Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity

Cole D Bendor, Aya Bardugo, Orit Pinhas-Hamiel, Arnon Afek, Gilad Twig, Cole D Bendor, Aya Bardugo, Orit Pinhas-Hamiel, Arnon Afek, Gilad Twig

Abstract

Severe obesity among children and adolescents is a significant global public health concern. The prevalence has markedly increased over the last decades, becoming common in many countries. Overwhelming rates of obesity among youth have prompted efforts to identify an evidence-based immediate- and long-term cardiometabolic risk factor profile in childhood-onset severe obesity, and to highlight gaps that require further investigation. The PubMed database was systematically searched in accordance with PRISMA guidelines. The search yielded 831 results, of which 60 fulfilled stringent criteria and were summarized in this review. The definition of severe obesity was variable, with only one half the publications using the definition BMI > 120% of the 95th percentile. Point estimates of the prevalence of at least one cardiometabolic risk factor in children with severe obesity reportedly range from 67 to 86%. Cross-sectional studies indicate that children and adolescents with severe obesity are at greater risk than those with mild obesity for type 2 diabetes, hypertension, fatty liver disease and dyslipidemia, already at childhood and adolescence. Robust epidemiological data on the long-term risk and actual point estimates in adulthood are lacking for these diseases as well as for other diseases (coronary heart disease, stroke, chronic kidney disease and cancer). Recent longitudinal studies indicate an increased risk for cardiomyopathy, heart failure, cardiovascular mortality and all-cause mortality in adulthood for adolescents with severe obesity compared to those with mild obesity. Given the alarming increase in the prevalence of severe obesity, the persistence of adiposity from childhood to adulthood and the precarious course of young adults with chronic comorbidities, the economic and clinical services burden on the healthcare system is expected to rise.

Keywords: Adolescence; Cancer; Cardiovascular; Diabetes; Hypertension; Morbid obesity; Mortality; NAFLD; Paediatrics; Severe obesity; Youth.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study flowchart
Fig. 2
Fig. 2
Commonly used definitions for childhood severe obesity. AMA: American Medical Association; HRSA: Health Resources and Services Administrations; CDC: Centers for Disease Control; AHA: American Heart Association; NHANES: National Health and Nutrition Examination Survey. *Age-specific and sex-specific BMI. The table shows characteristics of commonly used definitions. The chart presents the distribution of the use of the definitions by year of publication
Fig. 3
Fig. 3
Prevalence of abnormal cardiometabolic risk factors by BMI group in cross-sectional studies. TC: total cholesterol; LDL: low-density lipoprotein cholesterol; HDL: high-density lipoprotein cholesterol; TG: triglycerides; BP: blood pressure; SBP: systolic blood pressure; DBP: diastolic blood pressure; FG: Fasting Glucose; HbA1c: haemoglobin A1c. A single panel under BP represents abnormal values of SBP or DBP. Abnormal values of fasting plasma glucose (≥ 100 mg/dl) and glycated hemoglobin (> 5.7%) are those recommended by the American Diabetes Association for identifying persons at high risk for diabetes (at least in the prediabetes range). Studies based on cohorts from the United States (a) and other countries (b) are presented. The definition of severe obesity varied between studies, as did the thresholds that defined abnormal values of cardiometabolic morbidity (Additional file 1: Table S2)
Fig. 4
Fig. 4
Cardiometabolic outcomes in adulthood of adolescents with severe versus mild obesity in national longitudinal cohorts. CHD: coronary heart disease; CVD: cardiovascular disease. Severe obesity and mild obesity were defined as BMI ≥ 35 and 30 ≤ BMI 2, respectively. Cox proportional hazard models were used in all the studies. The horizontal axis is presented in the logarithmic scale. * The presented numbers of cases and participants were derived from the unadjusted models. †Swedish national cohort. Heart failure was determined as the first event of heart failure hospitalization. The reference groups were 18.5 < BMI < 20.0 kg/m2. Hazard ratios (HRs) were adjusted for age at entrance to the study, the year of entrance to the study, test center, comorbidities at baseline, parental education, systolic and diastolic blood pressure, muscle strength and fitness. HRs for heart failure were also adjusted for IQ level. HRs for cardiomyopathy were also adjusted for alcohol and substance use disorder. ‡Israeli national cohort. The reference group was 17.5 < BMI < 20.0 kg/m2. HRs were adjusted for age, birth year, sex, socioeconomic status, country of origin, education level and height

References

    1. Skinner AC, Ravanbakht SN, Skelton JA, Perrin EM, Armstrong SC. Prevalence of obesity and severe obesity in US children, 1999–2016. Pediatrics. 2018;141(3):e20173459.
