Contemporary Concepts in Osseointegration of Dental Implants: A Review

Chandrashekhar Pandey, Dinesh Rokaya, Bishwa Prakash Bhattarai, Chandrashekhar Pandey, Dinesh Rokaya, Bishwa Prakash Bhattarai

Abstract

In a society highly conscious of esthetics, prosthetic rehabilitation of lost teeth with tissue-integrated implants has gained wide acceptance and demand by patients and clinicians. The backbone of these tissue-integrated implants is the biotechnical process of osseointegration. Although the concept has been introduced and discussed for ages, the deepening knowledge about its cellular and molecular mechanisms has led the researchers to borrow further into the factors influencing the process of osseointegration. This has aided in the hastening and improving the process of osseointegration by exploiting several, even the minutest, details and events taking place in this natural process. Recently, due to the high esthetic expectations of the patients, the implants are being loaded immediately, which demands a high degree of implant stability. Implant stability, especially secondary stability, largely depends on bone formation and integration of implants to the osseous tissues. Various factors that influence the rate and success of osseointegration can either be categorized as those related to implant characteristics like the physical and chemical macro- and microdesign of implants or the bone characteristics like the amount and quality of bone and the local and systemic host conditions, or the time or protocol followed for the functional loading of the dental implant. To address the shortcomings in osseointegration due to any of the factors, it is mandatory that continuous and reliable monitoring of the status of osseointegration is done. This review attempts to encompass the mechanisms, factors affecting, and methods to assess osseointegration, followed by a discussion on the recent advances and future perspectives in dental implantology to enhance the process of osseointegration. The review was aimed at igniting the inquisitive minds to usher further the development of technology that enhances osseointegration.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2022 Chandrashekhar Pandey et al.

Figures

Figure 1
Figure 1
Day 1 and day 2 after implant placement. Day 1: secretion of growth factors and migration of undifferentiated osteoblasts and pluripotent stem cells towards implant surface. Day 2: local ischemia and necrosis followed by recruitment of neutrophils and macrophages.
Figure 2
Figure 2
Day 3 and day 4 after implant placement. Day 3: activation of osteoblast-related transcription factors by the cells around the implant. Day 4: resorption of necrotic bone and deposition of new bone at the bone-implant interface.
Figure 3
Figure 3
Day 28 and 12th week after implant placement. Day 28: formation of new layer of bone adjacent to implant through contact and distant osteogenesis. End of 12th week: formation of a mature lamellar bone connection with the titanium surface.

References

    1. Branemark P.-I. The Osseointegration Book: From Calvarium to Calcaneus . Berlin: Quintessence; 2005.
    1. American Academy of Implant Dentistry. Glossary of implant terms. The Journal of Oral Implantology . 1986;12(2):284–294.
    1. Hickey J. C. The glossary of prosthodontic terms. The Journal of Prosthetic Dentistry . 1968;94(1):10–92. doi: 10.1016/j.prosdent.2005.03.013.
    1. Colnot C., Romero D. M., Huang S., et al. Molecular analysis of healing at a bone-implant interface. Journal of Dental Research . 2007;86(9):862–867. doi: 10.1177/154405910708600911.
    1. Niznick G. A. Achieving osseointegration in soft bone: the search for improved results. Oral Health . 2000;90:27–32.
    1. Kakar A. Oral Implantology . India: 1991.
    1. Cameron H. U., Pilliar R. M., MacNab I. The effect of movement on the bonding of porous metal to bone. Journal of Biomedical Materials Research . 1973;7(4):301–311. doi: 10.1002/jbm.820070404.
    1. Shard A. G., Tomlins P. E. Biocompatibility and the efficacy of medical implants. Regenerative Medicine . 2006;1(6):789–800. doi: 10.2217/17460751.1.6.789.
    1. Puleo D. A., Nanci A. Understanding and controlling the bone-implant interface. Biomaterials . 1999;20(23-24):2311–2321. doi: 10.1016/s0142-9612(99)00160-x.
