 1929–1936. 10.1158/1078-0432.CCR-16-1272
    1. Segal N. H., Ou S. H. I., Balmanoukian A., Fury M. G., Massarelli E., Brahmer J. R., et al. (2019). Safety and efficacy of durvalumab in patients with head and neck squamous cell carcinoma: Results from a phase I/II expansion cohort. Eur. J. Cancer 109, 154–161. 10.1016/j.ejca.2018.12.029
    1. Seiwert T. Y., Burtness B., Mehra R., Weiss J., Berger R., Eder J. P., et al. (2016). Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet. Oncol. 17 (7), 956–965. 10.1016/S1470-2045(16)30066-3
    1. Serafini P., Mgebroff S., Noonan K., Borrello I. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68 (13), 5439–5449. 10.1158/0008-5472.CAN-07-6621
    1. Sharma P., Allison J. P. (2015). The future of immune checkpoint therapy. Sci. (New York, N.Y.) 348 (6230), 56–61. 10.1126/science.aaa8172
    1. Shayan G., Srivastava R., Li J., Schmitt N., Kane L. P., Ferris R. L. (2017). Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology 6 (1), e1261779. 10.1080/2162402X.2016.1261779
    1. Shinagawa K., Yanamoto S., Naruse T., Kawakita A., Morishita K., Sakamoto Y., et al. (2017). Clinical roles of interleukin-6 and STAT3 in oral squamous cell carcinoma. Pathol. Oncol. Res. 23 (2), 425–431. 10.1007/s12253-016-0134-x
    1. Siemert J., Wald T., Kolb M., Pettinella I., Bohm U., Pirlich M., et al. (2021). Pre-therapeutic VEGF level in plasma is a prognostic bio-marker in head and neck squamous cell carcinoma (HNSCC). Cancers 13 (15), 3781. 10.3390/cancers13153781
    1. Siu L. L., Even C., Mesia R., Remenar E., Daste A., Delord J. P., et al. (2019). Safety and efficacy of durvalumab with or without tremelimumab in patients with PD-L1-low/negative recurrent or metastatic HNSCC: The phase 2 CONDOR randomized clinical trial. JAMA Oncol. 5 (2), 195–203. 10.1001/jamaoncol.2018.4628
    1. Smalley Rumfield C., Pellom S. T., Morillon Ii Y. M., Schlom J., Jochems C. (2020). Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine. J. Immunother. Cancer 8 (1), e000612. 10.1136/jitc-2020-000612
    1. Solomon B., Young R. J., Rischin D. (2018). Head and neck squamous cell carcinoma: Genomics and emerging biomarkers for immunomodulatory cancer treatments. Semin. Cancer Biol. 52, 228–240. 10.1016/j.semcancer.2018.01.008
    1. Srivastava R. M., Trivedi S., Concha-Benavente F., Gibson S. P., Reeder C., Ferrone S., et al. (2017). CD137 stimulation enhances cetuximab-induced natural killer: Dendritic cell priming of antitumor T-cell immunity in patients with head and neck cancer. Clin. Cancer Res. 23 (3), 707–716. 10.1158/1078-0432.CCR-16-0879
    1. Stone M. L., Lee J., Herrera V. M., Graham K., Lee J. W., Huffman A., et al. (2021). TNF blockade uncouples toxicity from antitumor efficacy induced with CD40 chemoimmunotherapy. JCI Insight 6 (14), 146314. 10.1172/jci.insight.146314
    1. Strauss J., Floudas C. S., Abdul Sater H., Manu M., Lamping E., Francis D. C., et al. (2021). Phase II evaluation of the triple combination of PDS0101, M9241, and bintrafusp alfa in patients with HPV 16 positive malignancies. J. Clin. Oncol. 39, 2501. 10.1200/jco.2021.39.15_suppl.2501
    1. Sukumar M., Kishton R. J., Restifo N. P. (2017). Metabolic reprograming of anti-tumor immunity. Curr. Opin. Immunol. 46, 14–22. 10.1016/j.coi.2017.03.011
    1. Sukumar M., Roychoudhuri R., Restifo N. P. (2015). Nutrient competition: A new Axis of tumor immunosuppression. Cell. 162 (6), 1206–1208. 10.1016/j.cell.2015.08.064
    1. Sun L.-P., Xu K., Cui J., Yuan D. Y., Zou B., Li J., et al. (2019). Cancer-associated fibroblast-derived exosomal miR-382-5p promotes the migration and invasion of oral squamous cell carcinoma. Oncol. Rep. 42 (4), 1319–1328. 10.3892/or.2019.7255