    1. Twig G, Reichman B, Afek A, Derazne E, Hamiel U, Furer A, et al. Severe obesity and cardio-metabolic comorbidities: a nationwide study of 2.8 million adolescents. Int J Obes. 2018;43(7):1391–1399.
    1. Wabitsch M, Hauner H, Hertrampf M, Muche R, Hay B, Mayer H, et al. Type II diabetes mellitus and impaired glucose regulation in Caucasian children and adolescents with obesity living in Germany. Int J Obes. 2004;28(2):307–313.
    1. Ek AE, Rössner SM, Hagman E, Marcus C. High prevalence of prediabetes in a Swedish cohort of severely obese children. Pediatr Diabetes. 2015;16(2):117–128.
    1. Bar Dayan Y, Elishkevits K, Grotto I, Goldstein L, Goldberg A, Shvarts S, et al. The prevalence of obesity and associated morbidity among 17-year-old Israeli conscripts. Public Health. 2005;119(5):385–389.
    1. Invitti C, Guzzaloni G, Gilardini L, Morabito F, Viberti G. Prevalence and concomitants of glucose intolerance in European obese children. Diabetes Care. 2002;26(1):118–124.
    1. Andes LJ, Cheng YJ, Rolka DB, Gregg EW, Imperatore G. Prevalence of prediabetes among adolescents and young adults in the United States, 2005-2016. JAMA Pediatr. 2020;174(2):e194498–e194498.
    1. Dejavitte RAS, Enes CC, Nucci LB. Prevalence of metabolic syndrome and its associated factors in overweight and obese adolescents. J Pediatr Endocrinol Metab. 2020;33(2):233–239.
    1. Spinelli A, Buoncristiano M, Kovacs VA, Yngve A, Spiroski I, Obreja G, et al. Prevalence of severe obesity among primary school children in 21 European countries. Obes Facts. 2019;12(2):244–258.
    1. Tester JM, Phan TLT, Tucker JM, Leung CW, Gillette MLD, Sweeney BR, et al. Characteristics of children 2 to 5 years of age with severe obesity. Pediatrics. 2018;141(3):e20173228.
    1. Carsley SE, Anderson LN, Plumptre L, Parkin PC, Maguire JL, Birken CS, et al. Severe obesity, obesity, and cardiometabolic risk in children 0 to 6 years of age. Child Obes. 2017;13(5):415–424.
    1. Tylavsky F, Ferrara A, Catellier DJ, Oken E, Li X, Law A, et al. Understanding childhood obesity in the US: the NIH environmental influences on child health outcomes (ECHO) program. Int J Obes. 2020;44(3):617–627.
    1. Satkunam M, Anderson LN, Carsley S, Maguire JL, Parkin PC, Sprague AE, et al. Severe obesity in children 17 to 24 months of age: a cross-sectional study of TARGet Kids! and Better Outcomes Registry & Network (BORN) Ontario. Can J Public Heal. 2018;109(4):489–497.
    1. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement David. Syst Rev. 2015;4(1):1.
    1. Salvador-Oliván JA, Marco-Cuenca G, Arquero-Avilés R. Errors in search strategies used in systematic reviews and their effects on information retrieval. J Med Libr Assoc. 2019;107(2):210–221.