    1. Wilson C. J., Clegg R. E., Leavesley D. I., Pearcy M. J. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Engineering . 2005;11(1-2):1–18. doi: 10.1089/ten.2005.11.1.
    1. Ratner B. D., Bryant S. J. Biomaterials: where we have been and where we are going. Annual Review of Biomedical Engineering . 2004;6(1):41–75. doi: 10.1146/annurev.bioeng.6.040803.140027.
    1. Damsky C. H., Werb Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Current Opinion in Cell Biology . 1992;4(5):772–781. doi: 10.1016/0955-0674(92)90100-q.
    1. Globus R. K., Doty S. B., Lull J. C., Holmuhamedov E., Humphries M. J., Damsky C. H. Fibronectin is a survival factor for differentiated osteoblasts. Journal of Cell Science . 1998;111(10):1385–1393. doi: 10.1242/jcs.111.10.1385.
    1. Moursi A. M., Damsky C. H., Lull J., et al. Fibronectin regulates calvarial osteoblast differentiation. Journal of Cell Science . 1996;109(6):1369–1380. doi: 10.1242/jcs.109.6.1369.
    1. Joos U., Büchter A., Wiesmann H.-P., Meyer U. Strain driven fast osseointegration of implants. Head & Face Medicine . 2005;1(1):p. 6. doi: 10.1186/1746-160X-1-6.
    1. Schwartz Z., Martin J. Y., Dean D. D., Simpson J., Cochran D. L., Boyan B. D. Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. Journal of Biomedical Materials Research . 1996;30(2):145–155. doi: 10.1002/(SICI)1097-4636(199602)30:2<145::AID-JBM3>;2-R.
    1. Rajpurohit R., Koch C. J., Tao Z., Teixeira C. M., Shapiro I. M. Adaptation of chondrocytes to low oxygen tension: relationship between hypoxia and cellular metabolism. Journal of Cellular Physiology . 1996;168(2):424–432. doi: 10.1002/(sici)1097-4652(199608)168:2<424::Aid-jcp21>;2-1.
    1. Cooper L. F. Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. The Journal of Prosthetic Dentistry . 1998;80(4):439–449. doi: 10.1016/s0022-3913(98)70009-5.
    1. Davies J. E. Understanding peri-implant endosseous healing. Journal of Dental Education . 2003;67(8):932–949. doi: 10.1002/j.0022-0337.2003.67.8.tb03681.x.
    1. Depprich R., Zipprich H., Ommerborn M., et al. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface. Head & Face Medicine . 2008;4(1, article 25) doi: 10.1186/1746-160x-4-25.
    1. Büchter A., Joos U., Wiesmann H. P., Seper L., Meyer U. Biological and biomechanical evaluation of interface reaction at conical screw-type implants. Head & Face Medicine . 2006;2(1):1–9. doi: 10.1186/1746-160x-2-5.
    1. Trtica M., Gakovic B., Batani D., Desai T., Panjan P., Radak B. Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm. Applied Surface Science . 2006;253(5):2551–2556. doi: 10.1016/j.apsusc.2006.05.024.
    1. Albrektsson T., Brånemark P. I., Hansson H.-A., et al. The interface zone of inorganic implantsIn vivo: titanium implants in bone. Annals of Biomedical Engineering . 1983;11(1):1–27. doi: 10.1007/BF02363944.
    1. Palmquist A., Omar O. M., Esposito M., Lausmaa J., Thomsen P. Titanium oral implants: surface characteristics, interface biology and clinical outcome. Journal of the Royal Society Interface . 2010;7(suppl_5):S515–S527. doi: 10.1098/rsif.2010.0118.focus.
    1. Albrektsson T., Brånemark P. I., Hansson H. A., Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica Scandinavica . 1981;52(2):155–170. doi: 10.3109/17453678108991776.
    1. Baier R. E., Natiella J. R., Meyer A. E., Carter J. M. Importance of implant surface preparations for biomaterials with different intrinsic properties . Amsterdam: van Steenberghe D, Albrektsson T, Branemark P-I, Holt R, Henry P, Lidén C Excerpta Medica; 1986.
