A Multiplex Protein Panel Applied to Cerebrospinal Fluid Reveals Three New Biomarker Candidates in ALS but None in Neuropathic Pain Patients

Anne-Li Lind, Di Wu, Eva Freyhult, Constantin Bodolea, Titti Ekegren, Anders Larsson, Mats G Gustafsson, Lenka Katila, Jonas Bergquist, Torsten Gordh, Ulf Landegren, Masood Kamali-Moghaddam, Anne-Li Lind, Di Wu, Eva Freyhult, Constantin Bodolea, Titti Ekegren, Anders Larsson, Mats G Gustafsson, Lenka Katila, Jonas Bergquist, Torsten Gordh, Ulf Landegren, Masood Kamali-Moghaddam

Abstract

The objective of this study was to develop and apply a novel multiplex panel of solid-phase proximity ligation assays (SP-PLA) requiring only 20 μL of samples, as a tool for discovering protein biomarkers for neurological disease and treatment thereof in cerebrospinal fluid (CSF). We applied the SP-PLA to samples from two sets of patients with poorly understood nervous system pathologies amyotrophic lateral sclerosis (ALS) and neuropathic pain, where patients were treated with spinal cord stimulation (SCS). Forty-seven inflammatory and neurotrophic proteins were measured in samples from 20 ALS patients and 15 neuropathic pain patients, and compared to normal concentrations in CSF from control individuals. Nineteen of the 47 proteins were detectable in more than 95% of the 72 controls. None of the 21 proteins detectable in CSF from neuropathic pain patients were significantly altered by SCS. The levels of the three proteins, follistatin, interleukin-1 alpha, and kallikrein-5 were all significantly reduced in the ALS group compared to age-matched controls. These results demonstrate the utility of purpose designed multiplex SP-PLA panels in CSF biomarker research for understanding neuropathological and neurotherapeutic mechanisms. The protein changes found in the CSF of ALS patients may be of diagnostic interest.

Conflict of interest statement

Competing Interests: U. Landegren is a co-founder and stockholder of the Olink Bioscience that commercializes the PLA technology. The other authors have declared that no competing interests exist.

Figures

Fig 1. Protein variation among the investigated…
Fig 1. Protein variation among the investigated individuals.
A) Boxplots showing protein concentrations ranges in CSF from 72 individuals without neurological disorders. The concentration ranges between the upper and lower limits of detection for each marker are shown in grey. The numbers below and above the boxplots show the number of patient samples (out of the total 72) that are outside the detection limits. B) Performance measures for each protein assay. The 1st, 2nd (median) and 3rd quartile values of the robust % CV. The numbers of detectable samples out of a total of 72 samples are found at the bottom line for each marker.
Fig 2
Fig 2
Protein level comparisons for ALS patients and matched controls (a) and neuropathic pain patients with SCS on and off (b). The y-axes represent Ct-values. The detectable concentration ranges between the upper and lower limits of detection for each marker are shown in grey. The numbers above and below the boxplots show the number of samples that are outside the detection limits.
Fig 3. ALS Biomarker candidates.
Fig 3. ALS Biomarker candidates.
Boxplots showing the CSF levels for follistatin, IL1-alpha and KLK5 for ALS patients and matched controls. The protein levels are compared using the Mann-Whitney U-test and p-values are displayed in the Figures. The limits of detection are indicated by dashed horizontal lines. The y-axes represent Ct-values.

References

    1. Schutzer SE, Liu T, Natelson BH, Angel TE, Schepmoes AA, Purvine SO, et al. Establishing the proteome of normal human cerebrospinal fluid. PLOS One. 2010;5(6):e10980 10.1371/journal.pone.0010980
    1. Darmanis S, Yuan Nong R, Hammond M, Gu J, Alderborn A, Vänelid J, et al. Sensitive plasma protein analysis by microparticle-based proximity ligation assays. Mol Cell Proteomics. 2009. .
