Promising Intervention Approaches to Potentially Resolve Neuroinflammation And Steroid Hormones Alterations in Alzheimer's Disease and Its Neuropsychiatric Symptoms

Catia Scassellati, Antonio Carlo Galoforo, Ciro Esposito, Miriam Ciani, Giovanni Ricevuti, Cristian Bonvicini, Catia Scassellati, Antonio Carlo Galoforo, Ciro Esposito, Miriam Ciani, Giovanni Ricevuti, Cristian Bonvicini

Abstract

Neuroinflammation is a biological process by which the central nervous system responds to stimuli/injuries affecting its homeostasis. So far as this reactive response becomes exacerbated and uncontrolled, it can lead to neurodegeneration, compromising the cognitive and neuropsychiatric domains. Parallelly, modifications in the hypothalamic signaling of neuroprotective hormones linked also to the inflammatory responses of microglia and astrocytes can exacerbate these processes. To complicate the picture, modulations in the gut microbiota (GM) can induce changes in neuroinflammation, altering cognitive and neuropsychiatric functioning. We conducted a web-based search on PubMed. We described studies regarding the cross-talk among microglia and astrocytes in the neuroinflammation processes, along with the role played by the steroid hormones, and how this can reflect on cognitive decline/neurodegeneration, in particular on Alzheimer's Disease (AD) and its neuropsychiatric manifestations. We propose and support the huge literature showing the potentiality of complementary/alternative therapeutic approaches (nutraceuticals) targeting the sustained inflammatory response, the dysregulation of hypothalamic system and the GM composition. NF-κB and Keap1/Nrf2 are the main molecular targets on which a list of nutraceuticals can modulate the altered processes. Since there are some limitations, we propose a new intervention natural treatment in terms of Oxygen-ozone (O2-O3) therapy that could be potentially used for AD pathology. Through a meta-analytic approach, we found a significant modulation of O3 on inflammation-NF-κB/NLRP3 inflammasome/Toll-Like Receptor 4 (TLR4)/Interleukin IL-17α signalling, reducing mRNA (p<0.00001 Odd Ratio (OR)=-5.25 95% CI:-7.04/-3.46) and protein (p<0.00001 OR=-4.85 95%CI:-6.89/-2.81) levels, as well as on Keap1/Nrf2 pathway. Through anti-inflammatory, immune, and steroid hormones modulation and anti-microbial activities, O3 at mild therapeutic concentrations potentiated with nutraceuticals and GM regulators could determine combinatorial effects impacting on cognitive and neurodegenerative domains, neuroinflammation and neuroendocrine signalling, directly or indirectly through the mediation of GM.

Keywords: Alzheimer’s Disease; Keap1/Nrf2; NF-κB; Neuroinflammation; Nutraceuticals; Oxygen-Ozone Therapy; Steroid hormones.

Conflict of interest statement

Conflicts of interest The authors declare no conflict of interest.

copyright: © 2021 Scassellati et al.