    1. Freedman DS, Mei Z, Srinivasan SR, Berenson GS, Dietz WH. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa Heart Study. J Pediatr. 2007;150(1):12–17.
    1. Flegal KM, Wei R, Ogden CL, Freedman DS, Johnson CL, Curtin LR. Characterizing extreme values of body mass index–for-age by using the 2000 Centers for Disease Control and Prevention growth charts. Am J Clin Nutr. 2009;90(5):1314–1320.
    1. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120(suppl 4):S164–S192.
    1. Kelly AS, Barlow SE, Rao G, Inge TH, Hayman LL, Steinberger J, et al. Severe obesity in children and adolescents: identification, associated health risks, and treatment approaches. Circulation. 2013;128(15):1689–1712.
    1. Ogden CL, Kuczmarski RJ, Flegal KM, Mei Z, Guo S, Wei R, et al. Centers for Disease Control and Prevention 2000 growth charts for the United States: improvements to the 1977 National Center for Health Statistics version. Pediatrics. 2002;109(1):45–60.
    1. Freedman DS, Berenson GS. Tracking of BMI z scores for severe obesity. Pediatrics. 2017;140(3):e20171072.
    1. Valerio G, Maffeis C, Balsamo A, Del Giudice EM, Brufani C, Grugni G, et al. Severe obesity and cardiometabolic risk in children: comparison from two international classification systems. PLoS ONE. 2013;8(12):6–13.
    1. Rosengren A, Åberg M, Robertson J, Waern M, Schaufelberger M, Kuhn G, et al. Body weight in adolescence and long-term risk of early heart failure in adulthood among men in Sweden. Eur Heart J. 2017;38(24):1926–1933.
    1. Robertson J, Schaufelberger M, Lindgren M, Adiels M, Schiöler L, Torén K, et al. Higher body mass index in adolescence predicts cardiomyopathy risk in midlife. Circulation. 2019;140(2):117–125.
    1. Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med. 2016;374(25):2430–2440.
    1. Zhang YX, Wang SR, Li SY. Prevalence of severe obesity and its association with elevated blood pressure among children and adolescents in Shandong, China. Blood Press Monit. 2017;22(6):345–350.
    1. Boyd G, Koeingsberg J, Falkner B, Gidding S, Hassink S. Effect of obesity and high blood pressure on plasma lipid levels in children and adolescents. Pediatrics. 2005;116(2):442–446.
    1. Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med. 2015;373(14):1307–1317.
    1. Zabarsky G, Beek C, Hagman E, Pierpont B, Caprio S, Weiss R. Impact of severe obesity on cardiovascular risk factors in youth. J Pediatr. 2018;192:105–114.
    1. Barstad LH, Júlíusson PB, Johnson LK, Hertel JK, Lekhal S, Hjelmesæth J. Gender-related differences in cardiometabolic risk factors and lifestyle behaviors in treatment-seeking adolescents with severe obesity. BMC Pediatr. 2018;18(1):1–8.
    1. Zimmermann E, Bjerregaard LG, Gamborg M, Vaag AA, Sørensen TIA, Baker JL. Childhood body mass index and development of type 2 diabetes throughout adult life—A large-scale danish cohort study. Obesity. 2017;25(5):965–971.
    1. Furer A, Afek A, Orr O, Gershovitz L, Landau Rabbi M, Derazne E, et al. Sex-specific associations between adolescent categories of BMI with cardiovascular and non-cardiovascular mortality in midlife. Cardiovasc Diabetol. 2018;17(1):80.
    1. Twig G, Geva N, Levine H, Derazne E, Goldberger N, Haklai Z, et al. Body mass index and infectious disease mortality in midlife in a cohort of 2.3 million adolescents. Int J Obes. 2018;42(4):801–807.
    1. Nguyen JV, Robbins JM, Houck KL, Nobis EA, Inman KA, Khan KS, et al. Severe obesity and high blood pressure among children, Philadelphia health centers, 2010. J Prim Care Community Heal. 2014;5(2):152–155.
