Galectin-1 in Obesity and Type 2 Diabetes

Emanuel Fryk, Vagner R R Silva, Per-Anders Jansson, Emanuel Fryk, Vagner R R Silva, Per-Anders Jansson

Abstract

Galectin-1 is a carbohydrate-binding protein expressed in many tissues. In recent years, increasing evidence has emerged for the role of galectin-1 in obesity, insulin resistance and type 2 diabetes. Galectin-1 has been highly conserved through evolution and is involved in key cellular functions such as tissue maturation and homeostasis. It has been shown that galectin-1 increases in obesity, both in the circulation and in the adipose tissue of human and animal models. Several proteomic studies have independently identified an increased galectin-1 expression in the adipose tissue in obesity and in insulin resistance. Large population-based cohorts have demonstrated associations for circulating galectin-1 and markers of insulin resistance and incident type 2 diabetes. Furthermore, galectin-1 is associated with key metabolic pathways including glucose and lipid metabolism, as well as insulin signalling and inflammation. Intervention studies in animal models alter animal weight and metabolic profile. Several studies have also linked galectin-1 to the progression of complications in diabetes, including kidney disease and retinopathy. Here, we review the current knowledge on the clinical potential of galectin-1 in obesity and type 2 diabetes.

Keywords: galectin-1; insulin resistance; obesity; type 2 diabetes.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Galectin-1 in obesity and insulin resistance. (A) Circulating galectin-1 levels are elevated in human obesity (~25% higher in obese vs. lean [64]) and in HFD-fed mice (~50% higher in HFD vs. chow [22]). (B) Circulating galectin-1 is positively associated with serum insulin levels in humans and modulated insulin secretion in mice [64,80]. Further, galectin-1 inversely associates with plasma glucose [64], but galectin-1 reduced glucose uptake in human adipose cells in vitro [15]. Insulin and glucose confer direct stimulatory effects on galectin-1 secretion to cell media from several cell types [71,77,80,94,95,96]. Galectin-1 is positively associated with circulating levels of IL-6, TNF-α and CRP [47,64]. Likewise, triggers of inflammatory pathways up-regulate galectin-1 in several immune cells [97].
Figure 2
Figure 2
Galectin-1 effects in different organs (arrow up or down) reported in pre-clinical studies (animal models and human cells), which should be confirmed in human tissues and clinical studies. Galectin-1 has been shown to improve tissue recovery after a cerebral stroke [101,102]. Galectin-1 also increases neovascularization and unwanted vascular proliferation in diabetic retinopathy [42,103,104]. In the pancreas, galectin-1 has been shown to stimulate insulin secretion in female mice, and circulating galectin-1 is also positively associated with serum insulin in studies in humans [47,64,80]. Studies have linked galectin-1 to adipogenesis, and it has been proposed that galectin-1 could directly affect pparg expression [23,72]. Galectin-1 has also been shown to reduce thermogenesis in mice [23,82]. In the liver, inhibition of galectin-1 results in increased fibrosis and increased severity of hepatitis [105], and galectin-1 reduces inflammation in the heart after ischaemia [106,107]. Galectin-1 also appears to facilitate skeletal muscle regeneration in muscle degenerative conditions, as well as in muscle damage [108]. In the kidney, results have been conflicting, as a Mendelian randomization study in humans and an intervention study in mice have demonstrated kidney protective effects of galectin-1 [43,47]. Conversely, circulating galectin-1 has been associated with a lower kidney function in cross-sectional and longitudinal studies [47,48], and in vitro studies have demonstrated contradicting associations with different fibrotic markers [95,96,109].

References

    1. Johannes L., Jacob R., Leffler H. Galectins at a glance. J. Cell Sci. 2018;131:jcs208884. doi: 10.1242/jcs.208884.
    1. Thijssen V.L. Galectins in Endothelial Cell Biology and Angiogenesis: The Basics. Biomolecules. 2021;11:1386. doi: 10.3390/biom11091386.
    1. Leppänen A., Stowell S., Blixt O., Cummings R.D. Dimeric Galectin-1 Binds with High Affinity to α2,3-Sialylated and Non-sialylated Terminal N-Acetyllactosamine Units on Surface-bound Extended Glycans. J. Biol. Chem. 2005;280:5549–5562. doi: 10.1074/jbc.M412019200.
    1. Sethi A., Sanam S., Alvala R., Alvala M. An updated patent review of galectin-1 and galectin-3 inhibitors and their potential therapeutic applications (2016–present) Expert Opin. Ther. Patents. 2021;31:709–721. doi: 10.1080/13543776.2021.1903430.
    1. Reily C., Stewart T.J., Renfrow M.B., Novak J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019;15:346–366. doi: 10.1038/s41581-019-0129-4.
    1. Blanchard H., Bum-Erdene K., Bohari M.H., Yu X. Galectin-1 inhibitors and their potential therapeutic applications: A patent review. Expert Opin. Ther. Patents. 2016;26:537–554. doi: 10.1517/13543776.2016.1163338.