    1. Lundberg M, Thorsen SB, Assarsson E, Villablanca A, Tran B, Gee N, et al. Multiplexed homogeneous proximity ligation assays for high-throughput protein biomarker research in serological material. Mol Cell Proteomics. 2011;10(4):M110.004978 10.1074/mcp.M110.004978
    1. Fredriksson S, Horecka J, Brustugun O, Schlingemann J, Koong A, Tibshirani R, et al. Multiplexed proximity ligation assays to profile putative plasma biomarkers relevant to pancreatic and ovarian cancer. Clin Chem. 2008;54(3):582–9. 10.1373/clinchem.2007.093195
    1. Darmanis S, Nong RY, Hammond M, Gu J, Alderborn A, Vänelid J, et al. Sensitive plasma protein analysis by microparticle-based proximity ligation assays. Mol Cell Proteomics. 2010;9(2):327–35. 10.1074/mcp.M900248-MCP200
    1. Darmanis S, Nong RY, Vänelid J, Siegbahn A, Ericsson O, Fredriksson S, et al. ProteinSeq: high-performance proteomic analyses by proximity ligation and next generation sequencing. PLOS One. 2011;6(9):e25583 10.1371/journal.pone.0025583
    1. Tavoosidana G, Ronquist G, Darmanis S, Yan J, Carlsson L, Wu D, et al. Multiple recognition assay reveals prostasomes as promising plasma biomarkers for prostate cancer. Proc Natl Acad Sci U S A. 2011;108(21):8809–14. 10.1073/pnas.1019330108
    1. Fredriksson S, Dixon W, Ji H, Koong A, Mindrinos M, Davis R. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat Methods. 2007;4(4):327–9. doi: nmeth1020 [pii] 10.1038/nmeth1020 .
    1. van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain in the general population: A systematic review of epidemiological studies. Pain. 2013. 10.1016/j.pain.2013.11.013 .
    1. Truin M, Janssen SP, van Kleef M, Joosten EA. Successful pain relief in non-responders to spinal cord stimulation: the combined use of ketamine and spinal cord stimulation. Eur J Pain. 2011;15(10):1049e1-9. 10.1016/j.ejpain.2011.04.004 .
    1. Pluijms WA, Slangen R, Bakkers M, Faber CG, Merkies IS, Kessels AG, et al. Pain relief and quality-of-life improvement after spinal cord stimulation in painful diabetic polyneuropathy: a pilot study. Br J Anaesth. 2012;109(4):623–9. 10.1093/bja/aes251 .
    1. Ohnmeiss DD, Rashbaum RF, Bogdanffy GM. Prospective outcome evaluation of spinal cord stimulation in patients with intractable leg pain. Spine (Phila Pa 1976). 1996;21(11):1344–50; discussion 51. .
    1. Spiegelmann R, Friedman WA. Spinal cord stimulation: a contemporary series. Neurosurgery. 1991;28(1):65–70; discussion -1. .
    1. Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J, Chiappelli F, et al. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord. 2004;5(4):213–9. .
    1. Philips T, Robberecht W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol. 2011;10(3):253–63. 10.1016/S1474-4422(11)70015-1 .
    1. Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 2013;14(4):248–64. 10.1038/nrn3430 .
    1. Noh MY, Cho KA, Kim H, Kim SM, Kim SH. Erythropoietin modulates the immune-inflammatory response of a SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). Neurosci Lett. 2014;574:53–8. 10.1016/j.neulet.2014.05.001 .
    1. Henkel JS, Beers DR, Zhao W, Appel SH. Microglia in ALS: the good, the bad, and the resting. J Neuroimmune Pharmacol. 2009;4(4):389–98. 10.1007/s11481-009-9171-5 .
    1. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci. 2008;11(3):251–3. 10.1038/nn2047
    1. Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39–59. 10.1016/j.neuron.2006.09.018 .
    1. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science. 2006;312(5778):1389–92. 10.1126/science.1123511 .