    1. Eriksson A. R. Heat-Induced Bone Tissue Injury: An In Vivo Investigation of Heat Tolerance of Bone Tissue and Temperature Rise in the Drilling of Cortical Bone. 1984.
    1. Singhatanadgit W. Biological responses to new advanced surface modifications of endosseous medical implants. Bone and Tissue Regeneration Insights . 2009;2, article BTRI.S3150 doi: 10.4137/btri.S3150.
    1. Misch C. E. Dental Implant Prosthetics . St. Louis, Missouri: Elsevier Mosby; 2015.
    1. Kuroshima S., Nakano T., Ishimoto T., et al. Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading. Acta Biomaterialia . 2017;48:433–444. doi: 10.1016/j.actbio.2016.11.021.
    1. Misch C. E. Contemporary Implant Dentistry . St. Louis, Missouri: Mosby; 2008. Rationale for dental implants; pp. 3–25.
    1. Albrektsson T., Wennerberg A. Oral implant surfaces: part 2--review focusing on clinical knowledge of different surfaces. The International Journal of Prosthodontics . 2004;17(5):544–564.
    1. Albrektsson T., Zarb G., Worthington P., Eriksson A. R. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. The International Journal of Oral & Maxillofacial Implants . 1986;1(1):11–25.
    1. Bagambisa F. B., Joos U., Schilli W. Interaction of osteogenic cells with hydroxylapatite implant materials in vitro and in vivo. The International Journal of Oral & Maxillofacial Implants . 1990;5(3):217–226.
    1. Shigino T., Ochi M., Hirose Y., Hirayama H., Sakaguchi K. Enhancing osseointegration by capacitively coupled electric field: a pilot study on early occlusal loading in the dog mandible. The International Journal of Oral & Maxillofacial Implants . 2001;16(6):841–850.
    1. Rutherford R. B., Sampath T. K., Rueger D. C., Taylor T. D. Use of bovine osteogenic protein to promote rapid osseointegration of endosseous dental implants. The International Journal of Oral & Maxillofacial Implants . 1992;7(3):297–301.
    1. Esposito M., Grusovin M. G., Coulthard P., Worthington H. V. Different loading strategies of dental implants: a Cochrane systematic review of randomised controlled clinical trials. European Journal of Oral Implantology . 2008;1(4):259–276.
    1. Chen J., Cai M., Yang J., Aldhohrah T., Wang Y. Immediate versus early or conventional loading dental implants with fixed prostheses: a systematic review and meta-analysis of randomized controlled clinical trials. The Journal of Prosthetic Dentistry . 2019;122(6):516–536. doi: 10.1016/j.prosdent.2019.05.013.
    1. Donati M., Botticelli D., La Scala V., Tomasi C., Berglundh T. Effect of immediate functional loading on osseointegration of implants used for single tooth replacement. A human histological study. Clinical Oral Implants Research . 2013;24(7):738–745. doi: 10.1111/j.1600-0501.2012.02479.x.
    1. Shah F. A., Stenlund P., Martinelli A., Thomsen P., Palmquist A. Direct communication between osteocytes and acid-etched titanium implants with a sub-micron topography. Journal of Materials Science. Materials in Medicine . 2016;27(11):1–9. doi: 10.1007/s10856-016-5779-1.
    1. Nkenke E., Hahn M., Weinzierl K., Radespiel-Tröger M., Neukam F. W., Engelke K. Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clinical Oral Implants Research . 2003;14(5):601–609. doi: 10.1034/j.1600-0501.2003.00937.x.
    1. Chopra A., Mhapuskar A. A., Marathe S., Nisa S. U., Thopte S., Saddiwal R. Evaluation of osseointegration in implants using digital orthopantomogram and cone beam computed tomography. The Journal of Contemporary Dental Practice . 2016;17(11):953–957. doi: 10.5005/jp-journals-10024-1961.
