Abrocitinib Attenuates Microglia-Mediated Neuroinflammation after Traumatic Brain Injury via Inhibiting the JAK1/STAT1/NF-κB Pathway

Tuo Li, Lei Li, Ruilong Peng, Hongying Hao, Hejun Zhang, Yalong Gao, Cong Wang, Fanjian Li, Xilei Liu, Fanglian Chen, Shu Zhang, Jianning Zhang, Tuo Li, Lei Li, Ruilong Peng, Hongying Hao, Hejun Zhang, Yalong Gao, Cong Wang, Fanjian Li, Xilei Liu, Fanglian Chen, Shu Zhang, Jianning Zhang

Abstract

Background and purpose: Neuroinflammation has been shown to play a critical role in secondary craniocerebral injury, leading to poor outcomes for TBI patients. Abrocitinib, a Janus kinase1 (JAK1) selective inhibitor approved to treat atopic dermatitis (AD) by the Food and Drug Administration (FDA), possesses a novel anti-inflammatory effect. In this study, we investigated whether abrocitinib could ameliorate neuroinflammation and exert a neuroprotective effect in traumatic brain injury (TBI) models.

Methods: First, next-generation sequencing (NGS) was used to select genes closely related to neuroinflammation after TBI. Then, magnetic resonance imaging (MRI) was used to dynamically observe the changes in traumatic focus on the 1st, 3rd, and 7th days after the induction of fluid percussion injury (FPI). Moreover, abrocitinib's effects on neurobehaviors were evaluated. A routine peripheral blood test was carried out and Evans blue dye extravasation, cerebral cortical blood flow, the levels of inflammatory cytokines, and changes in the numbers of inflammatory cells were evaluated to investigate the function of abrocitinib on the 1st day post-injury. Furthermore, the JAK1/signal transducer and activator of transcription1 (STAT1)/nuclear factor kappa (NF-κB) pathway was assessed.

Results: In vivo, abrocitinib treatment was found to shrink the trauma lesions. Compared to the TBI group, the abrocitinib treatment group showed better neurological function, less blood-brain barrier (BBB) leakage, improved intracranial blood flow, relieved inflammatory cell infiltration, and reduced levels of inflammatory cytokines. In vitro, abrocitinib treatment was shown to reduce the pro-inflammatory M1 microglia phenotype and shift microglial polarization toward the anti-inflammatory M2 phenotype. The WB and IHC results showed that abrocitinib played a neuroprotective role by restraining JAK1/STAT1/NF-κB levels after TBI.

Conclusions: Collectively, abrocitinib treatment after TBI is accompanied by improvements in neurological function consistent with radiological, histopathological, and biochemical changes. Therefore, abrocitinib can indeed reduce excessive neuroinflammation by restraining the JAK1/STAT1/NF-κB pathway.