    1. Wang L, Sharma K, Grisotti G, Roos RP. The effect of mutant SOD1 dismutase activity on non-cell autonomous degeneration in familial amyotrophic lateral sclerosis. Neurobiol Dis. 2009;35(2):234–40. 10.1016/j.nbd.2009.05.002
    1. Wang L, Gutmann DH, Roos RP. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum Mol Genet. 2011;20(2):286–93. 10.1093/hmg/ddq463 .
    1. Nikodemova M, Small AL, Smith SM, Mitchell GS, Watters JJ. Spinal but not cortical microglia acquire an atypical phenotype with high VEGF, galectin-3 and osteopontin, and blunted inflammatory responses in ALS rats. Neurobiol Dis. 2014;69:43–53. 10.1016/j.nbd.2013.11.009
    1. Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B. Importance of glial activation in neuropathic pain. Eur J Pharmacol. 2013;716(1–3):106–19. 10.1016/j.ejphar.2013.01.072 .
    1. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007;10(11):1361–8. 10.1038/nn1992 .
    1. Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol. 2010;229(1–2):26–50. 10.1016/j.jneuroim.2010.08.013 .
    1. Tsuda M, Inoue K. Neuron-microglia interaction by purinergic signaling in neuropathic pain following neurodegeneration. Neuropharmacology. 2015. 10.1016/j.neuropharm.2015.08.042 .
    1. Tsuda M, Inoue K, Salter MW. Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci. 2005;28(2):101–7. 10.1016/j.tins.2004.12.002 .
    1. Tsuda M, Beggs S, Salter MW, Inoue K. Microglia and intractable chronic pain. Glia. 2013;61(1):55–61. 10.1002/glia.22379 .
    1. McMahon SB, Malcangio M. Current challenges in glia-pain biology. Neuron. 2009;64(1):46–54. 10.1016/j.neuron.2009.09.033 .
    1. DeVon HA, Piano MR, Rosenfeld AG, Hoppensteadt DA. The association of pain with protein inflammatory biomarkers: a review of the literature. Nurs Res. 2014;63(1):51–62. 10.1097/NNR.0000000000000013 .
    1. Nijs J, Meeus M, Versijpt J, Moens M, Bos I, Knaepen K, et al. Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target? Expert Opin Ther Targets. 2015;19(4):565–76. 10.1517/14728222.2014.994506 .
    1. McMahon SB, Jones NG. Plasticity of pain signaling: role of neurotrophic factors exemplified by acid-induced pain. J Neurobiol. 2004;61(1):72–87. 10.1002/neu.20093 .
    1. Pezet S, McMahon SB. Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci. 2006;29:507–38. 10.1146/annurev.neuro.29.051605.112929 .
    1. Wolf G, Gabay E, Tal M, Yirmiya R, Shavit Y. Genetic impairment of interleukin-1 signaling attenuates neuropathic pain, autotomy, and spontaneous ectopic neuronal activity, following nerve injury in mice. Pain. 2006;120(3):315–24. 10.1016/j.pain.2005.11.011 .
    1. Cunha TM, Verri WA, Silva JS, Poole S, Cunha FQ, Ferreira SH. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A. 2005;102(5):1755–60. 10.1073/pnas.0409225102
    1. Schäfers M, Lee DH, Brors D, Yaksh TL, Sorkin LS. Increased sensitivity of injured and adjacent uninjured rat primary sensory neurons to exogenous tumor necrosis factor-alpha after spinal nerve ligation. J Neurosci. 2003;23(7):3028–38. .
    1. Grubbs F. Procedures for detecting outlying observations in samples. Technometrics. 1969;11(1):1–21. 10.2307/1266761 .
    1. Breiman L. Random Forests. Machine Learning. 2001;45(1):5–32.
    1. Zhang J, Goodlett DR, Peskind ER, Quinn JF, Zhou Y, Wang Q, et al. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol Aging. 2005;26(2):207–27. 10.1016/j.neurobiolaging.2004.03.012 .
    1. Xu J, Chen J, Peskind ER, Jin J, Eng J, Pan C, et al. Characterization of proteome of human cerebrospinal fluid. Int Rev Neurobiol. 2006;73:29–98. 10.1016/S0074-7742(06)73002-1 .