    1. Palmquist A., Shah F. A., Emanuelsson L., Omar O., Suska F. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron . 2017;94:1–8. doi: 10.1016/j.micron.2016.11.009.
    1. Jung H., Kim H. J., Hong S., et al. Osseointegration assessment of dental implants using a synchrotron radiation imaging technique: a preliminary study. The International Journal of Oral & Maxillofacial Implants . 2003;18(1):121–126.
    1. Meenakshi S., Raghunath N., Raju S. N., Srividya S., Indira P. N. Implant stability a key determinant in implant integration. Trends in Prosthodontics and Dental Implantology . 2013;4:28–48.
    1. Roberts W. E., Simmons K. E., Garetto L. P., DeCastro R. A. Bone physiology and metabolism in dental implantology: risk factors for osteoporosis and other metabolic bone diseases. Implant Dentistry . 1992;1(1):11–24. doi: 10.1097/00008505-199200110-00002.
    1. Irinakis T., Wiebe C. Initial torque stability of a new bone condensing dental implant. A cohort study of 140 consecutively placed implants. The Journal of Oral Implantology . 2009;35(6):277–282. doi: 10.1563/aaid-joi-d-09-00020.1.
    1. Bayarchimeg D., Namgoong H., Kim B. K., et al. Evaluation of the correlation between insertion torque and primary stability of dental implants using a block bone test. Journal Of Periodontal & Implant Science . 2013;43(1):30–36. doi: 10.5051/jpis.2013.43.1.30.
    1. Kaneko T., Nagai Y., Ogino M., Futami T., Ichimura T. Acoustoelectric technique for assessing the mechanical state of the dental implant-bone interface. Journal of Biomedical Materials Research . 1986;20(2):169–176. doi: 10.1002/jbm.820200206.
    1. Aparicio C., Lang N. P., Rangert B. Validity and clinical significance of biomechanical testing of implant/bone interface. Clinical Oral Implants Research . 2006;17(Suppl 2):2–7. doi: 10.1111/j.1600-0501.2006.01365.x.
    1. Coelho P. G., Jimbo R., Tovar N., Bonfante E. A. Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dental Materials . 2015;31(1):37–52. doi: 10.1016/j.dental.2014.10.007.
    1. Verborgt O., Gibson G. J., Schaffler M. B. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. Journal of Bone and Mineral Research . 2000;15(1):60–67. doi: 10.1359/jbmr.2000.15.1.60.
    1. Marin C., Granato R., Suzuki M., Gil J. N., Janal M. N., Coelho P. G. Histomorphologic and histomorphometric evaluation of various endosseous implant healing chamber configurations at early implantation times: a study in dogs. Clinical Oral Implants Research . 2010;21(6):577–583. doi: 10.1111/j.1600-0501.2009.01853.x.
    1. Buser D., Schenk R. K., Steinemann S., Fiorellini J. P., Fox C. H., Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research . 1991;25(7):889–902. doi: 10.1002/jbm.820250708.
    1. Li D., Ferguson S. J., Beutler T., et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. Journal of Biomedical Materials Research . 2002;60(2):325–332. doi: 10.1002/jbm.10063.
    1. Fischer K., Stenberg T. Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant-supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue. Clinical Implant Dentistry and Related Research . 2012;14(6):808–815. doi: 10.1111/j.1708-8208.2011.00389.x.
    1. Buser D., Janner S. F., Wittneben J. G., Brägger U., Ramseier C. A., Salvi G. E. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clinical Implant Dentistry and Related Research . 2012;14(6):839–851. doi: 10.1111/j.1708-8208.2012.00456.x.
    1. Rupp F., Scheideler L., Rehbein D., Axmann D., Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials . 2004;25(7-8):1429–1438. doi: 10.1016/j.biomaterials.2003.08.015.
    1. Neugebauer J., Traini T., Thams U., Piattelli A., Zöller J. E. Peri-implant bone organization under immediate loading state. Circularly polarized light analyses: a minipig study. Journal of Periodontology . 2006;77(2):152–160. doi: 10.1902/jop.2006.040360.