Keywords: JAK1/STAT1/NF-κB; TBI; abrocitinib; neuroinflammation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Gene expression analysis for TBI and control mice. Volcano plot of differential analysis (A). Heatmap of differential analysis (B). Comparison of TNF-α, IL-1β, IL-6, NLRP3, and ASC expression between TBI group and control group (C) (n = 5, Kruskal-Wallis test). Bubble chart of BP, CC, and MF analysis (D). Bubble chart of KEGG analysis (E). Enrichment plots for GO and KEGG items from gene set enrichment analysis (GSEA) (F,G). Heatmap of immune infiltration in sham and TBI groups (H). Violin plot of immune infiltration in sham and TBI groups (I). All data are shown as mean ± SD. * p < 0.05, ** p < 0.01.
Figure 2
Figure 2
Effects of abrocitinib on hematoma absorption, the results of behavioral tests, cerebral edema, and cerebral cortical blood flow. Changes in trauma focus were dynamically observed with the help of MRI (A,B) (n = 6, repeated measures ANOVA with Tukey’s post-hoc test). In addition, neural function was evaluated using mNSS scores (C) (n = 6, repeated measures ANOVA with Tukey’s post-hoc test). FPI-induced vascular leakage was measured via Evans blue dye extravasation (D,E) (n = 4, Kruskal-Wallis test) and cerebral cortical blood flow (F,G) (n = 5–6, one-way ANOVA with Tukey’s post-hoc test) was also monitored on the 1st day after TBI. All data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
Figure 3
Figure 3
Changes in pathological morphology. Morphological changes were observed using H&E staining (A). The number of surviving neurons (B,D) and the changes in apoptotic cells around the wound focus were observed via Nissl staining and TUNEL staining, respectively (DAPI—blue; TUNEL—red) (C,E) (n = 6, one-way ANOVA with Tukey’s post-hoc test). All data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
Figure 4
Figure 4
Effects of abrocitinib on the JAK1/STAT1 pathway. On the 1st day after TBI, JAK1 and STAT1 showed a dramatic increase in activation. After abrocitinib treatment, the activated JAK1 and STAT1 were significantly decreased, as shown in the WB results above and can be displayed through WB (n = 5–9, one-way ANOVA with Tukey’s post-hoc test). All data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
Figure 5
Figure 5
Changes in the infiltration of inflammatory cells and the activation of microglia. From the IHC staining, the increased neutrophils and microglia around the trauma focus caused by TBI were attenuated by abrocitinib (AD) (n = 6 Kruskal-Wallis test). The effect of abrocitinib on LPS-mediated BV2 microglial polarization was also observed in vitro (E). M1-phenotype: iNOS + (red) and Iba-1 + (green); M2-phenotype: Arg-1 + (red) and Iba-1 + (green). Scale bar = 20 μm (n = 6 one-way ANOVA with Tukey’s post-hoc test). The changes in inflammatory cytokines (IL-6 and TNF-α) after brain injury and the effects of abrocitinib were determined with the help of ELISA (FG) (n = 5–9 one-way ANOVA with Tukey’s post-hoc test). All data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
Figure 6
Figure 6
Effects of abrocitinib on NFκB-related inflammation and pyroptosis pathways. On the 1st day after TBI, NFκB-related inflammation and the activation of pyroptosis pathways were dramatically increased. After abrocitinib treatment, the indicators of NFκB-related inflammation and pyroptosis pathways were significantly decreased, as can be seen from the WB (n = 5–9 one-way ANOVA with Tukey’s post-hoc test) and GSDMD IHC staining (AC) (n = 6 Kruskal-Wallis test). From the ELISA results, the changes in inflammatory cytokines (IL-1β and IL-18) after brain injury and the effects of abrocitinib were precisely revealed (D,E) (n = 5–6 one-way ANOVA with Tukey’s post-hoc test). All data are shown as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