    1. Pan S, Zhu D, Quinn JF, Peskind ER, Montine TJ, Lin B, et al. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics. 2007;7(3):469–73. 10.1002/pmic.200600756 .
    1. Süssmuth SD, Sperfeld AD, Hinz A, Brettschneider J, Endruhn S, Ludolph AC, et al. CSF glial markers correlate with survival in amyotrophic lateral sclerosis. Neurology. 2010;74(12):982–7. 10.1212/WNL.0b013e3181d5dc3b .
    1. Mitchell RM, Freeman WM, Randazzo WT, Stephens HE, Beard JL, Simmons Z, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology. 2009;72(1):14–9. 10.1212/01.wnl.0000333251.36681.a5 .
    1. Esch FS, Shimasaki S, Mercado M, Cooksey K, Ling N, Ying S, et al. Structural characterization of follistatin: a novel follicle-stimulating hormone release-inhibiting polypeptide from the gonad. Mol Endocrinol. 1987;1(11):849–55. 10.1210/mend-1-11-849 .
    1. Robertson DM, Klein R, de Vos FL, McLachlan RI, Wettenhall RE, Hearn MT, et al. The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun. 1987;149(2):744–9. .
    1. Phillips DJ, de Kretser DM. Follistatin: a multifunctional regulatory protein. Front Neuroendocrinol. 1998;19(4):287–322. 10.1006/frne.1998.0169 .
    1. de Kretser DM, O'Hehir RE, Hardy CL, Hedger MP. The roles of activin A and its binding protein, follistatin, in inflammation and tissue repair. Mol Cell Endocrinol. 2012;359(1–2):101–6. 10.1016/j.mce.2011.10.009 .
    1. Nakamura T, Takio K, Eto Y, Shibai H, Titani K, Sugino H. Activin-binding protein from rat ovary is follistatin. Science. 1990;247(4944):836–8. .
    1. Rose FF, Mattis VB, Rindt H, Lorson CL. Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy. Hum Mol Genet. 2009;18(6):997–1005. 10.1093/hmg/ddn426
    1. Shtilbans A, Choi SG, Fowkes ME, Khitrov G, Shahbazi M, Ting J, et al. Differential gene expression in patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2011;12(4):250–6. 10.3109/17482968.2011.560946 .
    1. Iwahori Y, Saito H, Torii K, Nishiyama N. Activin exerts a neurotrophic effect on cultured hippocampal neurons. Brain Res. 1997;760(1–2):52–8. .
    1. Schubert D, Kimura H, LaCorbiere M, Vaughan J, Karr D, Fischer WH. Activin is a nerve cell survival molecule. Nature. 1990;344(6269):868–70. 10.1038/344868a0 .
    1. Wu DD, Lai M, Hughes PE, Sirimanne E, Gluckman PD, Williams CE. Expression of the activin axis and neuronal rescue effects of recombinant activin A following hypoxic-ischemic brain injury in the infant rat. Brain Res. 1999;835(2):369–78. .
    1. Knerlich F, Schilling L, Görlach C, Wahl M, Ehrenreich H, Sirén AL. Temporal profile of expression and cellular localization of inducible nitric oxide synthase, interleukin-1beta and interleukin converting enzyme after cryogenic lesion of the rat parietal cortex. Brain Res Mol Brain Res. 1999;68(1–2):73–87. .
    1. Lieberman AP, Pitha PM, Shin HS, Shin ML. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proc Natl Acad Sci U S A. 1989;86(16):6348–52.
    1. Zhang W, Smith C, Howlett C, Stanimirovic D. Inflammatory activation of human brain endothelial cells by hypoxic astrocytes in vitro is mediated by IL-1beta. J Cereb Blood Flow Metab. 2000;20(6):967–78. 10.1097/00004647-200006000-00009 .
    1. Giulian D, Baker TJ, Shih LC, Lachman LB. Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med. 1986;164(2):594–604.
