Newborn Screening: Review of its Impact for Cystinosis

Katharina Hohenfellner, Ewa Elenberg, Gema Ariceta, Galina Nesterova, Neveen A Soliman, Rezan Topaloglu, Katharina Hohenfellner, Ewa Elenberg, Gema Ariceta, Galina Nesterova, Neveen A Soliman, Rezan Topaloglu

Abstract

Newborn screening (NBS) programmes are considered to be one of the most successful secondary prevention measures in childhood to prevent or reduce morbidity and/or mortality via early disease identification and subsequent initiation of therapy. However, while many rare diseases can now be detected at an early stage using appropriate diagnostics, the introduction of a new target disease requires a detailed analysis of the entire screening process, including a robust scientific background, analytics, information technology, and logistics. In addition, ethics, financing, and the required medical measures need to be considered to allow the benefits of screening to be evaluated at a higher level than its potential harm. Infantile nephropathic cystinosis (INC) is a very rare lysosomal metabolic disorder. With the introduction of cysteamine therapy in the early 1980s and the possibility of renal replacement therapy in infancy, patients with cystinosis can now reach adulthood. Early diagnosis of cystinosis remains important as this enables initiation of cysteamine at the earliest opportunity to support renal and patient survival. Using molecular technologies, the feasibility of screening for cystinosis has been demonstrated in a pilot project. This review aims to provide insight into NBS and discuss its importance for nephropathic cystinosis using molecular technologies.

Keywords: CTNS-pathogenic variants; clinical course; infantile nephropathic cystinosis; newborn screening; newborn screening for cystinosis.

Conflict of interest statement

K.H., E.E., N.A.S. and G.N. have no competing interest. G.A. has received honoraria for lectures, presentations, or educational events from Alexion Pharmaceuticals, Recordati Rare Disease, Advicenne, Chiesi, Kyowa Kirim, support for attending meetings from Recordati Rare Disease, Kyowa Kirim, and Advicenne and for participating on Advisory Boards for Alexion Pharmaceuticals, Advicenne, Dicerna, and Alnylam. R.T. has received honorarium for lectures from Recordati and Alnylam.

Figures

Figure 1
Figure 1
Test results and quality parameters in neonatal screening. Sensitivity: Ability of the test to accurately identify those individuals with a specific condition/disease. Specificity: Ability of the test to accurately identify those individuals without the condition/disease. Positive predictive value (PPV): Probability that the person tested has the disease when the test is positive. Negative predictive value: Probability that the person does not have the disease, when the test is negative.