References

    1. Menon D.K., Schwab K., Wright D.W., Maas A.I., Demographics I. Clinical Assessment Working Group of the, I. Interagency Initiative toward Common Data Elements for Research on Traumatic Brain, and H. Psychological, Position statement: Definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 2010;91:1637–1640. doi: 10.1016/j.apmr.2010.05.017.
    1. Mollayeva T., Mollayeva S., Colantonio A. Traumatic brain injury: Sex, gender and intersecting vulnerabilities. Nat. Rev. Neurol. 2018;14:711–722. doi: 10.1038/s41582-018-0091-y.
    1. Dinet V., Petry K.G., Badaut J. Brain-Immune Interactions and Neuroinflammation After Traumatic Brain Injury. Front. Neurosci. 2019;13:1178. doi: 10.3389/fnins.2019.01178.
    1. Humble S.S., Wilson L.D., Wang L., Long D.A., Smith M.A., Siktberg J.C., Mirhoseini M.F., Bhatia A., Pruthi S., Day M.A., et al. Prognosis of diffuse axonal injury with traumatic brain injury. J. Trauma Acute Care Surg. 2018;85:155–159. doi: 10.1097/TA.0000000000001852.
    1. Cai L., Gong Q., Qi L., Xu T., Suo Q., Li X., Wang W., Jing Y., Yang D., Xu Z., et al. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFkappaB/NLRP3 pathway. Cell Commun. Signal. 2022;20:56. doi: 10.1186/s12964-022-00862-y.
    1. Capizzi A., Woo J., Verduzco-Gutierrez M. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management. Med. Clin. N. Am. 2020;104:213–238. doi: 10.1016/j.mcna.2019.11.001.
    1. Shively S.B., Priemer D.S., Stein M.B., Perl D.P. Pathophysiology of Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Neuropsychiatric Clinical Expression. Psychiatr. Clin. N. Am. 2021;44:443–458. doi: 10.1016/j.psc.2021.04.003.
    1. Simon D.W., McGeachy M.J., Bayir H., Clark R.S.B., Loane D.J., Kochanek P.M. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev. Neurol. 2017;13:572. doi: 10.1038/nrneurol.2017.116.
    1. Loane D.J., Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Pt 3Exp. Neurol. 2016;275:316–327. doi: 10.1016/j.expneurol.2015.08.018.
    1. Donat C.K., Scott G., Gentleman S.M., Sastre M. Microglial Activation in Traumatic Brain Injury. Front. Aging Neurosci. 2017;9:208. doi: 10.3389/fnagi.2017.00208.
    1. Mishra A., Bandopadhyay R., Singh P.K., Mishra P.S., Sharma N., Khurana N. Neuroinflammation in neurological disorders: Pharmacotherapeutic targets from bench to bedside. Metab. Brain Dis. 2021;36:1591–1626. doi: 10.1007/s11011-021-00806-4.
    1. Owen K.L., Brockwell N.K., Parker B.S. JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers. 2019;11:2002. doi: 10.3390/cancers11122002.
    1. Hebenstreit D., Horejs-Hoeck J., Duschl A. JAK/STAT-dependent gene regulation by cytokines. Drug News Perspect. 2005;18:243–249. doi: 10.1358/dnp.2005.18.4.908658.
    1. Stephanou A., Scarabelli T.M., Brar B.K., Nakanishi Y., Matsumura M., Knight R.A., Latchman D.S. Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701. J. Biol. Chem. 2001;276:28340–28347. doi: 10.1074/jbc.M101177200.
    1. Tsutsui H., Nishiguchi S. Importance of Kupffer cells in the development of acute liver injuries in mice. Int. J. Mol. Sci. 2014;15:7711–7730. doi: 10.3390/ijms15057711.
    1. O’Shea J.J., Schwartz D.M., Villarino A.V., Gadina M., McInnes I.B., Laurence A. The JAK-STAT pathway: Impact on human disease and therapeutic intervention. Annu. Rev. Med. 2015;66:311–328. doi: 10.1146/annurev-med-051113-024537.
    1. Hu X., Li J., Fu M., Zhao X., Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021;6:402. doi: 10.1038/s41392-021-00791-1.
    1. Gan Z.S., Wang Q.Q., Li J.H., Wang X.L., Wang Y.Z., Du H.H. Iron Reduces M1 Macrophage Polarization in RAW264.7 Macrophages Associated with Inhibition of STAT1. Mediators Inflamm. 2017;2017:8570818. doi: 10.1155/2017/8570818.
    1. Huang X.P., Ding H., Lu J.D., Tang Y.H., Deng B.X., Deng C.Q. Effects of the Combination of the Main Active Components of Astragalus and Panax notoginseng on Inflammation and Apoptosis of Nerve Cell after Cerebral Ischemia-Reperfusion. Am. J. Chin. Med. 2015;43:1419–1438. doi: 10.1142/S0192415X15500809.