    1. Hetier E, Ayala J, Denèfle P, Bousseau A, Rouget P, Mallat M, et al. Brain macrophages synthesize interleukin-1 and interleukin-1 mRNAs in vitro. J Neurosci Res. 1988;21(2–4):391–7. 10.1002/jnr.490210230 .
    1. Yao J, Keri JE, Taffs RE, Colton CA. Characterization of interleukin-1 production by microglia in culture. Brain Res. 1992;591(1):88–93. .
    1. Blasi F, Riccio M, Brogi A, Strazza M, Taddei ML, Romagnoli S, et al. Constitutive expression of interleukin-1beta (IL-1beta) in rat oligodendrocytes. Biol Chem. 1999;380(2):259–64. 10.1515/BC.1999.034 .
    1. Lechan RM, Toni R, Clark BD, Cannon JG, Shaw AR, Dinarello CA, et al. Immunoreactive interleukin-1 beta localization in the rat forebrain. Brain Res. 1990;514(1):135–40. .
    1. Takao T, Tracey DE, Mitchell WM, De Souza EB. Interleukin-1 receptors in mouse brain: characterization and neuronal localization. Endocrinology. 1990;127(6):3070–8. 10.1210/endo-127-6-3070 .
    1. Watt JA, Hobbs NK. Interleukin-1beta immunoreactivity in identified neurons of the rat magnocellular neurosecretory system: evidence for activity-dependent release. J Neurosci Res. 2000;60(4):478–89. .
    1. Ban E, Milon G, Prudhomme N, Fillion G, Haour F. Receptors for interleukin-1 (alpha and beta) in mouse brain: mapping and neuronal localization in hippocampus. Neuroscience. 1991;43(1):21–30. .
    1. Ban EM, Sarliève LL, Haour FG. Interleukin-1 binding sites on astrocytes. Neuroscience. 1993;52(3):725–33. .
    1. Cunningham ET, De Souza EB. Interleukin 1 receptors in the brain and endocrine tissues. Immunol Today. 1993;14(4):171–6. .
    1. French RA, VanHoy RW, Chizzonite R, Zachary JF, Dantzer R, Parnet P, et al. Expression and localization of p80 and p68 interleukin-1 receptor proteins in the brain of adult mice. J Neuroimmunol. 1999;93(1–2):194–202. .
    1. Friedman WJ. Cytokines regulate expression of the type 1 interleukin-1 receptor in rat hippocampal neurons and glia. Exp Neurol. 2001;168(1):23–31. 10.1006/exnr.2000.7595 .
    1. Hammond EA, Smart D, Toulmond S, Suman-Chauhan N, Hughes J, Hall MD. The interleukin-1 type I receptor is expressed in human hypothalamus. Brain. 1999;122 (Pt 9):1697–707. .
    1. Pinteaux E, Parker LC, Rothwell NJ, Luheshi GN. Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. J Neurochem. 2002;83(4):754–63. .
    1. Tomozawa Y, Inoue T, Satoh M. Expression of type I interleukin-1 receptor mRNA and its regulation in cultured astrocytes. Neurosci Lett. 1995;195(1):57–60. .
    1. Wang XF, Yin L, Hu JG, Huang LD, Yu PP, Jiang XY, et al. Expression and localization of p80 interleukin-1 receptor protein in the rat spinal cord. J Mol Neurosci. 2006;29(1):45–53. 10.1385/JMN:29:1:45 .
    1. Wong ML, Licinio J. Localization of interleukin 1 type I receptor mRNA in rat brain. Neuroimmunomodulation. 1994;1(2):110–5. .
    1. Hewett SJ, Jackman NA, Claycomb RJ. Interleukin-1β in Central Nervous System Injury and Repair. Eur J Neurodegener Dis. 2012;1(2):195–211.
    1. He Y, Jackman NA, Thorn TL, Vought VE, Hewett SJ. Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-κB-dependent upregulation of glutathione synthesis. Glia. 2015;63(9):1568–80. 10.1002/glia.22828
    1. Ramström M, Ivonin I, Johansson A, Askmark H, Markides KE, Zubarev R, et al. Cerebrospinal fluid protein patterns in neurodegenerative disease revealed by liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. Proteomics. 2004;4(12):4010–8. 10.1002/pmic.200400871 .