    1. Lo JC, Chandra M, Sinaiko A, Daniels SR, Prineas RJ, Maring B, et al. Severe obesity in children: prevalence, persistence and relation to hypertension. Int J Pediatr Endocrinol. 2014;2014(1):3.
    1. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362–2374.
    1. Dhuper S, Bayoumi NS, Shah YD, Mehta S. Ethnic differences in lipid profiles of overweight, obese, and severely obese children and adolescents 6–19 years of age. Child Obes. 2017;13(3):236–241.
    1. Propst M, Colvin C, Griffin RL, Sunil B, Harmon CM, Yannam G, et al. Diabetes and prediabetes are Significantly higher in morbidly obese children compared with obese children. Endocr Pract. 2015;21(9):1046–1053.
    1. Aguilar A, Ostrow V, De Luca F, Suarez E. Elevated ambulatory blood pressure in a multi-ethnic population of obese children and adolescents. J Pediatr. 2010;156(6):930–935.
    1. Cheung EL, Bell CS, Samuel JP, Poffenbarger T, Redwine KMN, Samuels JA. Race and obesity in adolescent hypertension. Pediatrics. 2017;139(5):e20161433.
    1. Hamiel U, Pinhas-Hamiel O, Vivante A, Bendor CD, Bardugo A, Afek A, et al. Impact of immigration on body mass index and blood pressure among adolescent males and females. Hypertension. 2019;74(6):1316–1323.
    1. Pollestad Kolsgaard ML, Andersen LF, Tonstad S, Brunborg C, Wangensteen T, Joner G. Ethnic differences in metabolic syndrome among overweight and obese children and adolescents: the Oslo Adiposity Intervention Study. Acta Paediatr Int J Paediatr. 2008;97(11):1557–1563.
    1. Woo JG, Zhang N, Fenchel M, Jacobs DR, Jr, Hu T, Urbina EM, et al. Prediction of adult class II/III obesity from childhood BMI: the i3C consortium. Int J Obes. 2019 doi: 10.1038/s41366-019-0461-6.
    1. Hirschler V, Oestreicher K, Maccallini G, Aranda C. Relationship between obesity and metabolic syndrome among Argentinean elementary school children. Clin Biochem. 2010;43(4–5):435–441.
    1. Calcaterra V, Klersy C, Muratori T, Telli S, Caramagna C, Scaglia F, et al. Prevalence of metabolic syndrome (MS) in children and adolescents with varying degrees of obesity. Clin Endocrinol. 2008;68(6):868–872.
    1. Cho WK, Han K, Ahn MB, Park YM, Jung MH, Suh BK, et al. Metabolic risk factors in Korean adolescents with severe obesity: results from the Korea National Health and Nutrition Examination Surveys (K-NHANES) 2007–2014. Diabetes Res Clin Pract. 2018;138:169–176.
    1. Shah AS, Dolan LM, Khoury PR, Gao Z, Kimball TR, Urbina EM. Severe obesity in adolescents and young adults is associated with subclinical cardiac and vascular changes. J Clin Endocrinol Metab. 2015;100(7):2751–2757.
    1. Marcus MD, Foster GD, El Ghormli L. Stability of relative weight category and cardiometabolic risk factors among moderately and severely obese middle school youth. Obesity. 2014;22(4):1118–1125.
    1. Rank M, Siegrist M, Wilks DC, Langhof H, Wolfarth B, Haller B, et al. The cardio-metabolic risk of moderate and severe obesity in children and adolescents. J Pediatr. 2013;163(1):137–142.
    1. Van Emmerik NMA, Renders CM, Van De Veer M, Van Buuren S, Van Der Baan-Slootweg OH, Kist-van Holthe JE, et al. High cardiovascular risk in severely obese young children and adolescents. Arch Dis Child. 2012;97(9):818–821.
    1. Ice CL, Murphy E, Cottrell L, Neal WA. Morbidly obese diagnosis as an indicator of cardiovascular disease risk in children: results from the CARDIAC Project. Int J Pediatr Obes. 2011;6(2):113–119.