    1. Novaes A. B., Jr., Papalexiou V., Grisi M. F., Souza S. S., Taba M., Jr., Kajiwara J. K. Influence of implant microstructure on the osseointegration of immediate implants placed in periodontally infected sites. A histomorphometric study in dogs. Clinical Oral Implants Research . 2004;15(1):34–43. doi: 10.1046/j.1600-0501.2003.00968.x.
    1. Degidi M., Piattelli A., Gehrke P., Carinci F. Clinical outcome of 802 immediately loaded 2-stage submerged implants with a new grit-blasted and acid-etched surface: 12-month follow-up. The International Journal of Oral & Maxillofacial Implants . 2006;21(5):763–768.
    1. Franchi M., Bacchelli B., Martini D., et al. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials . 2004;25(12):2239–2246. doi: 10.1016/j.biomaterials.2003.09.017.
    1. Kitsugi T., Nakamura T., Oka M., Senaha Y., Goto T., Shibuya T. Bone-bonding behavior of plasma-sprayed coatings of BioglassR, AW-glass ceramic, and tricalcium phosphate on titanium alloy. Journal of Biomedical Materials Research . 1996;30(2):261–269. doi: 10.1002/(SICI)1097-4636(199602)30:2<261::AID-JBM17>;2-P.
    1. Mendes V. C., Moineddin R., Davies J. E. Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. Journal of Biomedical Materials Research. Part A . 2009;90A(2):577–585. doi: 10.1002/jbm.a.32126.
    1. Ostman P. O., Hupalo M., del Castillo R., et al. Immediate provisionalization of NanoTite implants in support of single-tooth and unilateral restorations: one-year interim report of a prospective, multicenter study. Clinical Implant Dentistry and Related Research . 2010;12 Suppl 1(Suppl 1):e47–e55. doi: 10.1111/j.1708-8208.2009.00166.x.
    1. Östman P. O., Wennerberg A., Ekestubbe A., Albrektsson T. Immediate occlusal loading of NanoTite™ tapered implants: a prospective 1-year clinical and radiographic study. Clinical Implant Dentistry and Related Research . 2013;15(6):809–818. doi: 10.1111/j.1708-8208.2011.00437.x.
    1. Nevins M., Kim D. M., Jun S. H., Guze K., Schupbach P., Nevins M. L. Histologic evidence of a connective tissue attachment to laser microgrooved abutments: a canine study. The International Journal of Periodontics & Restorative Dentistry . 2010;30(3):245–255.
    1. Farronato D., Mangano F., Briguglio F., Iorio-Siciliano V., Riccitiello F., Guarnieri R. Influence of Laser-Lok surface on immediate functional loading of implants in single-tooth replacement: a 2-year prospective clinical study. The International Journal of Periodontics & Restorative Dentistry . 2014;34(1):79–89. doi: 10.11607/prd.1747.
    1. Zhao G., Schwartz Z., Wieland M., et al. High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research Part A . 2005;74(1):49–58. doi: 10.1002/jbm.a.30320.
    1. Minamikawa H., Ikeda T., Att W., et al. Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V. Journal of Biomedical Materials Research. Part A . 2014;102(10):3618–3630. doi: 10.1002/jbm.a.35030.
    1. Smeets R., Stadlinger B., Schwarz F., et al. Impact of dental implant surface modifications on osseointegration. BioMed Research International . 2016;2016:16. doi: 10.1155/2016/6285620.6285620
    1. Rostom D., Faroukabdulla M. Melatonin effect on short implant supporting Kennedy class I removable partial denture in atrophied posterior mandibular alveolar ridge. Advanced Dental Journal . 2020;2(2):51–60. doi: 10.21608/adjc.2020.16121.1029.