    1. Szefel J., Danielak A., Kruszewski W. J. (2019). Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv. Med. Sci. 64 (1), 104–110. 10.1016/j.advms.2018.08.018
    1. Takahashi H., Sakakura K., Kawabata-Iwakawa R., Rokudai S., Toyoda M., Nishiyama M., et al. (2015). Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol. Immunother. 64 (11), 1407–1417. 10.1007/s00262-015-1742-0
    1. Tan Y. S., Sansanaphongpricha K., Prince M. E. P., Sun D., Wolf G. T., Lei Y. L. (2018). Engineering vaccines to reprogram immunity against head and neck cancer. J. Dent. Res. 97 (6), 627–634. 10.1177/0022034518764416
    1. Tao Y., Auperin A., Sun X., Sire C., Martin L., Coutte A., et al. (2020). Avelumab-cetuximab-radiotherapy versus standards of care in locally advanced squamous-cell carcinoma of the head and neck: The safety phase of a randomised phase III trial GORTEC 2017-01 (REACH). Eur. J. Cancer 141, 21–29. 10.1016/j.ejca.2020.09.008
    1. Tawbi H. A., Schadendorf D., Lipson E. J., Ascierto P. A., Matamala L., Castillo Gutierrez E., et al. (2022). Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386 (1), 24–34. 10.1056/NEJMoa2109970
    1. Temam S., Kawaguchi H., El-Naggar A. K., Jelinek J., Tang H., Liu D. D., et al. (2007). Epidermal growth factor receptor copy number alterations correlate with poor clinical outcome in patients with head and neck squamous cancer. J. Clin. Oncol. 25 (16), 2164–2170. 10.1200/JCO.2006.06.6605
    1. Tolcher A. W., Sznol M., Hu-Lieskovan S., Papadopoulos K. P., Patnaik A., Rasco D. W., et al. (2017). Phase Ib study of utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin. Cancer Res. 23 (18), 5349–5357. 10.1158/1078-0432.CCR-17-1243
    1. Tran B., Carvajal R. D., Marabelle A., Patel S. P., LoRusso P. M., Rasmussen E., et al. (2018). Dose escalation results from a first-in-human, phase 1 study of glucocorticoid-induced TNF receptor-related protein agonist AMG 228 in patients with advanced solid tumors. J. Immunother. Cancer 6 (1), 93. 10.1186/s40425-018-0407-x
    1. Vahle A.-K., Hermann S., Schafers M., Wildner M., Kerem A., Ozturk E., et al. (2016). Multimodal imaging analysis of an orthotopic head and neck cancer mouse model and application of anti-CD137 tumor immune therapy. Head. Neck 38 (4), 542–549. 10.1002/hed.23929
    1. Vermorken J. B., Stohlmacher-Williams J., Davidenko I., Licitra L., Winquist E., Villanueva C., et al. (2013). Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): An open-label phase 3 randomised trial. Lancet. Oncol. 14 (8), 697–710. 10.1016/S1470-2045(13)70181-5
    1. Vidard L., Dureuil C., Baudhuin J., Vescovi L., Durand L., Sierra V., et al. (2019). CD137 (4-1BB) engagement fine-tunes synergistic IL-15- and IL-21-driven NK cell proliferation. J. Immunol. 203 (3), 676–685. 10.4049/jimmunol.1801137
    1. Wang B., Zhang W., Jankovic V., Golubov J., Poon P., Oswald E. M., et al. (2018). Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8+ T cell dysfunction and maintain memory phenotype. Sci. Immunol. 3 (29), eaat7061. 10.1126/sciimmunol.aat7061
    1. Wang C., Li P., Liu L., Pan H., Li H., Cai L., et al. (2016). Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation. Biomaterials 79, 88–100. 10.1016/j.biomaterials.2015.11.040
    1. Wang C., Zainal N. S., Chai S. J., Dickie J., Gan C. P., Zulaziz N., et al. (2021). DNA vaccines targeting novel cancer-associated antigens frequently expressed in head and neck cancer enhance the efficacy of checkpoint inhibitor. Front. Immunol. 12, 763086. 10.3389/fimmu.2021.763086
    1. Wang G., Zhang M., Cheng M., Wang X., Li K., Chen J., et al. (2021). Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Lett. 507, 55–69. 10.1016/j.canlet.2021.03.009
    1. Wang J., Sanmamed M. F., Datar I., Su T. T., Ji L., Sun J., et al. (2019). Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 176 (1-2), 334–347. 10.1016/j.cell.2018.11.010
