Decomposing loss aversion from gaze allocation and pupil dilation

Feng Sheng, Arjun Ramakrishnan, Darsol Seok, Wenjia Joyce Zhao, Samuel Thelaus, Puti Cen, Michael Louis Platt, Feng Sheng, Arjun Ramakrishnan, Darsol Seok, Wenjia Joyce Zhao, Samuel Thelaus, Puti Cen, Michael Louis Platt

Abstract

Loss-averse decisions, in which one avoids losses at the expense of gains, are highly prevalent. However, the underlying mechanisms remain controversial. The prevailing account highlights a valuation bias that overweighs losses relative to gains, but an alternative view stresses a response bias to avoid choices involving potential losses. Here we couple a computational process model with eye-tracking and pupillometry to develop a physiologically grounded framework for the decision process leading to accepting or rejecting gambles with equal odds of winning and losing money. Overall, loss-averse decisions were accompanied by preferential gaze toward losses and increased pupil dilation for accepting gambles. Using our model, we found gaze allocation selectively indexed valuation bias, and pupil dilation selectively indexed response bias. Finally, we demonstrate that our computational model and physiological biomarkers can identify distinct types of loss-averse decision makers who would otherwise be indistinguishable using conventional approaches. Our study provides an integrative framework for the cognitive processes that drive loss-averse decisions and highlights the biological heterogeneity of loss aversion across individuals.

Keywords: drift-diffusion model; gaze allocation; loss aversion; pupil dilation.

Copyright © 2020 the Author(s). Published by PNAS.

Figures

Fig. 1.
Fig. 1.
Behavior. (A, Top) Gambling task. Gambles were not resolved after decisions. (Middle) Probability of acceptance (B) and response times (C) across gambles. (Bottom) Illustration of the DDM for the gambling task (D) and estimates of valuation bias and response bias for each individual participant (E). Each dot represents a participant: those to the right of the green dashed line displayed valuation bias of overweighing loss relative to gains, and those above the purple dashed line displayed a response bias to reject gambles. The green dot (P69) and the purple dot (P46) in quadrant 1 indicate the two example participants illustrated in SI Appendix, Fig. S6 and SI Appendix, Fig. S7.
Fig. 2.
Fig. 2.
Gaze. (A) Probability of gaze allocation to gains and losses. (B) Gaze-loss ratio across gambles. (C) Gaze-loss ratio predicted by magnitude of gain and loss across trials. Black and gray bars denote negative and positive beta values, respectively. (D) Gaze-loss ratio predicted by valuation bias and response bias across participants. Error bars indicate SEs. ***: P < 0.001; ns: nonsignificant, P > 0.1.
Fig. 3.
Fig. 3.
Pupil. (A) Change in pupil size around the time of the decision (t = 0) to accept (red) vs. reject (blue) gambles. (B) Correlation between probability of gamble acceptance and accept–reject pupil-size differential. (C) Influence of choice, gain, and loss on decision-related pupil size across trials. Black and gray bars denote negative and positive beta values, respectively. (D) Accept–-reject pupil-size differential predicted by valuation bias and response bias. Error bars indicate SEs. ***: P < 0.001; **: P < 0.01; *: P < 0.05; †: P < 0.1; ns: nonsignificant, P > 0.1.