    1. Makkes S, Renders CM, Bosmans JE, van der Baan-Slootweg OH, Seidell JC. Cardiometabolic risk factors and quality of life in severely obese children and adolescents in the Netherlands. BMC Pediatr. 2013;13(1):62.
    1. Rijks JM, Plat J, Mensink RP, Dorenbos E, Buurman WA, Vreugdenhil ACE. Children with morbid obesity benefit equally as children with overweight and obesity from an ongoing care program. J Clin Endocrinol Metab. 2015;100(9):3572–3580.
    1. Kapiotis S, Holzer G, Schaller G, Haumer M, Widhalm H, Weghuber D, et al. A proinflammatory state is detectable in obese children and is accompanied by functional and morphological vascular changes. Arterioscler Thromb Vasc Biol. 2006;26(11):2541–2546.
    1. Schlager O, Willfort-Ehringer A, Hammer A, Steiner S, Fritsch M, Giurgea A, et al. Microvascular function is impaired in children with morbid obesity. Vasc Med. 2011;16(2):97–102.
    1. Gidding SS, Nehgme R, Heise C, Muscar C, Linton A, Hassink S. Severe obesity associated with cardiovascular deconditioning, high prevalence of cardiovascular risk factors, diabetes mellitus/hyperinsulinemia, and respiratory compromise. J Pediatr. 2004;144(6):766–769.
    1. Kelly AS, Metzig AM, Schwarzenberg SJ, Norris AL, Fox CK, Steinberger J. Hyperleptinemia and hypoadiponectinemia in extreme pediatric obesity. Metab Syndr Relat Disord. 2012;10(2):123–127.
    1. Kelly AS, Hebbel RP, Solovey AN, Schwarzenberg SJ, Metzig AM, Moran A, et al. Circulating activated endothelial cells in pediatric obesity. J Pediatr. 2010;157(4):547–551.
    1. Norris AL, Steinberger J, Steffen LM, Metzig AM, Schwarzenberg SJ, Kelly AS. Circulating oxidized LDL and inflammation in extreme pediatric obesity. Obesity. 2011;19(7):1415–1419.
    1. Redón P, Grassi G, Redon J, Álvarez-Pitti J, Lurbe E. Sympathetic neural activity, metabolic parameters and cardiorespiratory fitness in obese youths. J Hypertens. 2017;35(3):571–577.
    1. Nyström CD, Henriksson P, Martínez-Vizcaíno V, Medrano M, Cadenas-Sanchez C, Arias-Palencia NM, et al. Does cardiorespiratory fitness attenuate the adverse effects of severe/morbid obesity on cardiometabolic risk and insulin resistance in children? A pooled analysis. Diabetes Care. 2017;40(11):1580–1587.
    1. Tounian P, Aggoun Y, Dubern B, Varille V, Guy-Grand B, Sidi D, et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet. 2001;358(9291):1400–1404.
    1. Li L, Pérez A, Wu L-T, Ranjit N, Brown HS, Kelder SH. Cardiometabolic risk factors among severely obese children and adolescents in the United States, 1999–2012. Child Obes. 2016;12(1):12–19.
    1. Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904.
    1. Koebnick C, Black MH, Wu J, Martinez MP, Smith N, Kuizon B, et al. High blood pressure in overweight and obese youth: implications for screening. J Clin Hypertens. 2013;15(11):793–805.
    1. Lurbe E, Invitti C, Torro I, Maronati A, Aguilar F, Sartorio G, et al. The impact of the degree of obesity on the discrepancies between office and ambulatory blood pressure values in youth. J Hypertens. 2006;24(8):1557–1564.
    1. Parker ED, Sinaiko AR, Kharbanda EO, Margolis KL, Daley MF, Trower NK, et al. Change in weight status and development of hypertension. Pediatrics. 2016;137(3):e20151662–e20151662.
    1. Theodore RF, Broadbent J, Nagin D, Ambler A, Hogan S, Ramrakha S, et al. Childhood to early-midlife systolic blood pressure trajectories: early-life predictors, effect modifiers, and adult cardiovascular outcomes. Hypertension. 2015;66(6):1108–1115.