    1. Brinchmann M.F., Patel D.M., Iversen M.H. The Role of Galectins as Modulators of Metabolism and Inflammation. Mediat. Inflamm. 2018;2018:9186940. doi: 10.1155/2018/9186940.
    1. Camby I., Le Mercier M., Lefranc F., Kiss R. Galectin-1: A small protein with major functions. Glycobiology. 2006;16:137R–157R. doi: 10.1093/glycob/cwl025.
    1. Hermenean A., Oatis D., Herman H., Ciceu A., D’Amico G., Trotta M.C. Galectin 1—A Key Player between Tissue Repair and Fibrosis. Int. J. Mol. Sci. 2022;23:5548. doi: 10.3390/ijms23105548.
    1. An Y., Xu S., Liu Y., Xu X., Philips C.A., Chen J., Méndez-Sánchez N., Guo X., Qi X. Role of Galectins in the Liver Diseases: A Systematic Review and Meta-Analysis. Front. Med. 2021;8:744518. doi: 10.3389/fmed.2021.744518.
    1. Goud N.S., Bhattacharya A. Human Galectin-1 in Multiple Cancers: A Privileged Molecular Target in Oncology. Mini Rev. Med. Chem. 2021;21:2169–2186. doi: 10.2174/1389557521666210217093815.
    1. Lee M., Hamilton J.A.G., Talekar G.R., Ross A.J., Michael L., Rupji M., Dwivedi B., Raikar S.S., Boss J., Scharer C.D., et al. Obesity-induced galectin-9 is a therapeutic target in B-cell acute lymphoblastic leukemia. Nat. Commun. 2022;13:1157. doi: 10.1038/s41467-022-28839-y.
    1. Hotta K., Funahashi T., Matsukawa Y., Takahashi M., Nishizawa H., Kishida K., Matsuda M., Kuriyama H., Kihara S., Nakamura T., et al. Galectin-12, an Adipose-expressed Galectin-like Molecule Possessing Apoptosis-inducing Activity. J. Biol. Chem. 2001;276:34089–34097. doi: 10.1074/jbc.M105097200.
    1. Li P., Liu S., Lu M., Bandyopadhyay G., Oh D., Imamura T., Johnson A.M.F., Sears D., Shen Z., Cui B., et al. Hematopoietic-Derived Galectin-3 Causes Cellular and Systemic Insulin Resistance. Cell. 2016;167:973–984.e12. doi: 10.1016/j.cell.2016.10.025.
    1. Fryk E., Sundelin J.P., Strindberg L., Pereira M.J., Federici M., Marx N., Nyström F.H., Schmelz M., Svensson P.-A., Eriksson J.W., et al. Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients. Metabolism. 2016;65:998–1006. doi: 10.1016/j.metabol.2016.04.003.
    1. Beijer K., Nowak C., Sundström J., Ärnlöv J., Fall T., Lind L. In search of causal pathways in diabetes: A study using proteomics and genotyping data from a cross-sectional study. Diabetologia. 2019;62:1998–2006. doi: 10.1007/s00125-019-4960-8.
    1. Nunoue T., Yamaguchi S., Teshigawara S., Katayama A., Nakatsuka A., Eguchi J., Niki T., Wada J. Lgals9 deficiency ameliorates obesity by modulating redox state of PRDX. Sci. Rep. 2021;11:5991. doi: 10.1038/s41598-021-85080-1.
    1. Molvin J., Pareek M., Jujic A., Melander O., Råstam L., Lindblad U., Daka B., Leósdóttir M., Nilsson P.M., Olsen M.H., et al. Using a Targeted Proteomics Chip to Explore Pathophysiological Pathways for Incident Diabetes– The Malmö Preventive Project. Sci. Rep. 2019;9:272. doi: 10.1038/s41598-018-36512-y.
    1. Sharma U.C., Pokharel S., Van Brakel T.J., van Berlo J., Cleutjens J.P.M., Schroen B., André S., Crijns H.J.G.M., Gabius H.-J., Maessen J., et al. Galectin-3 Marks Activated Macrophages in Failure-Prone Hypertrophied Hearts and Contributes to Cardiac Dysfunction. Circulation. 2004;110:3121–3128. doi: 10.1161/01.CIR.0000147181.65298.4D.
    1. Henderson N.C., Mackinnon A.C., Farnworth S.L., Poirier F., Russo F.P., Iredale J.P., Haslett C., Simpson K.J., Sethi T. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc. Natl. Acad. Sci. USA. 2006;103:5060–5065. doi: 10.1073/pnas.0511167103.
    1. Zhang Z., Kang X., Guo Y., Zhang J., Xie J., Shao S., Xiang Y., Chen G., Yu X. Association of circulating galectin-3 with gestational diabetes mellitus, progesterone, and insulin resistance. J. Diabetes. 2021;13:54–62. doi: 10.1111/1753-0407.13088.