    1. Wang X., Guo J., Yu P., Guo L., Mao X., Wang J., et al. (2021). The roles of extracellular vesicles in the development, microenvironment, anticancer drug resistance, and therapy of head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 40 (1), 35. 10.1186/s13046-021-01840-x
    1. Wang X., Yang S., Lv X., Wang L., Li C. (2020). Overexpression of LncRNA SNHG1 were suitable for oncolytic adenoviruse H101 therapy in oral squamous-cell carcinoma. Onco. Targets. Ther. 13, 13033–13039. 10.2147/OTT.S285536
    1. Weed D. T., Zilio S., Reis I. M., Sargi Z., Abouyared M., Gomez-Fernandez C. R., et al. (2019). The reversal of immune exclusion mediated by tadalafil and an anti-tumor vaccine also induces PDL1 upregulation in recurrent head and neck squamous cell carcinoma: Interim analysis of a phase I clinical trial. Front. Immunol. 10, 1206. 10.3389/fimmu.2019.01206
    1. Wei T., Leisegang M., Xia M., Kiyotani K., Li N., Zeng C., et al. (2021). Generation of neoantigen-specific T cells for adoptive cell transfer for treating head and neck squamous cell carcinoma. Oncoimmunology 10 (1), 1929726. 10.1080/2162402X.2021.1929726
    1. Whiteside T. L. (2016). Exosomes and tumor-mediated immune suppression. J. Clin. Investig. 126 (4), 1216–1223. 10.1172/JCI81136
    1. Whiteside T. L., Ferris R. L., Szczepanski M., Tublin M., Kiss J., Johnson R., et al. (2016). Dendritic cell-based autologous tumor vaccines for head and neck squamous cell carcinoma. Head. Neck 38, E494–E501. 10.1002/hed.24025
    1. Wrzesinski S. H., Wan Y. Y., Flavell R. A. (2007). Transforming growth factor-beta and the immune response: Implications for anticancer therapy. Clin. Cancer Res. 13 (18), 5262–5270. 10.1158/1078-0432.CCR-07-1157
    1. Xia L., Oyang L., Lin J., Tan S., Han Y., Wu N., et al. (2021). The cancer metabolic reprogramming and immune response. Mol. Cancer 20 (1), 28. 10.1186/s12943-021-01316-8
    1. Xia Z.-J., Chang J. H., Zhang L., Jiang W. Q., Guan Z. Z., Liu J. W., et al. (2004). Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus. Ai Zheng 23 (12), 1666–1670.
    1. Xiao C., Song F., Zheng Y. L., Lv J., Wang Q. F., Xu N. (2019). Exosomes in head and neck squamous cell carcinoma. Front. Oncol. 9, 894. 10.3389/fonc.2019.00894
    1. Yen C.-J., Kiyota N., Hanai N., Takahashi S., Yokota T., Iwae S., et al. (2020). Two-year follow-up of a randomized phase III clinical trial of nivolumab vs. the investigator's choice of therapy in the Asian population for recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141). Head. Neck 42 (10), 2852–2862. 10.1002/hed.26331
    1. Yoshitake Y., Fukuma D., Yuno A., Hirayama M., Nakayama H., Tanaka T., et al. (2015). Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin. Cancer Res. 21 (2), 312–321. 10.1158/1078-0432.CCR-14-0202
    1. Zandberg D. P., Algazi A. P., Jimeno A., Good J. S., Fayette J., Bouganim N., et al. (2019). Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: Results from a single-arm, phase II study in patients with ≥25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur. J. Cancer 107, 142–152. 10.1016/j.ejca.2018.11.015
    1. Zandberg D. P., Rollins S., Goloubeva O., Morales R. E., Tan M., Taylor R., et al. (2015). A phase I dose escalation trial of MAGE-A3- and HPV16-specific peptide immunomodulatory vaccines in patients with recurrent/metastatic (RM) squamous cell carcinoma of the head and neck (SCCHN). Cancer Immunol. Immunother. 64 (3), 367–379. 10.1007/s00262-014-1640-x
    1. Zhang Y., Zhang Z. (2020). The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17 (8), 807–821. 10.1038/s41423-020-0488-6
    1. Zhou C., Parsons J. L. (2020). The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev. Mol. Med. 22, e3. 10.1017/erm.2020.4

Source: PubMed

3
订阅