References

    1. Kahneman D., Tversky A., Prospect theory: An analysis of decision under risk. Econometrica 47, 263–292 (1979).
    1. Tom S. M., Fox C. R., Trepel C., Poldrack R. A., The neural basis of loss aversion in decision-making under risk. Science 315, 515–518 (2007).
    1. Sokol-Hessner P. et al. ., Thinking like a trader selectively reduces individuals’ loss aversion. Proc. Natl. Acad. Sci. U.S.A. 106, 5035–5040 (2009).
    1. De Martino B., Camerer C. F., Adolphs R., Amygdala damage eliminates monetary loss aversion. Proc. Natl. Acad. Sci. U.S.A. 107, 3788–3792 (2010).
    1. Sokol-Hessner P., Rutledge R. B., The psychological and neural basis of loss aversion. Curr. Dir. Psychol. Sci. 28, 20–27 (2019).
    1. Brosnan S. F. et al. ., Endowment effects in chimpanzees. Curr. Biol. 17, 1704–1707 (2007).
    1. Chen M. K., Lakshminarayanan V., Santos L. R., How basic are behavioral biases? Evidence from Capuchin monkey trading behavior. J. Polit. Econ. 114, 517–537 (2006).
    1. Bhatti M., Jang H., Kralik J. D., Jeong J., Rats exhibit reference-dependent choice behavior. Behav. Brain Res. 267, 26–32 (2014).
    1. Tversky A., Kahneman D., Advances in prospect theory : Cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992).
    1. Tversky B. A., Slovic P., Kahneman D., The causes of preference reversal. Am. Econ. Rev. 80, 204–217 (1990).
    1. Tversky A., Simonson I., Context-dependent preferences. Manage. Sci. 39, 1179–1189 (1993).
    1. Tversky A., Sattath S., Slovic P., Contingent weighting in judgment and choice. Psychol. Rev. 95, 371–384 (1988).
    1. Slovic P., Lichtenstein S., Relative importance of probabilities and payoffs in risk taking. J. Exp. Psychol. 78, 1–18 (1968).
    1. Ritov I., Baron J., Status-quo and omission biases. J. Risk Uncertain. 5, 49–61 (1992).
    1. Goldstein W. M., Einhorn H. J., Expression theory and the preference reversal phenomena. Psychol. Rev. 94, 236–254 (1987).
    1. Dhar R., Simonson I., The effect of forced choice on choice. J. Mark. Res. 40, 146–160 (2003).
    1. Ert E., Erev I., The rejection of attractive gambles, loss aversion, and the lemon avoidance heuristic. J. Econ. Psychol. 29, 715–723 (2008).
    1. Samuelson W., Zeckhauser R., Status quo bias in decision making. J. Risk Uncertain. 1, 7–59 (1988).
    1. Shadlen M. N., Newsome W. T., Motion perception: Seeing and deciding. Proc. Natl. Acad. Sci. U.S.A. 93, 628–633 (1996).
    1. Ratcliff R., Smith P. L., Brown S. D., McKoon G., Diffusion decision model: Current issues and history. Trends Cogn. Sci. 20, 260–281 (2016).
    1. Polanía R., Krajbich I., Grueschow M., Ruff C. C., Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. Neuron 82, 709–720 (2014).
    1. Huk A. C., Shadlen M. N., Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. J. Neurosci. 25, 10420–10436 (2005).
    1. Hanks T. D. et al. ., Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 520, 220–223 (2015).
    1. Zhao W. J., Walasek L., Bhatia S., Psychological mechanisms of loss aversion: A drift-diffusion decomposition. PsyArXiv:10.31234/ (28 Nov 2019).
    1. Clay S. N., Clithero J. A., Harris A. M., Reed C. L., Loss aversion reflects information accumulation, not bias: A drift-diffusion model study. Front. Psychol. 8, 1708 (2017).
    1. Shimojo S., Simion C., Shimojo E., Scheier C., Gaze bias both reflects and influences preference. Nat. Neurosci. 6, 1317–1322 (2003).
    1. Krajbich I., Armel C., Rangel A., Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13, 1292–1298 (2010).
    1. Cavanagh J. F., Wiecki T. V., Kochar A., Frank M. J., Eye tracking and pupillometry are indicators of dissociable latent decision processes. J. Exp. Psychol. Gen. 143, 1476–1488 (2014).
    1. Krajbich I., Lu D., Camerer C., Rangel A., The attentional drift-diffusion model extends to simple purchasing decisions. Front. Psychol. 3, 193 (2012).
    1. Joshi S., Li Y., Kalwani R. M., Gold J. I., Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89, 221–234 (2016).
    1. Mathôt S., Pupillometry: Psychology, physiology, and function. J. Cogn. 1, 16 (2018).
    1. Just M. A., Carpenter P. A., Miyake A., Neuroindices of cognitive workload: Neuroimaging, pupillometric and event-related potential studies of brain work. Theor. Issues Ergon. Sci. 4, 56–88 (2003).
    1. de Gee J. W., Knapen T., Donner T. H., Decision-related pupil dilation reflects upcoming choice and individual bias. Proc. Natl. Acad. Sci. U.S.A. 111, E618–E625 (2014).
    1. Ert E., Erev I., On the descriptive value of loss aversion in decisions under risk: Six clarifications. Judgm. Decis. Mak. 8, 214–235 (2013).
    1. Yechiam E., Acceptable losses: The debatable origins of loss aversion. Psychol. Res. 83, 1327–1339 (2019).
    1. Pachur T., Schulte-Mecklenbeck M., Murphy R. O., Hertwig R., Prospect theory reflects selective allocation of attention. J. Exp. Psychol. Gen. 147, 147–169 (2018).
    1. Hoeks B., Levelt W. J. M., Pupillary dilation as a measure of attention: A quantitative system analysis. Behav. Res. Methods Instrum. Comput. 25, 16–26 (1993).
    1. Canessa N. et al. ., The functional and structural neural basis of individual differences in loss aversion. J. Neurosci. 33, 14307–14317 (2013).
    1. Sokol-Hessner P. et al. ., Determinants of propranolol’s selective effect on loss aversion. Psychol. Sci. 26, 1123–1130 (2015).
    1. Takahashi H. et al. ., Norepinephrine in the brain is associated with aversion to financial loss. Mol. Psychiatry 18, 3–4 (2013).
    1. Kret M. E., Sjak-Shie E. E., Preprocessing pupil size data: Guidelines and code. Behav. Res. Methods 51, 1336–1342 (2019).
    1. Wiecki T. V., Sofer I., Frank M. J., HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Front. Neuroinform. 7, 14 (2013).
    1. Gelman A., Rubin D. B., Inference from iterative simulation using multiple sequences. Statistical Science 7, 457–472 (1992).
    1. Ando T., Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models. Biometrika 94, 443–458 (2007).
    1. Ahn W.-Y., Haines N., Zhang L., Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Comput. Psychiatr. 1, 24–57 (2017).

Source: PubMed

3
订阅