    1. Rhodes D.H., Pini M., Castellanos K.J., Montero-Melendez T., Cooper D., Perretti M., Fantuzzi G. Adipose tissue-specific modulation of galectin expression in lean and obese mice: Evidence for regulatory function. Obesity. 2013;21:310–319. doi: 10.1002/oby.20016.
    1. Baek J.H., Kim D.H., Lee J., Kim S.J., Chun K.H. Galectin-1 accelerates high-fat diet-induced obesity by activation of peroxisome proliferator-activated receptor gamma (PPARgamma) in mice. Cell Death Dis. 2021;12:66. doi: 10.1038/s41419-020-03367-z.
    1. Mukherjee R., Yun J.W. Pharmacological inhibition of galectin-1 by lactulose alleviates weight gain in diet-induced obese rats. Life Sci. 2016;148:112–117. doi: 10.1016/j.lfs.2016.02.018.
    1. Mukherjee R., Yun J.W. Lactobionic acid reduces body weight gain in diet-induced obese rats by targeted inhibition of galectin-1. Biochem. Biophys. Res. Commun. 2015;463:1311–1316. doi: 10.1016/j.bbrc.2015.06.114.
    1. Zechner R., Madeo F., Kratky D. Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nat. Rev. Mol. Cell Biol. 2017;18:671–684. doi: 10.1038/nrm.2017.76.
    1. Collaborators GBD Obesity. Afshin A., Forouzanfar M.H., Reitsma M.B., Sur P., Estep K., Lee A., Marczak L., Mokdad A.H., Moradi-Lakeh M., et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017;377:13–27.
    1. Neeland I.J., Poirier P., Despres J.P. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation. 2018;137:1391–1406. doi: 10.1161/CIRCULATIONAHA.117.029617.
    1. Michaud A., Tordjman J., Pelletier M., Liu Y., Laforest S., Noël S., Le Naour G., Bouchard C., Clément K., Tchernof A. Relevance of omental pericellular adipose tissue collagen in the pathophysiology of human abdominal obesity and related cardiometabolic risk. Int. J. Obes. 2016;40:1823–1831. doi: 10.1038/ijo.2016.173.
    1. Rathmell J.C. Obesity, Immunity, and Cancer. N. Engl. J. Med. 2021;384:1160–1162. doi: 10.1056/NEJMcibr2035081.
    1. Cho I.Y., Chang Y., Sung E., Kang J.-H., Wild S.H., Byrne C.D., Shin H., Ryu S. Depression and increased risk of non-alcoholic fatty liver disease in individuals with obesity. Epidemiol. Psychiatr. Sci. 2021;30:e23. doi: 10.1017/S204579602000116X.
    1. Garcia-Rio F., Alvarez-Puebla M., Esteban-Gorgojo I., Barranco P., Olaguibel J., De Esteban I. Obesity and Asthma: Key Clinical Questions. J. Investig. Allergy Clin. Immunol. 2019;29:262–271. doi: 10.18176/jiaci.0316.
    1. Popkin B.M., Du S., Green W.D., Beck M.A., Algaith T., Herbst C.H., Alsukait R.F., Alluhidan M., Alazemi N., Shekar M. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obes. Rev. 2020;21:e13128. doi: 10.1111/obr.13128.
    1. Zimmet P.Z., Magliano D.J., Herman W.H., Shaw J.E. Diabetes: A 21st century challenge. Lancet Diabetes Endocrinol. 2014;2:56–64. doi: 10.1016/S2213-8587(13)70112-8.
    1. Seidell J.C. Obesity, insulin resistance and diabetes—A worldwide epidemic. Br. J. Nutr. 2000;83((Suppl. S1)):S5–S8. doi: 10.1017/S000711450000088X.
    1. Chen L., Magliano D., Zimmet P. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat. Rev. Endocrinol. 2011;8:228–236. doi: 10.1038/nrendo.2011.183.
    1. Ogurtsova K., Da Rocha Fernandes J.D., Huang Y., Linnenkamp U., Guariguata L., Cho N.H., Cavan D., Shaw J.E., Makaroff L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017;128:40–50. doi: 10.1016/j.diabres.2017.03.024.
    1. Ogurtsova K., Guariguata L., Barengo N.C., Ruiz P.L.-D., Sacre J.W., Karuranga S., Sun H., Boyko E.J., Magliano D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022;183:109118. doi: 10.1016/j.diabres.2021.109118.
    1. Emerging Risk Factors Collaboration. Sarwar N., Gao P., Seshasai S.R., Gobin R., Kaptoge S., Di Angelantonio E., Ingelsson E., Lawlor D.A., Selvin E. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–2222.
    1. Marx N., Davies M.J., Grant P.J., Mathieu C., Petrie J.R., Cosentino F., Buse J.B. Guideline recommendations and the positioning of newer drugs in type 2 diabetes care. Lancet Diabetes Endocrinol. 2020;9:46–52. doi: 10.1016/S2213-8587(20)30343-0.