References

    1. Therrell B.L., Padilla C.D., Loeber J.G., Kneisser I., Saadallah A., Borrajo G.J., Adams J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015;39:171–187. doi: 10.1053/j.semperi.2015.03.002.
    1. Cornel M., Rigter T., Weinreich S., Burgard P., Hoffmann G.F., Lindner M., Loeber J.G., Rupp K., Taruscio D., Vittozzi L. Newborn Screening in Europe Expert Opinion. [(accessed on 13 February 2022)]. Available online: .
    1. World Health Organization Screening Programmes: A Short Guide. [(accessed on 13 February 2022)]. Available online: .
    1. Therrell B.L., Lloyd-Puryear M.A., Ohene-Frempong K., Ware R.E., Padilla C.D., Ambrose E.E., Barkat A., Ghazal H., Kiyaga C., Mvalo T., et al. Empowering newborn screening programs in African countries through establishment of an international collaborative effort. J. Community Genet. 2020;11:253–268. doi: 10.1007/s12687-020-00463-7.
    1. Loeber J., Platis D., Zetterström R., Almashanu S., Boemer F., Bonham J., Borde P., Brincat I., Cheillan D., Dekkers E., et al. Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int. J. Neonatal Screen. 2021;7:15. doi: 10.3390/ijns7010015.
    1. McCandless S.E., Wright E.J. Mandatory newborn screening in the United States: History, current status, and existential challenges. Birth Defects Res. 2020;112:350–366. doi: 10.1002/bdr2.1653.
    1. Pollitt R.J. Different Viewpoints: International Perspectives On Newborn Screening/Različita Gledišta: Međunarodne Perspektive U Vezi Sa Testiranjem Novorođenčadi. J. Med. Biochem. 2014;34:18–22. doi: 10.2478/jomb-2014-0040.
    1. Alonso-Coello P., Schünemann H.J., Moberg J., Brignardello-Petersen R., Akl E.A., Davoli M., Treweek S., Mustafa R.A., Rada G., Rosenbaum S., et al. GRADE Evidence to Decision (EtD) frameworks: A systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ. 2016;353:i2016. doi: 10.1136/bmj.i2016.
    1. Austoker J. Gaining informed consent for screening. BMJ. 1999;319:722–723. doi: 10.1136/bmj.319.7212.722.
    1. Ewart R.M. Primum non nocere and the quality of evidence: Rethinking the ethics of screening. J. Am. Board Fam. Pract. 2000;13:188–196. doi: 10.3122/15572625-13-3-188.
    1. Shickle D., Chadwick R. The ethics of screening: Is “screenitis” an incurable disease? J. Med. Ethics. 1994;20:8–12. doi: 10.1136/jme.20.1.12.
    1. Bickel H., Gerrard J., Hickmans E. Preliminary Communication. Lancet. 1953;262:812–813. doi: 10.1016/S0140-6736(53)90473-5.
    1. Gonzalez J., Willis M.S. Robert Guthrie, MD, PhD. Lab. Med. 2009;40:748–749. doi: 10.1309/LMD48N6BNZSXIPVH.
    1. Guthrie R., Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–343. doi: 10.1542/peds.32.3.338.
    1. MacCready R.A., Hussey M.G. Newborn Phenylketonuria Detection Program in Massachusetts. Am. J. Public Health Nations Health. 1964;54:2075–2081. doi: 10.2105/AJPH.54.12.2075.
    1. Clague A., Thomas A. Neonatal biochemical screening for disease. Clin. Chim. Acta. 2001;315:99–110. doi: 10.1016/S0009-8981(01)00716-1.
    1. Chace D.H., Millington D.S., Terada N., Kahler S.G., Roe C.R., Hofman L.F. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin. Chem. 1993;39:66–71. doi: 10.1093/clinchem/39.1.66.
    1. Ranieri E., Ryall R.G., Morris C.P., Nelson P.V., Carey W.F., Pollard A.C., Robertson E.F. Neonatal screening strategy for cystic fibrosis using immunoreactive trypsinogen and direct gene analysis. BMJ. 1991;302:1237–1240. doi: 10.1136/bmj.302.6787.1237.
    1. Chan K., Puck J.M. Development of population-based newborn screening for severe combined immunodeficiency. J. Allergy Clin. Immunol. 2005;115:391–398. doi: 10.1016/j.jaci.2004.10.012.