    1. Elf K, Shevchenko G, Nygren I, Larsson L, Bergquist J, Askmark H, et al. Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis. J Proteomics. 2014;108:55–64. 10.1016/j.jprot.2014.05.004 .
    1. Miller TM, Kim SH, Yamanaka K, Hester M, Umapathi P, Arnson H, et al. Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2006;103(51):19546–51. 10.1073/pnas.0609411103
    1. McCombe PA, Henderson RD. The Role of immune and inflammatory mechanisms in ALS. Curr Mol Med. 2011;11(3):246–54.
    1. Sekizawa T, Openshaw H, Ohbo K, Sugamura K, Itoyama Y, Niland JC. Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J Neurol Sci. 1998;154(2):194–9. .
    1. Cudkowicz ME, Shefner JM, Schoenfeld DA, Zhang H, Andreasson KI, Rothstein JD, et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol. 2006;60(1):22–31. 10.1002/ana.20903 .
    1. Werdelin L, Boysen G, Jensen TS, Mogensen P. Immunosuppressive treatment of patients with amyotrophic lateral sclerosis. Acta Neurol Scand. 1990;82(2):132–4. .
    1. Gordon PH, Moore DH, Miller RG, Florence JM, Verheijde JL, Doorish C, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 2007;6(12):1045–53. 10.1016/S1474-4422(07)70270-3 .
    1. Benatar M. Lost in translation: treatment trials in the SOD1 mouse and in human ALS. Neurobiol Dis. 2007;26(1):1–13. 10.1016/j.nbd.2006.12.015 .
    1. Hooten KG, Beers DR, Zhao W, Appel SH. Protective and Toxic Neuroinflammation in Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12(2):364–75. 10.1007/s13311-014-0329-3
    1. Berjaoui S, Povedano M, Garcia-Esparcia P, Carmona M, Aso E, Ferrer I. Complex Inflammation mRNA-Related Response in ALS Is Region Dependent. Neural Plast. 2015;2015:573784 10.1155/2015/573784
    1. Urshansky N, Mausner-Fainberg K, Auriel E, Regev K, Karni A. Low and dysregulated production of follistatin in immune cells of relapsing-remitting multiple sclerosis patients. J Neuroimmunol. 2011;238(1–2):96–103. 10.1016/j.jneuroim.2011.08.003 .
    1. Michel U, Ebert S, Schneider O, Shintani Y, Bunkowski S, Smirnov A, et al. Follistatin (FS) in human cerebrospinal fluid and regulation of FS expression in a mouse model of meningitis. Eur J Endocrinol. 2000;143(6):809–16. .
    1. Mirowska-Guzel D, Gromadzka G, Mach A, Czlonkowski A, Czlonkowska A. Association of IL1A, IL1B, ILRN, IL6, IL10 and TNF-α polymorphisms with risk and clinical course of multiple sclerosis in a Polish population. J Neuroimmunol. 2011;236(1–2):87–92. 10.1016/j.jneuroim.2011.04.014 .
    1. Mann CL, Davies MB, Stevenson VL, Leary SM, Boggild MD, Ko Ko C, et al. Interleukin 1 genotypes in multiple sclerosis and relationship to disease severity. J Neuroimmunol. 2002;129(1–2):197–204. .
    1. Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov. 2015;14(3):183–202. 10.1038/nrd4534 .
    1. Yousef GM, Kishi T, Diamandis EP. Role of kallikrein enzymes in the central nervous system. Clin Chim Acta. 2003;329(1–2):1–8. .
    1. Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, et al. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(25):10655–60. 10.1073/pnas.0610811104
    1. Zhu X, Cao S, Zhu MD, Liu JQ, Chen JJ, Gao YJ. Contribution of Chemokine CCL2/CCR2 Signaling in the Dorsal Root Ganglion and Spinal Cord to the Maintenance of Neuropathic Pain in a Rat Model of Lumbar Disc Herniation. J Pain. 2014. 10.1016/j.jpain.2014.01.492 .