    1. Tirosh A, Afek A, Rudich A, Percik R, Gordon B, Ayalon N, et al. Progression of normotensive adolescents to hypertensive adults: a study of 26 980 teenagers. Hypertension. 2010;56(2):203–209.
    1. Mayer-Davis EJ, Lawerence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376(15):1419–1429.
    1. Centers for Disease Control and prevention C . National diabetes statistics report, 2017. Atlanta: Centers Dis Control Prev US Dept Heal Hum Serv; 2017.
    1. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med. 2002;346(11):802–810.
    1. Pinhas-Hamiel O, Zeitler P. Advances in epidemiology and treatment of type 2 diabetes in children. Adv Pediatr. 2005;52:223–259.
    1. Weiss R, Taksali SE, Tamborlane WV, Burgert TS, Savoye M, Caprio S. Predictors of changes in glucose tolerance status in obese youth. Diabetes Care. 2005;28(4):902–909.
    1. Hutchins J, Barajas RA, Hale D, Escaname E, Lynch J. Type 2 diabetes in a 5-year-old and single center experience of type 2 diabetes in youth under 10. Pediatr Diabetes. 2017;18(7):674–677.
    1. Kevat D, Wilson D, Sinha A. A 5-year-old girl with type 2 diabetes. Lancet. 2014;383(9924):1268.
    1. Pinhas-Hamiel O, Zeitler P. Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet. 2007;369(9575):1823–1831.
    1. Constantino MI, Molyneaux L, Limacher-Gisler F, Al-Saeed A, Luo C, Wu T, et al. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care. 2013;36(12):3863–3869.
    1. Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R, Dolan L, Imperatore G, et al. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA. 2017;317(8):825–835.
    1. Schwimmer JB, Deutsch R, Kahen T, Lavine JE, Stanley C, Behling C. Prevalence of fatty liver in children and adolescents. Pediatrics. 2006;118(4):1388–1393.
    1. Di Bonito P, Miraglia del Giudice E, Chiesa C, Licenziati MR, Manco M, Franco F, et al. Preclinical signs of liver and cardiac damage in youth with metabolically healthy obese phenotype. Nutr Metab Cardiovasc Dis. 2018;28(12):1230–1236.
    1. Koot BGP, De Groot E, Van Der Baan-Slootweg OH, Bohte AE, Nederveen AJ, Jansen PLM, et al. Nonalcoholic fatty liver disease and cardiovascular risk in children with obesity. Obesity. 2015;23(6):1239–1243.
    1. Koot BGP, Van Der Baan-Slootweg OH, Bohte AE, Nederveen AJ, Van Werven JR, Tamminga-Smeulders CLJ, et al. Accuracy of prediction scores and novel biomarkers for predicting nonalcoholic fatty liver disease in obese children. Obesity. 2013;21(3):583–590.
    1. Anderson EL, Howe LD, Jones HE, Higgins JPT, Lawlor DA, Fraser A. The prevalence of non-alcoholic fatty liver disease in children and adolescents: a systematic review and meta-analysis. PLoS ONE. 2015;10(10):e0140908.
    1. Schwimmer JB, Behling C, Newbury R, Deutsch R, Nievergelt C, Schork NJ, et al. Histopathology of pediatric nonalcoholic fatty liver disease. Hepatology. 2005;42(3):641–649.
    1. Xanthakos S, Miles L, Bucuvalas J, Daniels S, Garcia V, Inge T. Histologic spectrum of nonalcoholic fatty liver disease in morbidly obese adolescents. Clin Gastroenterol Hepatol. 2006;4(2):226–232.
    1. Holterman AXL, Guzman G, Fantuzzi G, Wang H, Aigner K, Browne A, et al. Nonalcoholic fatty liver disease in severely obese adolescent and adult patients. Obesity. 2013;21(3):591–597.