    1. Chien Y.-H., Chiang S.-C., Weng W.-C., Lee N.-C., Lin C.-J., Hsieh W.-S., Lee W.-T., Jong Y.-J., Ko T.-M., Hwu W.-L. Presymptomatic Diagnosis of Spinal Muscular Atrophy Through Newborn Screening. J. Pediatr. 2017;190:124–129.e1. doi: 10.1016/j.jpeds.2017.06.042.
    1. Wilson J.M.G., Jungner G., World health Organization Principles and Practice of Screening for Disease. 1968. [(accessed on 13 February 2022)]. Available online: .
    1. Andermann A., Blancquaert I., Beauchamp S., Dery V. Revisting wilson and Jungner in the genomic age: A review of screening criteria over the past 40 years. Bull. World Health Organ. 2008;86:317–319. doi: 10.2471/BLT.07.050112.
    1. Lüders A., Blankenstein O., Brockow I., Ensenauer R., Lindner M., Schulze A., Nennstiel U. Neonatal Screening for Congenital Metabolic and Endocrine Disorders. Dtsch. Arztebl. Int. 2021;118:101–108. doi: 10.3238/arztebl.m2021.0009.
    1. Tangeraas T., Sæves I., Klingenberg C., Jørgensen J., Kristensen E., Gunnarsdottir G., Hansen E.V., Strand J., Lundman E., Ferdinandusse S., et al. Performance of Expanded Newborn Screening in Norway Supported by Post-Analytical Bioinformatics Tools and Rapid Second-Tier DNA Analyses. Int. J. Neonatal Screen. 2020;6:51. doi: 10.3390/ijns6030051.
    1. Gurian E.A., Kinnamon D.D., Henry J.J., Waisbren S.E. Expanded Newborn Screening for Biochemical Disorders: The Effect of a False-Positive Result. Pediatrics. 2006;117:1915–1921. doi: 10.1542/peds.2005-2294.
    1. Tluczek A., Koscik R.L., Farrell P.M., Rock M.J. Psychosocial Risk Associated with Newborn Screening for Cystic Fibrosis: Parents’ Experience While Awaiting the Sweat-Test Appointment. Pediatrics. 2005;115:1692–1703. doi: 10.1542/peds.2004-0275.
    1. Hoffmann G.F., Lindner M., Loeber J.G. 50 years of newborn screening. J. Inherit. Metab. Dis. 2014;37:163–164. doi: 10.1007/s10545-014-9688-5.
    1. Zimmer K.-P. Newborn Screening: Still Room for Improvement. Dtsch. Ärzteblatt Int. 2021;118:99–100. doi: 10.3238/arztebl.m2021.0008.
    1. Liebl B., Nennstiel-Ratzel U., von Kries R., Fingerhut R., Olgemöller B., Zapf A., Roscher A.A. Expanded Newborn Screening in Bavaria: Tracking to Achieve Requested Repeat Testing. Prev. Med. 2002;34:132–137. doi: 10.1006/pmed.2001.0954.
    1. Lajic S., Karlsson L., Zetterström R., Falhammar H., Nordenström A. The Success of a Screening Program Is Largely Dependent on Close Collaboration between the Laboratory and the Clinical Follow-Up of the Patients. Int. J. Neonatal Screen. 2020;6:68. doi: 10.3390/ijns6030068.
    1. Recommended Uniform Screening Panel. [(accessed on 13 February 2022)]; Available online: .
    1. Health. Supporting Public Health in Europe. [(accessed on 13 February 2022)]. Available online: .
    1. EURORDIS Rare Disease Europe Key Principles for Newborn Screening. [(accessed on 13 February 2022)]. Available online: .
    1. Brower A., Chan K., Hartnett M., Taylor J. The Longitudinal Pediatric Data Resource: Facilitating Longitudinal Collection of Health Information to Inform Clinical Care and Guide Newborn Screening Efforts. Int. J. Neonatal Screen. 2021;7:37. doi: 10.3390/ijns7030037.
    1. Darby E., Thompson J., Johnson C., Singh S., Ojodu J. Establishing a National Community of Practice for Newborn Screening Follow-Up. Int. J. Neonatal Screen. 2021;7:49. doi: 10.3390/ijns7030049.
    1. Lloyd-Puryear M., Brower A., Berry S.A., Brosco J.P., Bowdish B., Watson M.S. Foundation of the Newborn Screening Translational Research Network and its tools for research. Genet. Med. 2019;21:1271–1279. doi: 10.1038/s41436-018-0334-8.
    1. . HR 1281-. Newborn Screening Saves Lives Reauthorization Act of 2014. [(accessed on 13 February 2022)]; Available online: .