Figures

Figure 1.
Figure 1.
Neuroinflammation, steroid hormones alteration and gut microbiota (GM) modulation in Alzheimer Disease (AD) and its neuropsychiatric symptoms. We illustrate three crucial features underlying the neurodegenerative disorders such as AD and its neuropsychiatric manifestations (Behavioral and psychological symptoms of dementia, BPSD): a) chronic neuroinflammation and the complex interplay between astroglia and microglia, b) alterations in the hypothalamic signalling of neuroprotective hormones linked also to the inflammatory responses of microglia and astrocytes, and c) modulations in the GM, inducing changes in brain activities contributing to neuroinflammation, and altering cognitive and neuropsychiatric functioning. Tumour necrosis factor-α (TNF-α); Interleukin (IL)-1β; IL-6; prostaglandins (PGs); nitric oxide (NO); Reactive oxygen species (ROS); Toll-like receptors (TLRs); Nuclear factor Nf-κB; Activator protein 1 (AP-1); Receptor for advanced glycation endproducts (RAGE); Glycoprotein 130 (gp130); Neurotrophic Receptor Tyrosine Kinase 2 (TRKB-T1); Smad interacting protein 1 (SIP1); Translocator protein (TSPO); PREG (Pregnenolone); Dehydroepiandrosterone (DHEA); Progesterone (PROG).
Figure 2.
Figure 2.
The potential positive effects of Oxygen-Ozone O2-O3 therapy and Gut Microbiota Regulators (GRMs) on gut microbiota (GM) and consequently on neuroinflammation and neuroendocrine system. We illustrate how a natural bio molecule such as Ozone (O3) showing immune, anti-inflammatory, anti-microbial properties with effects on glucocorticoids (GCs), could represent a new treatment to delay neuroinflammation/neurodegeneration in Alzheimer Disease (AD), where the balance between pro-anti-inflammatory system and the hypothalamic signalling and GM composition are impaired. Moreover, we illustrate that the supplementation of GRMs in terms of Probiotics and GV-971, already used for AD, can potentiate the O3 activities, determining combinatorial effects that could impact on cognitive and neuropsychiatric domains, neuroinflammation and hypothalamic signalling, directly or indirectly through the mediation of GM.
Figure 3.
Figure 3.
Mechanisms of action of Nutraceuticals (Ns) and Ozone (O3) on NF-kB (nuclear factor kappa-light-chain-enhancer of activated B cells)/Keap1 (kelch-like ECH-associated protein)/Nrf2 (nuclear factor erythroid 2-related factor 2) molecular pathways. Here, we illustrate how NF-κB and Keap1/Nrf2 signalling pathways involved in the neuroinflammation/neurodegeneration in Alzheimer’s Disease mechanisms can be therapeutic targets for Nutraceuticals (Ns) and Ozone (O3) molecule. In the absence of stimuli, NF-κB is found in cytoplasm bound to the inhibitory IκB (nuclear factor of kappa light polypeptide gene enhancer in B-cell inhibitor) proteins. In response to stimuli (Reactive oxygen species, ROS), IκB proteins are rapidly phosphorylated by IκB kinase and ultimately degraded by the 26S proteasome. The resulting release of NF-κB and subsequent translocation to the nucleus promote its action on target genes involved in inflammation/immunity (pro-inflammatory cytokines). If chronic, this can provoke neuroinflammation/neurodegeneration. O3 (by second messengers: Hydrogen Peroxide, H2O2 and 4-Hydroxynonenal, 4HNE) and Ns can block this system, contributing to an anti-inflammatory response. On the other hand, the Keap1/Nrf2 pathway is organized in this way: in the absence of stimuli, Nrf2 binds to its repressor Keap1, an adapter between Nrf2 and Cullin 3 protein, which leads to ubiquitination followed by proteasome degradation. Under oxidative stress, after heterodimerization with the Muscoloaponeurotic Fibrosarcoma (MAFs), the Nrf2 translocates to the nucleus, where it dimerizes and binds to ARE (Antioxidant Response Element) genes: Superoxide dismutase (SOD), Glutathione (GSH), Glutathione-S-Transferase (GST), Glutamate-cysteine ligase (GCL), heme oxygenase 1 (HO-1), NADPH:quinone oxidoreductase 1 (NQO1), and other anti-oxidant enzymes, provoking a strong anti-oxidant response. HO-1 is a gene encoding enzyme that catalyses the degradation of heme in carbon monoxide (CO), that in turn is an inhibitor of the NF-κB pathway, thereby decreasing the expression of pro-inflammatory cytokines. HO-1 directly inhibits the pro-inflammatory cytokines and activates the anti-inflammatory cytokines. Keap1 can also prevents NF-κB activity via IKK (IκB kinase) inhibition. O3 (by second messengers: Hydrogen Peroxide, H2O2 and 4-Hydroxynonenal, 4HNE) and Ns can activate Keap1/Nrf2 signalling exercising both anti-inflammatory and anti-oxidant effects. O3 and Ns can activate pro-autophagy and anti-apoptosis mechanisms and block proteosome degradation. Ns can have significant effects on Aβ and τ toxicity and aggregation, decreasing the neurodegeneration.
Figure 4.
Figure 4.
Forest plot for odds ratio (OR) from meta-analysis of the inflammation-NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)/NLRP3 inflammasome/Toll-Like Receptor 4 (TLR4)/Interleukin IL-17α signalling (mRNA genes expression) before and after ozone (O3) treatment. CI, confidence interval; Chi2, χ2 test of goodness of fit; Tau2, estimate of the between-study variance in a random-effects meta-analysis.
Figure 5.
Figure 5.
Forest plot for odds ratio (OR) from meta-analysis of the inflammation-NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells)/NLRP3 inflammasome/Toll-Like Receptor 4 (TLR4)/Interleukin IL-17α signalling (protein levels) before and after ozone (O3) treatment. CI, confidence interval; Chi2, χ2 test of goodness of fit; Tau2, estimate of the between-study variance in a random-effects meta-analysis.