    1. Rosa J.M., Farre-Alins V., Ortega M.C., Navarrete M., Lopez-Rodriguez A.B., Palomino-Antolin A., Fernandez-Lopez E., Vila-Del Sol V., Decouty C., Narros-Fernandez P., et al. TLR4 pathway impairs synaptic number and cerebrovascular functions through astrocyte activation following traumatic brain injury. Br. J. Pharmacol. 2021;178:3395–3413. doi: 10.1111/bph.15488.
    1. Han J.W., Shim D.W., Shin W.Y., Kim M.K., Shim E.J., Sun X., Koppula S., Kim T.J., Kang T.B., Lee K.H. Juniperus rigida Sieb. extract inhibits inflammatory responses via attenuation of TRIF-dependent signaling and inflammasome activation. J. Ethnopharmacol. 2016;190:91–99. doi: 10.1016/j.jep.2016.05.059.
    1. Zhou Y., Cai W., Zhao Z., Hilton T., Wang M., Yeon J., Liu W., Zhang F., Shi F.D., Wu X., et al. Lactadherin promotes microvesicle clearance to prevent coagulopathy and improves survival of severe TBI mice. Blood. 2018;131:563–572. doi: 10.1182/blood-2017-08-801738.
    1. Xu X., Wang C., Wu Y., Houck K., Hilton T., Zhou A., Wu X., Han C., Yang M., Yang W., et al. Conformation-dependent blockage of activated VWF improves outcomes of traumatic brain injury in mice. Blood. 2021;137:544–555. doi: 10.1182/blood.2020007364.
    1. Li T., Wang D., Tian Y., Yu H., Wang Y., Quan W., Cui W., Zhou L., Chen J., Jiang R., et al. Effects of atorvastatin on the inflammation regulation and elimination of subdural hematoma in rats. J. Neurol. Sci. 2014;341:88–96. doi: 10.1016/j.jns.2014.04.009.
    1. Wu H., Wu T., Han X., Wan J., Jiang C., Chen W., Lu H., Yang Q., Wang J. Cerebroprotection by the neuronal PGE2 receptor EP2 after intracerebral hemorrhage in middle-aged mice. J. Cereb. Blood Flow Metab. 2017;37:39–51. doi: 10.1177/0271678X15625351.
    1. Gu J., Bao Y., Chen J., Huang C., Zhang X., Jiang R., Liu Q., Liu Y., Xu X., Shi W. The Expression of NP847 and Sox2 after TBI and Its Influence on NSCs. Front. Cell Neurosci. 2016;10:282. doi: 10.3389/fncel.2016.00282.
    1. Mincheva-Tasheva S., Soler R.M. NF-kappaB signaling pathways: Role in nervous system physiology and pathology. Neuroscientist. 2013;19:175–194. doi: 10.1177/1073858412444007.
    1. Jiang H., Yang X., Wang Y., Zhou C. Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-kappaB Pathway-Mediated Microglial Polarization and Neuroinflammation. Biomed. Res. Int. 2022;2022:3363036. doi: 10.1155/2022/3363036.
    1. Villapol S., Byrnes K.R., Symes A.J. Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury. Front. Neurol. 2014;5:82. doi: 10.3389/fneur.2014.00082.
    1. Carron S.F., Alwis D.S., Rajan R. Traumatic Brain Injury and Neuronal Functionality Changes in Sensory Cortex. Front. Syst. Neurosci. 2016;10:47. doi: 10.3389/fnsys.2016.00047.
    1. Stoica B.A., Faden A.I. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics. 2010;7:3–12. doi: 10.1016/j.nurt.2009.10.023.
    1. Xu X., Gao W., Cheng S., Yin D., Li F., Wu Y., Sun D., Zhou S., Wang D., Zhang Y., et al. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J. Neuroinflamm. 2017;14:167. doi: 10.1186/s12974-017-0934-2.
    1. Jassam Y.N., Izzy S., Whalen M., McGavern D.B., El Khoury J. Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift. Neuron. 2017;95:1246–1265. doi: 10.1016/j.neuron.2017.07.010.
    1. Nimmerjahn A., Kirchhoff F., Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–1318. doi: 10.1126/science.1110647.
    1. Davalos D., Grutzendler J., Yang G., Kim J.V., Zuo Y., Jung S., Littman D.R., Dustin M.L., Gan W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005;8:752–758. doi: 10.1038/nn1472.
    1. Garden G.A. Epigenetics and the modulation of neuroinflammation. Neurotherapeutics. 2013;10:782–788. doi: 10.1007/s13311-013-0207-4.
    1. Corps K.N., Roth T.L., McGavern D.B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015;72:355–362. doi: 10.1001/jamaneurol.2014.3558.