    1. Gahl W.A., Thoene J.G., Schneider J.A. Cystinosis. N. Engl. J. Med. 2002;347:111–121. doi: 10.1056/NEJMra020552.
    1. Town M.M., Jean G., Cherqui S., Attard M., Forestier L., Whitmore S.A., Callen D.F., Gribouval O., Broyer M., Bates G., et al. A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat. Genet. 1998;18:319–324. doi: 10.1038/ng0498-319.
    1. Kleta R., Bernardini I., Ueda M., Varade W.S., Phornphutkul C., Krasnewich D., Gahl W.A. Long-term follow-up of well-treated nephropathic cystinosis patients. J. Pediatr. 2004;145:555–560. doi: 10.1016/j.jpeds.2004.03.056.
    1. Gahl W.A., Balog J.Z., Kleta R. Nephropathic Cystinosis in Adults: Natural History and Effects of Oral Cysteamine Therapy. Ann. Intern. Med. 2007;147:242–250. doi: 10.7326/0003-4819-147-4-200708210-00006.
    1. Cherqui S., Courtoy P.J. The renal Fanconi syndrome in cystinosis: Pathogenic insights and therapeutic perspectives. Nat. Rev. Nephrol. 2016;13:115–131. doi: 10.1038/nrneph.2016.182.
    1. Chevalier R.L., Forbes M.S., Galarreta C.I., Thornhill B.A. Responses of proximal tubular cells to injury in congenital renal disease: Fight or flight. Pediatr. Nephrol. 2013;29:537–541. doi: 10.1007/s00467-013-2590-9.
    1. Raggi C., Luciani A., Nevo N., Antignac C., Terryn S., Devuyst O. Dedifferentiation and aberrations of the endolysosomal compartment characterize the early stage of nephropathic cystinosis. Hum. Mol. Genet. 2013;23:2266–2278. doi: 10.1093/hmg/ddt617.
    1. Greco M., Brugnara M., Zaffanello M., Taranta A., Pastore A., Emma F. Long-term outcome of nephropathic cystinosis: A 20-year single-center experience. Pediatr. Nephrol. 2010;25:2459–2467. doi: 10.1007/s00467-010-1641-8.
    1. Brodin-Sartorius A., Tête M.-J., Niaudet P., Antignac C., Guest G., Ottolenghi C., Charbit M., Moyse D., Legendre C., Lesavre P., et al. Cysteamine therapy delays the progression of nephropathic cystinosis in late adolescents and adults. Kidney Int. 2012;81:179–189. doi: 10.1038/ki.2011.277.
    1. Emma F., Hoff W.V., Hohenfellner K., Topaloglu R., Greco M., Ariceta G., Bettini C., Bockenhauer D., Veys K., Pape L., et al. An international cohort study spanning five decades assessed outcomes of nephropathic cystinosis. Kidney Int. 2021;100:1112–1123. doi: 10.1016/j.kint.2021.06.019.
    1. Langman C.B., Barshop B.A., Deschenes G., Emma F., Goodyer P., Lipkin G., Midgley J.P., Ottolenghi C., Servais A., Soliman N.A., et al. Controversies and research agenda in nephropathic cystinosis: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2016;89:1192–1203. doi: 10.1016/j.kint.2016.01.033.
    1. Topaloglu R., Gulhan B., Inözü M., Canpolat N., Yilmaz A., Noyan A., Dursun I., Gökce I., Gürgöze M.K., Akinci N., et al. The Clinical and Mutational Spectrum of Turkish Patients with Cystinosis. Clin. J. Am. Soc. Nephrol. 2017;12:1634–1641. doi: 10.2215/CJN.00180117.
    1. Broyer M., Tete M.-J. Pediatric Nephrology. Springer; New York, NY, USA: 2008. Outcome of cystinosis after 20 years of age. A study of the Enfants-Malades series; pp. 1910–1911.
    1. Vaisbich M.H., Koch V.H. Report of a Brazilian Multicenter Study on Nephropathic Cystinosis. Nephron Clin. Pract. 2010;114:c12–c18. doi: 10.1159/000245065.
    1. Bertholet-Thomas A., Berthiller J., Tasic V., Kassai B., Otukesh H., Greco M., Ehrich J., Bernardes R.D.P., Deschênes G., Hulton S.-A., et al. Worldwide view of nephropathic cystinosis: Results from a survey from 30 countries. BMC Nephrol. 2017;18:210. doi: 10.1186/s12882-017-0633-3.
    1. Ariceta G., Giordano V., Santos F. Effects of long-term cysteamine treatment in patients with cystinosis. Pediatr. Nephrol. 2017;34:571–578. doi: 10.1007/s00467-017-3856-4.