    1. Sabbagh F., Muhamad I.I., Niazmand R., Dikshit P.K., Kim B.S. Recent progress in polymeric non-invasive insulin delivery. Int. J. Biol. Macromol. 2022;203:222–243. doi: 10.1016/j.ijbiomac.2022.01.134.
    1. Yang N., Zhang W., He T., Xing Y. Silencing of galectin-1 inhibits retinal neovascularization and ameliorates retinal hypoxia in a murine model of oxygen-induced ischemic retinopathy. Exp. Eye Res. 2017;159:1–15. doi: 10.1016/j.exer.2017.02.015.
    1. Carlos C.P., Silva A.A., Gil C.D., Oliani S.M. Pharmacological treatment with galectin-1 protects against renal ischaemia-reperfusion injury. Sci. Rep. 2018;8:9568. doi: 10.1038/s41598-018-27907-y.
    1. Burrows N.R., Li Y., Geiss L.S. Incidence of treatment for end-stage renal disease among individuals with diabetes in the U.S. continues to decline. Diabetes Care. 2010;33:73–77. doi: 10.2337/dc09-0343.
    1. Barnes J.A., Eid M.A., Creager M.A., Goodney P.P. Epidemiology and Risk of Amputation in Patients with Diabetes Mellitus and Peripheral Artery Disease. Arter. Thromb. Vasc. Biol. 2020;40:1808–1817. doi: 10.1161/ATVBAHA.120.314595.
    1. Yau J.W.Y., Rogers S.L., Kawasaki R., Lamoureux E.L., Kowalski J.W., Bek T., Chen S.-J., Dekker J.M., Fletcher A., Grauslund J., et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care. 2012;35:556–564. doi: 10.2337/dc11-1909.
    1. Drake I., Fryk E., Strindberg L., Lundqvist A., Rosengren A.H., Groop L., Ahlqvist E., Borén J., Orho-Melander M., Jansson P.-A. The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: Evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia. 2022;65:128–139. doi: 10.1007/s00125-021-05594-1.
    1. Kuo C.-S., Chou R.-H., Lu Y.-W., Tsai Y.-L., Huang P.-H., Lin S.-J. Increased circulating galectin-1 levels are associated with the progression of kidney function decline in patients undergoing coronary angiography. Sci. Rep. 2020;10:1435. doi: 10.1038/s41598-020-58132-1.
    1. Basu S., Yoffe P., Hills N., Lustig R.H. The Relationship of Sugar to Population-Level Diabetes Prevalence: An Econometric Analysis of Repeated Cross-Sectional Data. PLoS ONE. 2013;8:e57873. doi: 10.1371/journal.pone.0057873.
    1. Luukkonen P.K., Sädevirta S., Zhou Y., Kayser B., Ali A., Ahonen L., Lallukka S., Pelloux V., Gaggini M., Jian C., et al. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care. 2018;41:1732–1739. doi: 10.2337/dc18-0071.
    1. Lee I.-M., Shiroma E.J., Lobelo F., Puska P., Blair S.N., Katzmarzyk P.T., Kahlmeier S., the Lancet Physical Activity Series Working Group Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet. 2012;380:219–229. doi: 10.1016/S0140-6736(12)61031-9.
    1. Rejeski W.J., Ip E.H., Bertoni A.G., Bray G.A., Evans G., Gregg E.W., Zhang Q. Lifestyle Change and Mobility in Obese Adults with Type 2 Diabetes. N. Engl. J. Med. 2012;366:1209–1217. doi: 10.1056/NEJMoa1110294.
    1. Heymsfield S.B., Wadden T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017;376:254–266. doi: 10.1056/NEJMra1514009.
    1. Ling C., Rönn T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019;29:1028–1044. doi: 10.1016/j.cmet.2019.03.009.
    1. Langenberg C., Lotta L.A. Genomic insights into the causes of type 2 diabetes. Lancet. 2018;391:2463–2474. doi: 10.1016/S0140-6736(18)31132-2.
    1. Taylor R. Pathogenesis of type 2 diabetes: Tracing the reverse route from cure to cause. Diabetologia. 2008;51:1781–1789. doi: 10.1007/s00125-008-1116-7.
    1. Lewis G.F., Carpentier A., Adeli K., Giacca A. Disordered Fat Storage and Mobilization in the Pathogenesis of Insulin Resistance and Type 2 Diabetes. Endocr. Rev. 2002;23:201–229. doi: 10.1210/edrv.23.2.0461.
    1. Defronzo R.A. Banting Lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–795. doi: 10.2337/db09-9028.
    1. Heeren J., Scheja L. Metabolic-associated fatty liver disease and lipoprotein metabolism. Mol. Metab. 2021;50:101238. doi: 10.1016/j.molmet.2021.101238.
    1. Bergman B.C., Goodpaster B.H. Exercise and Muscle Lipid Content, Composition, and Localization: Influence on Muscle Insulin Sensitivity. Diabetes. 2020;69:848–858. doi: 10.2337/dbi18-0042.