    1. Saika F, Kiguchi N, Kobayashi Y, Fukazawa Y, Kishioka S. CC-chemokine ligand 4/macrophage inflammatory protein-1β participates in the induction of neuropathic pain after peripheral nerve injury. Eur J Pain. 2012;16(9):1271–80. 10.1002/j.1532-2149.2012.00146.x .
    1. Nie F, Wang J, Su D, Shi Y, Chen J, Wang H, et al. Abnormal activation of complement C3 in the spinal dorsal horn is closely associated with progression of neuropathic pain. Int J Mol Med. 2013;31(6):1333–42. 10.3892/ijmm.2013.1344 .
    1. Tufan K, Sen O, Cekinmez M, Bolat FA, Alkan O, Sarica FB, et al. Comparison of E-selectin and the other inflammatory markers in lumbar disc herniation: a new promising therapeutical window for radicular pain. J Spinal Disord Tech. 2012;25(8):443–6. 10.1097/BSD.0b013e318238e2db .
    1. Sweitzer SM, White KA, Dutta C, DeLeo JA. The differential role of spinal MHC class II and cellular adhesion molecules in peripheral inflammatory versus neuropathic pain in rodents. J Neuroimmunol. 2002;125(1–2):82–93. .
    1. Kim SJ, Park SM, Cho YW, Jung YJ, Lee DG, Jang SH, et al. Changes in expression of mRNA for interleukin-8 and effects of interleukin-8 receptor inhibitor in the spinal dorsal horn in a rat model of lumbar disc herniation. Spine (Phila Pa 1976). 2011;36(25):2139–46. 10.1097/BRS.0b013e31821945a3 .
    1. Kawasaki Y, Xu ZZ, Wang X, Park JY, Zhuang ZY, Tan PH, et al. Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nat Med. 2008;14(3):331–6. 10.1038/nm1723
    1. Liou JT, Lee CM, Lin YC, Chen CY, Liao CC, Lee HC, et al. P-selectin is required for neutrophils and macrophage infiltration into injured site and contributes to generation of behavioral hypersensitivity following peripheral nerve injury in mice. Pain. 2013;154(10):2150–9. 10.1016/j.pain.2013.06.042 .
    1. Lewin GR, Nykjaer A. Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci. 2014;39(3):363–74. 10.1111/ejn.12466 .
    1. Kiguchi N, Kobayashi Y, Kadowaki Y, Fukazawa Y, Saika F, Kishioka S. Vascular endothelial growth factor signaling in injured nerves underlies peripheral sensitization in neuropathic pain. J Neurochem. 2014;129(1):169–78. 10.1111/jnc.12614 .
    1. Staniland AA, Clark AK, Wodarski R, Sasso O, Maione F, D'Acquisto F, et al. Reduced inflammatory and neuropathic pain and decreased spinal microglial response in fractalkine receptor (CX3CR1) knockout mice. J Neurochem. 2010;114(4):1143–57. 10.1111/j.1471-4159.2010.06837.x .
    1. Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral Nerve Injury Modulates Neurotrophin Signaling in the Peripheral and Central Nervous System. Mol Neurobiol. 2014. 10.1007/s12035-014-8706-9 .
    1. McCarthy KF, Connor TJ, McCrory C. Cerebrospinal fluid levels of vascular endothelial growth factor correlate with reported pain and are reduced by spinal cord stimulation in patients with failed back surgery syndrome. Neuromodulation. 2013;16(6):519–22; discussion 22. 10.1111/j.1525-1403.2012.00527.x .
    1. Enroth S, Johansson A, Enroth SB, Gyllensten U. Strong effects of genetic and lifestyle factors on biomarker variation and use of personalized cutoffs. Nat Commun. 2014;5:4684 10.1038/ncomms5684

Source: PubMed

3
订阅