    1. Viltz L., Trauner D.A. Effect of Age at Treatment on Cognitive Performance in Patients with Cystinosis. J. Pediatr. 2013;163:489–492. doi: 10.1016/j.jpeds.2013.01.027.
    1. Nesterova G., Gahl W.A. Cystinosis: The evolution of a treatable disease. Pediatr. Nephrol. 2012;28:51–59. doi: 10.1007/s00467-012-2242-5.
    1. Cohen C., Charbit M., Chadefaux-Vekemans B., Giral M., Garrigue V., Kessler M., Antoine C., Snanoudj R., Niaudet P., Kreis H., et al. Excellent long-term outcome of renal transplantation in cystinosis patients. Orphanet J. Rare Dis. 2015;10:90. doi: 10.1186/s13023-015-0307-9.
    1. Spicer R.A., Clayton P.A., McTaggart S.J., Zhang G.Y., Alexander S.I. Patient and Graft Survival Following Kidney Transplantation in Recipients With Cystinosis: A Cohort Study. Am. J. Kidney Dis. 2015;65:172–173. doi: 10.1053/j.ajkd.2014.07.020.
    1. Markello T.C., Bernardini I.M., Gahl W.A. Improved Renal Function in Children with Cystinosis Treated with Cysteamine. N. Engl. J. Med. 1993;328:1157–1162. doi: 10.1056/NEJM199304223281604.
    1. Nesterova G., Gahl W.A. Cystinosis, GeneReviews. [(accessed on 13 February 2022)]; Available online:
    1. Gahl W.A., Thoene J.G., Schneider J.A. Cystinosis: A disorder of lysosomal membrane transport. Metab. Mol. Bases Inherit. Dis. 2001;4:5085–5108.
    1. David D., Berlingerio S.P., Elmonem M.A., Arcolino F.O., Soliman N., Heuvel B.V.D., Gijsbers R., Levtchenko E. Molecular Basis of Cystinosis: Geographic Distribution, Functional Consequences of Mutations in the CTNS Gene, and Potential for Repair. Nephron Exp. Nephrol. 2018;141:133–146. doi: 10.1159/000495270.
    1. Forestier L., Jean G., Attard M., Cherqui S., Lewis C., Hoff W.V., Broyer M., Town M., Antignac C. Molecular Characterization of CTNS Deletions in Nephropathic Cystinosis: Development of a PCR-Based Detection Assay. Am. J. Hum. Genet. 1999;65:353–359. doi: 10.1086/302509.
    1. Shotelersuk V., Larson D., Anikster Y., McDowell G., Lemons R., Bernardini I., Guo J., Thoene J., Gahl W.A. CTNS Mutations in an American-Based Population of Cystinosis Patients. Am. J. Hum. Genet. 1998;63:1352–1362. doi: 10.1086/302118.
    1. Kiehntopf M., Schickel J., von der Gönne B., Koch H.G., Superti-Furga A., Steinmann B., Deufel T., Harms E. Analysis of the CTNS gene in patients of German and Swiss origin with nephropathic cystinosis. Hum. Mutat. 2002;20:237. doi: 10.1002/humu.9063.
    1. Alcántara-Ortigoza M., Belmont-Martínez L., Vela-Amieva M., Angel A.G.-D. Analysis of the CTNS Gene in Nephropathic Cystinosis Mexican Patients: Report of Four Novel Mutations and Identification of a False Positive 57-kb Deletion Genotype with LDM-2/Exon 4 Multiplex PCR Assay. Genet. Test. 2008;12:409–414. doi: 10.1089/gte.2008.0014.
    1. Mason S., Pepe G., Dall’Amico R., Tartaglia S., Casciani S., Greco M., Bencivenga P., Murer L., Rizzoni G., Tenconi R., et al. Mutational spectrum of the CTNS gene in Italy. Eur. J. Hum. Genet. 2003;11:503–508. doi: 10.1038/sj.ejhg.5200993.
    1. Soliman N.A., Elmonem M.A., Heuvel L.V.D., Hamid R.H.A., Gamal M., Bongaers I., Marie S., Levtchenko E., Zschocke J., Gibson K.M. Mutational Spectrum of the CTNS Gene in Egyptian Patients with Nephropathic Cystinosis. JIMD Rep. 2014;14:87–97. doi: 10.1007/8904_2013_288.
    1. Topaloglu R., Vilboux T., Coskun T., Ozaltin F., Tinloy B., Gunay-Aygun M., Bakkaloglu A., Besbas N., Heuvel L.V.D., Kleta R., et al. Genetic basis of cystinosis in Turkish patients: A single-center experience. Pediatr. Nephrol. 2011;27:115–121. doi: 10.1007/s00467-011-1942-6.