    1. Kahn S.E., Hull R.L., Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–846. doi: 10.1038/nature05482.
    1. Czech M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017;23:804–814. doi: 10.1038/nm.4350.
    1. James D.E., Stöckli J., Birnbaum M.J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol. 2021;22:751–771. doi: 10.1038/s41580-021-00390-6.
    1. Fryk E., Strindberg L., Lundqvist A., Sandstedt M., Bergfeldt L., Hultén L.M., Bergström G., Jansson P.-A. Galectin-1 is inversely associated with type 2 diabetes independently of obesity—A SCAPIS pilot study. Metab. Open. 2019;4:100017. doi: 10.1016/j.metop.2019.100017.
    1. Roumans N.J.T., Vink R.G., Bouwman F.G., Fazelzadeh P., van Baak M., Mariman E.C.M. Weight loss-induced cellular stress in subcutaneous adipose tissue and the risk for weight regain in overweight and obese adults. Int. J. Obes. 2017;41:894–901. doi: 10.1038/ijo.2016.221.
    1. Chouchani E.T., Kajimura S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 2019;1:189–200. doi: 10.1038/s42255-018-0021-8.
    1. Guilherme A., Virbasius J.V., Puri V., Czech M.P. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 2008;9:367–377. doi: 10.1038/nrm2391.
    1. Friedman J.M. Leptin and the endocrine control of energy balance. Nat. Metab. 2019;1:754–764. doi: 10.1038/s42255-019-0095-y.
    1. Acar S., Paketçi A., Küme T., Tuhan H., Çalan G., Demir K., Böber E., Abacı A. Serum galectin-1 levels are positively correlated with body fat and negatively with fasting glucose in obese children. Peptides. 2017;95:51–56. doi: 10.1016/j.peptides.2017.07.009.
    1. Mukherjee R., Kim S.W., Park T., Choi M.S., Yun J.W. Targeted inhibition of galectin 1 by thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int. J. Obes. 2015;39:1349–1358. doi: 10.1038/ijo.2015.74.
    1. Liu X., Feng Q., Chen Y., Zuo J., Gupta N., Chang Y., Fang F. Proteomics-Based Identification of Differentially-Expressed Proteins Including Galectin-1 in the Blood Plasma of Type 2 Diabetic Patients. J. Proteome Res. 2009;8:1255–1262. doi: 10.1021/pr800850a.
    1. Ahmed M., Neville M.J., Edelmann M.J., Kessler B.M., Karpe F. Proteomic Analysis of Human Adipose Tissue After Rosiglitazone Treatment Shows Coordinated Changes to Promote Glucose Uptake. Obesity. 2010;18:27–34. doi: 10.1038/oby.2009.208.
    1. Pini M., Castellanos K.J., Rhodes D.H., Fantuzzi G. Obesity and IL-6 interact in modulating the response to endotoxemia in mice. Cytokine. 2013;61:71–77. doi: 10.1016/j.cyto.2012.08.027.
    1. Parray H.A., Yun J.W. Proteomic Identification of Target Proteins of Thiodigalactoside in White Adipose Tissue from Diet-Induced Obese Rats. Int. J. Mol. Sci. 2015;16:14441–14463. doi: 10.3390/ijms160714441.
    1. Parray H.A., Yun J.W. Combined inhibition of autophagy protein 5 and galectin-1 by thiodigalactoside reduces diet-induced obesity through induction of white fat browning. IUBMB Life. 2017;69:510–521. doi: 10.1002/iub.1634.
    1. Williams S.P., Odell A.F., Karnezis T., Farnsworth R.H., Gould C.M., Li J., Paquet-Fifield S., Harris N.C., Walter A., Gregory J.L., et al. Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling. Sci. Signal. 2017;10:eaal2987. doi: 10.1126/scisignal.aal2987.
    1. Al-Obaidi N., Mohan S., Liang S., Zhao Z., Nayak B.K., Li B., Sriramarao P., Habib S.L. Galectin-1 is a new fibrosis protein in type 1 and type 2 diabetes. FASEB J. 2018;33:373–387. doi: 10.1096/fj.201800555RR.
    1. Waltl I., Zehetner C., Seifarth C., Handle F., Kieselbach G.F., Angermann R., Kralinger M.T. Effects of Intravitreal Aflibercept on Galectin-1 and Vascular Endothelial Growth Factor-A Plasma Levels in Patients with Diabetic Retinopathy. Curr. Eye Res. 2018;43:368–375. doi: 10.1080/02713683.2017.1403632.
    1. Tsai Y.-T., Liang C.-H., Yu J.-H., Huang K.-C., Tung C.-H., Wu J.-E., Wu Y.-Y., Chang C.-H., Hong T.-M., Chen Y.-L. A DNA Aptamer Targeting Galectin-1 as a Novel Immunotherapeutic Strategy for Lung Cancer. Mol. Ther.-Nucleic Acids. 2019;18:991–998. doi: 10.1016/j.omtn.2019.10.029.