    1. Rokaya D., Bohara S., Srimaneepong V., et al. Metallic biomaterials for medical and dental prosthetic applications. In: Jana S., Jana S., editors. Functional Biomaterials: Drug Delivery and Biomedical Applications . Singapore: Springer; 2022. pp. 503–522.
    1. Osman R. B., Swain M. V. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials . 2015;8(3):932–958. doi: 10.3390/ma8030932.
    1. Levine B. R., Sporer S., Poggie R. A., Della Valle C. J., Jacobs J. J. Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials . 2006;27(27):4671–4681. doi: 10.1016/j.biomaterials.2006.04.041.
    1. Piglionico S., Bousquet J., Fatima N., Renaud M., Collart-Dutilleul P. Y., Bousquet P. Porous tantalum VS. titanium implants: enhanced mineralized matrix formation after stem cells proliferation and differentiation. Journal of Clinical Medicine . 2020;9(11, article 3657) doi: 10.3390/jcm9113657.
    1. Edelmann A. R., Patel D., Allen R. K., Gibson C. J., Best A. M., Bencharit S. Retrospective analysis of porous tantalum trabecular metal-enhanced titanium dental implants. The Journal of Prosthetic Dentistry . 2019;121(3):404–410. doi: 10.1016/j.prosdent.2018.04.022.
    1. Abhay S. S., Ganapathy D., Veeraiyan D. N., et al. Wear resistance, color stability and displacement resistance of milled PEEK crowns compared to zirconia crowns under stimulated chewing and high-performance aging. Polymers . 2021;13(21, article 3761) doi: 10.3390/polym13213761.
    1. Mishra S., Chowdhary R. PEEK materials as an alternative to titanium in dental implants: a systematic review. Clinical Implant Dentistry and Related Research . 2019;21(1):208–222. doi: 10.1111/cid.12706.
    1. Tabassum A., Meijer G. J., Wolke J. G., Jansen J. A. Influence of surgical technique and surface roughness on the primary stability of an implant in artificial bone with different cortical thickness: a laboratory study. Clinical Oral Implants Research . 2010;21(2):213–220. doi: 10.1111/j.1600-0501.2009.01823.x.
    1. Stocchero M., Toia M., Cecchinato D., Becktor J. P., Coelho P. G., Jimbo R. Biomechanical, biologic, and clinical outcomes of undersized implant surgical preparation: a systematic review. International Journal of Oral & Maxillofacial Implants . 2016;31(6):1247–1263. doi: 10.11607/jomi.5340.
    1. Tsolaki I. N., Tonsekar P. P., Najafi B., Drew H. J., Sullivan A. J., Petrov S. D. Comparison of osteotome and conventional drilling techniques for primary implant stability: an in vitro study. Journal of Oral Implantology . 2016;42(4):321–325. doi: 10.1563/aaid-joi-D-15-00176.
    1. Nóbrega A. R., Norton A., Silva J. A., Silva J. P., Branco F. M., Anitua E. Osteotome versus conventional drilling technique for implant site preparation: a comparative study in the rabbit. The International Journal of Periodontics & Restorative Dentistry . 2012;32(3):e109–e115.
    1. Shayesteh Y. S., Khojasteh A., Siadat H., et al. A comparative study of crestal bone loss and implant stability between osteotome and conventional implant insertion techniques: a randomized controlled clinical trial study. Clinical Implant Dentistry and Related Research . 2013;15(3):350–357. doi: 10.1111/j.1708-8208.2011.00376.x.
    1. Huwais S., Meyer E. G. A novel osseous densification approach in implant osteotomy preparation to increase biomechanical primary stability, bone mineral density, and bone-to-implant contact. International Journal of Oral & Maxillofacial Implants . 2017;32(1):27–36. doi: 10.11607/jomi.4817.
    1. Inchingolo A. D., Inchingolo A. M., Bordea I. R., et al. The effectiveness of osseodensification drilling protocol for implant site osteotomy: a systematic review of the literature and meta-analysis. Materials . 2021;14(5, article 1147) doi: 10.3390/n14051147.

Source: PubMed

3
订阅