    1. Shahkarami S., Galehdari H., Ahmadzadeh A., Babaahmadi M., Pedram M. The first Molecular genetics analysis of individuals suffering from nephropatic cystinosis in the Southwestern Iran. Nefrología. 2013;33:308–315. doi: 10.3265/NEFROLOGIA.PRE2012.SEP.11558.
    1. Owen E.P., Nandhlal J., Leisegang F., Van Der Watt G., Nourse P., Gajjar P. Common mutation causes cystinosis in the majority of black South African patients. Pediatr. Nephrol. 2014;30:595–601. doi: 10.1007/s00467-014-2980-7.
    1. Brasell E.J., Chu L., El Kares R., Seo J.H., Loesch R., Iglesias D.M., Goodyer P. The aminoglycoside geneticin permits translational readthrough of the CTNS W138X nonsense mutation in fibroblasts from patients with nephropathic cystinosis. Pediatr. Nephrol. 2018;34:873–881. doi: 10.1007/s00467-018-4094-0.
    1. Kalatzis V., Nevo N., Cherqui S., Gasnier B., Antignac C. Molecular pathogenesis of cystinosis: Effect of CTNS mutations on the transport activity and subcellular localization of cystinosin. Hum. Mol. Genet. 2004;13:1361–1371. doi: 10.1093/hmg/ddh152.
    1. Jinks D.C., Minter M., Tarver D.A., Vanderford M., Hejtmancik J.F., McCabe E.R.B. Molecular genetic diagnosis of sickle cell disease using dried blood specimens on blotters used for newborn screening. Qual. Life Res. 1989;81:363–366. doi: 10.1007/BF00283692.
    1. Friedman J.M., The Global Alliance for Genomics and Health Regulatory and Ethics Working Group Paediatric Task Team. Cornel M.C., Goldenberg A.J., Lister K.J., Sénécal K., Vears D.F. Genomic newborn screening: Public health policy considerations and recommendations. BMC Med. Genom. 2017;10:9. doi: 10.1186/s12920-017-0247-4.
    1. Fleige T., Burggraf S., Czibere L., Häring J., Glück B., Keitel L.M., Landt O., Harms E., Hohenfellner K., Durner J., et al. Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis. Eur. J. Hum. Genet. 2019;28:193–201. doi: 10.1038/s41431-019-0521-3.
    1. Czibere L., Burggraf S., Fleige T., Glück B., Keitel L.M., Landt O., Durner J., Röschinger W., Hohenfellner K., Wirth B., et al. High-throughput genetic newborn screening for spinal muscular atrophy by rapid nucleic acid extraction from dried blood spots and 384-well qPCR. Eur. J. Hum. Genet. 2019;28:23–30. doi: 10.1038/s41431-019-0476-4.
    1. Gemeinsamer Bundesauschuss Beschluss Kinder-Richtlinie: Neugeborenen-Screening Auf 5q-Assoziierte Spinale Muskelatrophie. [(accessed on 13 February 2022)]. Available online:
    1. Hohenfellner K., Bergmann C., Fleige T., Janzen N., Burggraf S., Olgemöller B., Gahl W.A., Czibere L., Froschauer S., Röschinger W., et al. Molecular based newborn screening in Germany: Follow-up for cystinosis. Mol. Genet. Metab. Rep. 2019;21:100514. doi: 10.1016/j.ymgmr.2019.100514.
    1. Elmonem M.A., Veys K.R., Soliman N.A., Van Dyck M., Heuvel L.P.V.D., Levtchenko E. Cystinosis: A review. Orphanet J. Rare Dis. 2016;11:47. doi: 10.1186/s13023-016-0426-y.
    1. Gahl W.A., Reed G.F., Thoene J.G., Schulman J.D., Rizzo W.B., Jonas A.J., Denman D.W., Schlesselman J.J., Corden B.J., Schneider J.A. Cysteamine Therapy for Children with Nephropathic Cystinosis. N. Engl. J. Med. 1987;316:971–977. doi: 10.1056/NEJM198704163161602.
    1. Lu C., Tzovaras B.G., Gough J. A survey of direct-to-consumer genotype data, and quality control tool (GenomePrep) for research. Comp. Struc. Biot. J. 2021;19:3747–3754. doi: 10.1016/j.csbj.2021.06.040.
    1. DeCristo D.M., Milko L.V., O’Daniel J.M., Foreman A.K.M., Mollison L.F., Powell B.C., Powell C.M., Berg J.S. Actionability of commercial laboratory sequencing panels for newborn screening and the importance of transparency for parental decision-making. Genome Med. 2021;13:50. doi: 10.1186/s13073-021-00867-1.

Source: PubMed

3
订阅