    1. Sundblad V., Garcia-Tornadu I.A., Ornstein A.M., Allo V.C.M., Lorenzo R., Gatto S.G., Morales R.M., Tudela J.A.G., Cocco M.N.M., Croci D.O., et al. Galectin-1 impacts on glucose homeostasis by modulating pancreatic insulin release. Glycobiology. 2021;31:908–915. doi: 10.1093/glycob/cwab040.
    1. Jovanovic M.M., Jurisevic M.M., Gajovic N.M., Arsenijevic N.N., Jocic M.V., Jovanovic I.P., Zdravkovic N.D., Djukic A.L., Maric V.J., Jovanovic M.M. Increased Severity of Ulcerative Colitis in the Terminal Phase of the Metabolic Syndrome. Tohoku J. Exp. Med. 2021;254:171–182. doi: 10.1620/tjem.254.171.
    1. Wu Z., Liu J., Chen G., Du J., Cai H., Chen X., Ye G., Luo Y., Luo Y., Zhang L., et al. CD146 is a Novel ANGPTL2 Receptor that Promotes Obesity by Manipulating Lipid Metabolism and Energy Expenditure. Adv. Sci. 2021;8:2004032. doi: 10.1002/advs.202004032.
    1. Brajer-Luftmann B., Kaczmarek M., Nowicka A., Stelmach-Mardas M., Wyrzykiewicz M., Yasar S., Piorunek T., Sikora J., Batura-GabryeL H. Regulatory T cells, damage-associated molecular patterns, and myeloid-derived suppressor cells in bronchoalveolar lavage fluid interlinked with chronic obstructive pulmonary disease severity: An observational study. Medicine. 2022;101:e29208. doi: 10.1097/MD.0000000000029208.
    1. Lluch A., Veiga S.R., Latorre J., Moreno-Navarrete J.M., Bonifaci N., Zhou Y., Höring M., Liebisch G., Olkkonen V.M., Llobet-Navas D., et al. A compound directed against S6K1 hampers fat mass expansion and mitigates diet-induced hepatosteatosis. JCI Insight. 2022;7:e150461. doi: 10.1172/jci.insight.150461.
    1. Van der Zijl N.J., Goossens G.H., Moors C.C., van Raalte D.H., Muskiet M.H., Pouwels P.J., Blaak E.E., Diamant M. Ectopic fat storage in the pancreas, liver, and abdominal fat depots: Impact on beta-cell function in individuals with impaired glucose metabolism. J. Clin. Endocrinol. Metab. 2011;96:459–467. doi: 10.1210/jc.2010-1722.
    1. Reaven G.M. The role of insulin resistance and hyperinsulinemia in coronary heart disease. Metabolism. 1992;41:16–19. doi: 10.1016/0026-0495(92)90088-R.
    1. Muoio D.M. Revisiting the connection between intramyocellular lipids and insulin resistance: A long and winding road. Diabetologia. 2012;55:2551–2554. doi: 10.1007/s00125-012-2597-y.
    1. Fryk E., Olausson J., Mossberg K., Strindberg L., Schmelz M., Brogren H., Gan L.-M., Piazza S., Provenzani A., Becattini B., et al. Hyperinsulinemia and insulin resistance in the obese may develop as part of a homeostatic response to elevated free fatty acids: A mechanistic case-control and a population-based cohort study. eBioMedicine. 2021;65:103264. doi: 10.1016/j.ebiom.2021.103264.
    1. Olefsky J.M., Saltiel A.R. PPAR gamma and the treatment of insulin resistance. Trends Endocrinol. Metab. 2000;11:362–368. doi: 10.1016/S1043-2760(00)00306-4.
    1. Clément K., Vaisse C., Lahlou N., Cabrol S., Pelloux V., Cassuto D., Gourmelen M., Dina C., Chambaz J., Lacorte J.-M., et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401. doi: 10.1038/32911.
    1. Montague C., Farooqi S., Whitehead J., Soos M.A., Rau H., Wareham N.J., Sewter C.P., Digby J.E., Mohammed S.N., Hurst J.A., et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387:903–908. doi: 10.1038/43185.
    1. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J.M. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432. doi: 10.1038/372425a0.
    1. Wang P., Mariman E., Keijer J., Bouwman F., Noben J.-P., Robben J., Renes J. Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci. 2004;61:2405–2417. doi: 10.1007/s00018-004-4256-z.
    1. Lee M.Y., Han H.J. Galectin-1 upregulates glucose transporter-1 expression level via protein kinase C, phosphoinositol-3 kinase, and mammalian target of rapamycin pathways in mouse embryonic stem cells. Int. J. Biochem. Cell Biol. 2008;40:2421–2430. doi: 10.1016/j.biocel.2008.04.004.
    1. Okano K., Tsuruta Y., Yamashita T., Takano M., Echida Y., Nitta K. Suppression of renal fibrosis by galectin-1 in high glucose-treated renal epithelial cells. Exp. Cell Res. 2010;316:3282–3291. doi: 10.1016/j.yexcr.2010.08.015.