    1. Schwimmer JB, Pardee PE, Lavine JE, Blumkin AK, Cook S. Cardiovascular risk factors and the metabolic syndrome in pediatric nonalcoholic fatty liver disease. Circulation. 2008;118(3):277–283.
    1. Bloomgarden ZT. Nonalcoholic fatty liver disease and insulin resistance in youth. Diabetes Care. 2007;30(6):1663–1669.
    1. Kindblom JM, Bygdell M, Sondén A, Célind J, Rosengren A, Ohlsson C. BMI change during puberty and the risk of heart failure. J Intern Med. 2018;283(6):558–567.
    1. Furer A, Afek A, Sommer A, Keinan-Boker L, Derazne E, Levi Z, et al. Adolescent obesity and midlife cancer risk: a population-based cohort study of 2·3 million adolescents in Israel. Lancet Diabetes Endocrinol. 2020;8(3):216–225.
    1. Fradin D, Boëlle PY, Belot MP, Lachaux F, Tost J, Besse C, et al. Genome-wide methylation analysis identifies specific epigenetic marks in severely obese children. Sci Rep. 2017;7(1):1–8.
    1. Skinner AC, Skelton JA. Prevalence and trends in obesity and severe obesity among children in the united states, 1999–2012. JAMA Pediatr. 2014;168(6):561–566.
    1. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–2014. JAMA. 2016;315(21):2292–2299.
    1. Fryar CD, Carroll MD, Ogden PD. Prevalence of overweight, obesity, and severe obesity among children and adolescents aged 2–19 years: United States, 1963–1965 through 2015–2016. Natl Cent Heal Stat (US) Div Heal Nutr Exam Surv. 2018;.
    1. Nam HK, Kim HR, Rhie YJ, Lee KH. Trends in the prevalence of extreme obesity among Korean children and adolescents from 2001 to 2014. J Pediatr Endocrinol Metab. 2017;30(5):517–523.
    1. Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69–80.
    1. Tanamas SK, Reddy SP, Chambers MA, Clark EJ, Dunnigan DL, Hanson RL, et al. Effect of severe obesity in childhood and adolescence on risk of type 2 diabetes in youth and early adulthood in an American Indian population. Pediatr Diabetes. 2018;19(4):622–629.
    1. Magliano DJ, Martin VJ, Owen AJ, Zomer E, Liew D. The productivity burden of diabetes at a population level. Diabetes Care. 2018;41(5):979–984.
    1. Sattar N, Rawshani A, Franzén S, Rawshani A, Svensson AM, Rosengren A, et al. Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks. Circulation. 2019;139(19):2228–2237.
    1. Dart AB, Martens PJ, Rigatto C, Brownell MD, Dean HJ, Sellers EA. Earlier onset of complications in youth with type 2 diabetes. Diabetes Care. 2014;37(2):436–443.
    1. Bjerregaard LG, Jensen BW, Ängquist L, Osler M, Sørensen TIA, Baker JL. Change in overweight from childhood to early adulthood and risk of type 2 diabetes. N Engl J Med. 2018;378(14):1302–1312.
    1. De Mutsert R, Sun Q, Willett WC, Hu FB, Van Dam RM. Overweight in early adulthood, adult weight change, and risk of type 2 diabetes, cardiovascular diseases, and certain cancers in men: a cohort study. Am J Epidemiol. 2014;179(11):1353–1365.
    1. Charakida M, Khan T, Johnson W, Finer N, Woodside J, Whincup PH, et al. Lifelong patterns of BMI and cardiovascular phenotype in individuals aged 60–64 years in the 1946 British birth cohort study: an epidemiological study. Lancet Diabetes Endocrinol. 2014;2(8):648–654.
    1. Owen CG, Kapetanakis VV, Rudnicka AR, Wathern AK, Lennon L, Papacosta O, et al. Body mass index in early and middle adult life: prospective associations with myocardial infarction, stroke and diabetes over a 30-year period: The British Regional Heart Study. BMJ Open. 2015;5(9):e008105.