    1. Shi H., Wang H.L., Pu H.J., Shi Y.J., Zhang J., Zhang W.T., Wang G.H., Hu X.M., Leak R.K., Chen J., et al. Ethyl pyruvate protects against blood-brain barrier damage and improves long-term neurological outcomes in a rat model of traumatic brain injury. CNS Neurosci. Ther. 2015;21:374–384. doi: 10.1111/cns.12366.
    1. Lee J., Costantini T.W., D’Mello R., Eliceiri B.P., Coimbra R., Bansal V. Altering leukocyte recruitment following traumatic brain injury with ghrelin therapy. J. Trauma Acute Care Surg. 2014;77:709–715. doi: 10.1097/TA.0000000000000445.
    1. Dixon K.J. Pathophysiology of Traumatic Brain Injury. Phys. Med. Rehabil. Clin. N. Am. 2017;28:215–225. doi: 10.1016/j.pmr.2016.12.001.
    1. Yeh C.H., Shih H.C., Hong H.M., Lee S.S., Yang M.L., Chen C.J., Kuan Y.H. Protective effect of wogonin on proinflammatory cytokine generation via Jak1/3-STAT1/3 pathway in lipopolysaccharide stimulated BV2 microglial cells. Toxicol. Ind. Health. 2015;31:960–966. doi: 10.1177/0748233713485886.
    1. Morris R., Kershaw N.J., Babon J.J. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci. 2018;27:1984–2009. doi: 10.1002/pro.3519.
    1. Yang F., Cai H., Zhang X., Sun J., Feng X., Yuan H., Zhang X., Xiao B., Li Q. An active marine halophenol derivative attenuates lipopolysaccharide-induced acute liver injury in mice by improving M2 macrophage-mediated therapy. Int. Immunopharmacol. 2021;96:107676. doi: 10.1016/j.intimp.2021.107676.
    1. Becher B., Spath S., Goverman J. Cytokine networks in neuroinflammation. Nat. Rev. Immunol. 2017;17:49–59. doi: 10.1038/nri.2016.123.
    1. Yu Z., Bu G. Attenuating oxidized low density lipoprotein (ox-LDL)-induced macrophages damage via inhibiting C-type lectin domain family 2 (CLEC2) expression through janus kinase 1 (JAK1)/signal transducers and activators of transcription-1 (STAT1) pathway. Bioengineered. 2022;13:6440–6449. doi: 10.1080/21655979.2022.2044253.
    1. Luan X., Cong Z., Anastassiades T.P., Gao Y. N-Butyrylated Hyaluronic Acid Achieves Anti-Inflammatory Effects In Vitro and in Adjuvant-Induced Immune Activation in Rats. Molecules. 2022;27:3267. doi: 10.3390/molecules27103267.
    1. Piaszyk-Borychowska A., Szeles L., Csermely A., Chiang H.C., Wesoly J., Lee C.K., Nagy L., Bluyssen H.A.R. Signal Integration of IFN-I and IFN-II With TLR4 Involves Sequential Recruitment of STAT1-Complexes and NFkappaB to Enhance Pro-inflammatory Transcription. Front. Immunol. 2019;10:1253. doi: 10.3389/fimmu.2019.01253.
    1. Platanitis E., Decker T. Regulatory Networks Involving STATs, IRFs, and NFkappaB in Inflammation. Front. Immunol. 2018;9:2542. doi: 10.3389/fimmu.2018.02542.
    1. Barbosa Lima L.E., Muxel S.M., Kinker G.S., Carvalho-Sousa C.E., da Silveira Cruz-Machado S., Markus R.P., Fernandes P. STAT1-NFkappaB crosstalk triggered by interferon gamma regulates noradrenaline-induced pineal hormonal production. J. Pineal Res. 2019;67:e12599. doi: 10.1111/jpi.12599.
    1. Hayden M.S., Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–362. doi: 10.1016/j.cell.2008.01.020.
    1. Ridder D.A., Schwaninger M. NF-kappaB signaling in cerebral ischemia. Neuroscience. 2009;158:995–1006. doi: 10.1016/j.neuroscience.2008.07.007.
    1. Wu G., McBride D.W., Zhang J.H. Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-kappaB pathway after MCAO in rats. Neurobiol. Dis. 2018;110:59–67. doi: 10.1016/j.nbd.2017.11.009.
    1. Hess S., Methe H., Kim J.O., Edelman E.R. NF-kappaB activity in endothelial cells is modulated by cell substratum interactions and influences chemokine-mediated adhesion of natural killer cells. Cell Transplant. 2009;18:261–273. doi: 10.3727/096368909788534979.
    1. Schroder K., Tschopp J. The inflammasomes. Cell. 2010;140:821–832. doi: 10.1016/j.cell.2010.01.040.
    1. Lamkanfi M., Dixit V.M. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–1022. doi: 10.1016/j.cell.2014.04.007.
    1. Shi J., Gao W., Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem. Sci. 2017;42:245–254. doi: 10.1016/j.tibs.2016.10.004.
    1. Broz P., Dixit V.M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 2016;16:407–420. doi: 10.1038/nri.2016.58.

Source: PubMed

3
订阅