    1. Liu Y., Long L., Yuan F., Liu F., Liu H., Peng Y., Sun L., Chen G. High glucose-induced Galectin-1 in human podocytes implicates the involvement of Galectin-1 in diabetic nephropathy. Cell Biol. Int. 2015;39:217–223. doi: 10.1002/cbin.10363.
    1. Sundblad V., Morosi L.G., Geffner J.R., Rabinovich G.A. Galectin-1: A Jack-of-All-Trades in the Resolution of Acute and Chronic Inflammation. J. Immunol. 2017;199:3721–3730. doi: 10.4049/jimmunol.1701172.
    1. Sundblad V., Quintar A.A., Morosi L.G., Niveloni S.I., Cabanne A., Smecuol E., Mauriño E., Mariño K.V., Bai J.C., Maldonado C.A., et al. Galectins in Intestinal Inflammation: Galectin-1 Expression Delineates Response to Treatment in Celiac Disease Patients. Front. Immunol. 2018;9:379. doi: 10.3389/fimmu.2018.00379.
    1. Hirose I., Kanda A., Noda K., Ishida S. Glucocorticoid receptor inhibits Muller glial galectin-1 expression via DUSP1-dependent and -independent deactivation of AP-1 signalling. J. Cell Mol. Med. 2019;23:6785–6796. doi: 10.1111/jcmm.14559.
    1. Pal P., Kanaujiya J.K., Lochab S., Tripathi S.B., Sanyal S., Behre G., Trivedi A.K. Proteomic analysis of rosiglitazone and guggulsterone treated 3T3-L1 preadipocytes. Mol. Cell. Biochem. 2013;376:81–93. doi: 10.1007/s11010-012-1551-0.
    1. Ishibashi S., Kuroiwa T., Sakaguchi M., Sun L., Kadoya T., Okano H., Mizusawa H. Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp. Neurol. 2007;207:302–313. doi: 10.1016/j.expneurol.2007.06.024.
    1. Cheng Y.-H., Jiang Y.-F., Qin C., Shang K., Yuan Y., Wei X.-J., Xu Z., Luo X., Wang W., Qu W.-S. Galectin-1 Contributes to Vascular Remodeling and Blood Flow Recovery After Cerebral Ischemia in Mice. Transl. Stroke Res. 2022;13:160–170. doi: 10.1007/s12975-021-00913-5.
    1. Abu El-Asrar A.M., Ahmad A., Allegaert E., Siddiquei M.M., Alam K., Gikandi P.W., De Hertogh G., Opdenakker G. Galectin-1 studies in proliferative diabetic retinopathy. Acta Ophthalmol. 2020;98:e1–e12. doi: 10.1111/aos.14191.
    1. Kanda A., Dong Y., Noda K., Saito W., Ishida S. Advanced glycation endproducts link inflammatory cues to upregulation of galectin-1 in diabetic retinopathy. Sci. Rep. 2017;7:16168. doi: 10.1038/s41598-017-16499-8.
    1. Potikha T., Pappo O., Mizrahi L., Olam D., Maller S.M., Rabinovich G.A., Galun E., Goldenberg D.S. Lack of galectin-1 exacerbates chronic hepatitis, liver fibrosis, and carcinogenesis in murine hepatocellular carcinoma model. FASEB J. 2019;33:7995–8007. doi: 10.1096/fj.201900017R.
    1. Seropian I.M., Cerliani J.P., Toldo S., Van Tassell B.W., Ilarregui J.M., González G.E., Matoso M., Salloum F., Melchior R., Gelpi R.J., et al. Galectin-1 Controls Cardiac Inflammation and Ventricular Remodeling during Acute Myocardial Infarction. Am. J. Pathol. 2013;182:29–40. doi: 10.1016/j.ajpath.2012.09.022.
    1. Seropian I.M., González G.E., Maller S.M., Berrocal D.H., Abbate A., Rabinovich G.A. Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and Therapeutic Opportunities. Mediat. Inflamm. 2018;2018:8696543. doi: 10.1155/2018/8696543.
    1. Cerri D.G., Rodrigues L.C., Stowell S.R., Araujo D.D., Coelho M.C., Oliveira S.R., Bizario J.C., Cummings R.D., Dias-Baruffi M., Costa M.C.R. Degeneration of dystrophic or injured skeletal muscles induces high expression of Galectin-1. Glycobiology. 2008;18:842–850. doi: 10.1093/glycob/cwn079.
    1. Lee J., Ju K.D., Kim H.J., Tsogbadrakh B., Ryu H., Kang E.J., Kang M.J., Yang J., Kang H.G., Ahn C., et al. Soluble α-klotho anchors TRPV5 to the distal tubular cell membrane independent of FGFR1 by binding TRPV5 and galectin-1 simultaneously. Am. J. Physiol. Physiol. 2021;320:F559–F568. doi: 10.1152/ajprenal.00044.2021.
    1. Burlina S., Banfi C., Brioschi M., Visentin S., Dalfrà M.G., Traldi P., Lapolla A. Is the placental proteome impaired in well-controlled gestational diabetes? J. Mass Spectrom. 2019;54:359–365. doi: 10.1002/jms.4336.