    1. Schmidt M, Johannesdottir SA, Lemeshow S, Lash TL, Ulrichsen SP, Botker HE, et al. Obesity in young men, and individual and combined risks of type 2 diabetes, cardiovascular morbidity and death before 55 years of age: a danish 33-year follow-up study. BMJ Open. 2013;3(4):e002698.
    1. Tirosh A, Shai I, Afek A, Dubnov-Raz G, Ayalon N, Gordon B, et al. Adolescent BMI trajectory and risk of diabetes versus coronary disease. N Engl J Med. 2011;364(14):1315–1325.
    1. Wei GS, Coady SA, Reis JP, Carnethon MR, Coresh J, D’agostino RB, et al. Duration and degree of weight gain and incident diabetes in younger versus middle-aged black and white adults: ARIC, CARDIA, and the framingham heart study. Diabetes Care. 2015;38(11):2042–2049.
    1. Zheng Y, Manson JE, Yuan C, Liang MH, Grodstein F, Stampfer MJ, et al. Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA. 2017;318(3):255–269.
    1. Stokes A, Collins JM, Grant BF, Scamuffa RF, Hsiao CW, Johnston SS, et al. Obesity progression between young adulthood and midlife and incident diabetes: a retrospective cohort study of U.S. adults. Diabetes Care. 2018;41(5):1025–1031.
    1. Twig G, Tirosh A, Derazne E, Haklai Z, Goldberger N, Afek A, et al. Cognitive function in adolescence and the risk for premature diabetes and cardiovascular mortality in adulthood. Cardiovasc Diabetol. 2018;17(1):154.
    1. Juonala M, Harcourt BE, Saner C, Sethi M, Saffery R, Magnussen CG, et al. Neighbourhood socioeconomic circumstances, adiposity and cardiometabolic risk measures in children with severe obesity. Obes Res Clin Pract. 2019;13(4):345–351.
    1. Farrant B, Utter J, Ameratunga S, Clark T, Fleming T, Denny S. Prevalence of severe obesity among New Zealand adolescents and associations with health risk behaviors and emotional well-being. J Pediatr. 2013;163(1):143–149.
    1. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V, et al. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: the Adverse Childhood Experiences (ACE) study. Am J Prev Med. 2019;56(6):774–786.
    1. Pinhas-Hamiel O, Modan-Moses D, Herman-Raz M, Reichman B. Obesity in girls and penetrative sexual abuse in childhood. Acta Paediatr Int J Paediatr. 2009;98(1):144–147.
    1. Beyerlein A, Toschke AM, Von Kries R. Risk factors for childhood overweight: shift of the mean body mass index and shift of the upper percentiles: results from a cross-sectional study. Int J Obes. 2010;34(4):642–648.
    1. Porter RM, Tindall A, Gaffka BJ, Kirk S, Santos M, Abraham-Pratt I, et al. A review of modifiable risk factors for severe obesity in children ages 5 and under. Child Obes. 2018;14(7):468–476.
    1. Flores G, Lin H. Factors predicting severe childhood obesity in kindergarteners. Int J Obes. 2013;37(1):31–39.
    1. Zimlichman E, Kochba I, Mimouni FB, Shochat T, Grotto I, Kreiss Y, et al. Smoking habits and obesity in young adults. Addiction. 2005;100(7):1021–1025.
    1. Bucholz EM, Gooding HC, de Ferranti SD. Awareness of cardiovascular risk factors in U.S. young adults aged 18–39 years. Am J Prev Med. 2018;54(4):e67–e77.
    1. Gregg EW, Cheng YJ, Srinivasan M, Lin J, Geiss LS, Albright AL, et al. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet. 2018;391(10138):2430–2440.
    1. Yang W, Dall TM, Beronjia K, Lin J, Semilla AP, Chakrabarti R, et al. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018;41(5):917–928.
    1. Saydah SH, Siegel KR, Imperatore G, Mercado C, Gregg EW. The cardiometabolic risk profile of young adults with diabetes in the U.S. Diabetes Care. 2019;42(10):1895–1902.

Source: PubMed

3
订阅