    1. Blois S.M., Gueuvoghlanian-Silva B.Y., Tirado-González I., Torloni M.R., Freitag N., Mattar R., Conrad M.L., Unverdorben L., Barrientos G., Knabl J., et al. Getting too sweet: Galectin-1 dysregulation in gestational diabetes mellitus. Mol. Hum. Reprod. 2014;20:644–649. doi: 10.1093/molehr/gau021.
    1. Wu H., Chen P., Liao R., Li Y.-W., Yi Y., Wang J.-X., Sun T.-W., Zhou J., Shi Y.-H., Yang X.-R., et al. Overexpression of galectin-1 is associated with poor prognosis in human hepatocellular carcinoma following resection. J. Gastroenterol. Hepatol. 2012;27:1312–1319. doi: 10.1111/j.1440-1746.2012.07130.x.
    1. Potthoff S.A., Sitek B., Stegbauer J., Schulenborg T., Marcus K., Quack I., Rump L.C., Meyer H.E., Stühler K., Vonend O. The glomerular proteome in a model of chronic kidney disease. Proteom.-Clin. Appl. 2008;2:1127–1139. doi: 10.1002/prca.200800010.
    1. Ahlqvist E., Storm P., Käräjämäki A., Martinell M., Dorkhan M., Carlsson A., Vikman P., Prasad R.B., Aly D.M., Almgren P., et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6:361–369. doi: 10.1016/S2213-8587(18)30051-2.
    1. Croci D.O., Cerliani J.P., Dalotto-Moreno T., Méndez-Huergo S.P., Mascanfroni I.D., Dergan-Dylon S., Toscano M.A., Caramelo J.J., García-Vallejo J.J., Ouyang J., et al. Glycosylation-Dependent Lectin-Receptor Interactions Preserve Angiogenesis in Anti-VEGF Refractory Tumors. Cell. 2014;156:744–758. doi: 10.1016/j.cell.2014.01.043.
    1. Hsieh S.H., Ying N.W., Wu M.H., Chiang W.F., Hsu C.L., Wong T.Y., Jin Y.T., Hong T.M., Chen Y.L. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27:3746–3753. doi: 10.1038/sj.onc.1211029.
    1. Kanda A., Noda K., Saito W., Ishida S. Aflibercept Traps Galectin-1, an Angiogenic Factor Associated with Diabetic Retinopathy. Sci. Rep. 2015;5:17946. doi: 10.1038/srep17946.
    1. Ridano M.E., Subirada P.V., Paz M.C., Lorenc V.E., Stupirski J.C., Gramajo A.L., Luna J.D., Croci D.O., Rabinovich G.A., Sánchez M.C. Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget. 2017;8:32505–32522. doi: 10.18632/oncotarget.17129.
    1. Hase K., Kanda A., Noda K., Ishida S. Increased plasma galectin-1 correlates with advanced glycation end products and interleukin-1beta in patients with proliferative diabetic retinopathy. Int. J. Ophthalmol. 2019;12:692–694.
    1. Yang N., Zhang W., He T., Xing Y. Suppression of Retinal Neovascularization by Inhibition of Galectin-1 in a Murine Model of Oxygen-Induced Retinopathy. J. Ophthalmol. 2017;2017:5053035. doi: 10.1155/2017/5053035.
    1. Aydin S. Three new players in energy regulation: Preptin, adropin and irisin. Peptides. 2014;56:94–110. doi: 10.1016/j.peptides.2014.03.021.
    1. Glück M., Glück J., Wiewióra M., Rogala B., Piecuch J. Serum Irisin, Adropin, and Preptin in Obese Patients 6 Months After Bariatric Surgery. Obes. Surg. 2019;29:3334–3341. doi: 10.1007/s11695-019-03998-y.
    1. Elola M.T., Chiesa M.E., Alberti A.F., Mordoh J., Fink N.E. Galectin-1 receptors in different cell types. J. Biomed. Sci. 2005;12:13–29. doi: 10.1007/s11373-004-8169-5.
    1. Tsai Y.L., Chou R.H., Lu Y.W., Chang C.C., Kuo C.S., Huang P.H., Chen J.W., Lin S.J. Associations between galectin-1, left ventricular diastolic dysfunction, and heart failure with preserved ejection fraction. J. Cardiol. 2022;79:371–375. doi: 10.1016/j.jjcc.2021.09.017.
    1. Horie H., Kadoya T., Sango K., Hasegawa M. Oxidized Galectin-1 is an Essential Factor for Peripheral Nerve Regeneration. Curr. Drug Targets. 2005;6:385–394. doi: 10.2174/1389450054021954.
    1. Lin Y.T., Chen J.S., Wu M.H., Hsieh I.S., Liang C.H., Hsu C.L., Hong T.M., Chen Y.L. Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts. J. Invest. Dermatol. 2015;135:258–268. doi: 10.1038/jid.2014.288.

Source: PubMed

3
订阅