References

    1. Gendelman HE (2002). Neural immunity: Friend or foe? J Neurovirol, 8(6): 474-479.
    1. McManus RM, Heneka MT (2017). Role of neuroinflammation in neurodegeneration: New insights. Alzheimers Res Ther, 9(1): 14-017-0241-2.
    1. Yang QQ, Zhou JW (2019). Neuroinflammation in the central nervous system: Symphony of glial cells. Glia, 67(6): 1017-1035.
    1. Jauregui-Huerta F, Ruvalcaba-Delgadillo Y, Gonzalez-Castaneda R, Garcia-Estrada J, Gonzalez-Perez O, et al. (2010). Responses of glial cells to stress and glucocorticoids. Curr Immunol Rev, 6(3): 195-204.
    1. Garcia-Segura LM, McCarthy MM (2004). Minireview: Role of glia in neuroendocrine function. Endocrinology, 145(3): 1082-1086.
    1. Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP (2016). Sequential activation of microglia and astrocyte cytokine expression precedes increased iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia, 64(2): 300-316.
    1. Saijo K, Winner B, Carson CT, Collier JG, Boyer L, et al. (2009). A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell, 137(1): 47-59.
    1. Mellon SH, Griffin LD (2002). Neurosteroids: Biochemistry and clinical significance. Trends Endocrinol Metab, 13(1): 35-43.
    1. Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJ, et al. (2003). Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol, 71(1): 3-29.
    1. Starka L, Duskova M, Hill M (2015). Dehydroepiandrosterone: A neuroactive steroid. J Steroid Biochem Mol Biol, 145: 254-260.
    1. Compagnone NA, Mellon SH (2000). Neurosteroids: Biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol, 21(1): 1-56.
    1. Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, et al. (2019). Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol, 55: 100788.
    1. Kumar A (2018). Editorial: Neuroinflammation and cognition. Front Aging Neurosci, 10: 413.
    1. Cabinio M, Saresella M, Piancone F, LaRosa F, Marventano I, et al. (2018). Association between hippocampal shape, neuroinflammation, and cognitive decline in alzheimer's disease. J Alzheimers Dis, 66(3): 1131-1144.
    1. Zhao QF, Tan L, Wang HF, Jiang T, Tan MS, et al. (2016). The prevalence of neuropsychiatric symptoms in alzheimer's disease: Systematic review and meta-analysis. J Affect Disord, 190: 264-271.
    1. Schipper HM (2010). Biological markers and alzheimer disease: A canadian perspective. Int J Alzheimers Dis, 2010: 978182.
    1. Mattson MP (2004). Pathways towards and away from alzheimer's disease. Nature, 430(7000): 631-639.
    1. Selkoe DJ (2001). Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis, 3(1): 75-80.
    1. Kwon HS, Koh SH (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener, 9(1): 42.
    1. Cloak N, Khalili Y (2020). Behavioral and psychological symptoms in dementia. In: Behavioral and psychological symptoms in dementia. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2020.
    1. Scassellati C, Ciani M, Maj C, Geroldi C, Zanetti O, et al. (2020). Behavioral and psychological symptoms of dementia (BPSD): Clinical characterization and genetic correlates in an italian alzheimer's disease cohort. J Pers Med, 10(3): 90.
    1. Briguglio M, Dell'Osso B, Panzica G, Malgaroli A, Banfi G, et al. (2018). Dietary neurotransmitters: A narrative review on current knowledge. Nutrients, 10(5): 591.
    1. Paiva IHR, Duarte-Silva E, Peixoto CA (2020). The role of prebiotics in cognition, anxiety, and depression. Eur Neuropsychopharmacol, 34: 1-18.
    1. Delgado-Roche L, Riera-Romo M, Mesta F, Hernandez-Matos Y, Barrios JM, et al. (2017). Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur J Pharmacol, 811: 148-154.
    1. Ameli J, Banki A, Khorvash F, Simonetti V, Jafari NJ, et al. (2019). Mechanisms of pathophysiology of blood vessels in patients with multiple sclerosis treated with ozone therapy: A systematic review. Acta Biomed, 90(3): 213-217.
    1. Scassellati C, Ciani M, Galoforo AC, Zanardini R, Bonvicini C, et al. (2020). Molecular mechanisms in cognitive frailty: Potential therapeutic targets for oxygen-ozone treatment. Mech Ageing Dev, 186: 111210.
    1. Scassellati C, Galoforo AC, Bonvicini C, Esposito C, Ricevuti G (2020). Ozone: A natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev, 63: 101138.
    1. Reemst K, Noctor SC, Lucassen PJ, Hol EM (2016). The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci, 10: 566.
    1. Jha MK, Jo M, Kim JH, Suk K (2019). Microglia-astrocyte crosstalk: An intimate molecular conversation. Neuroscientist, 25(3): 227-240.
    1. Salter MW, Stevens B (2017). Microglia emerge as central players in brain disease. Nat Med, 23(9): 1018-1027.
    1. Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T (2018). Bidirectional microglia-neuron communication in health and disease. Front Cell Neurosci, 12: 323.
    1. Fehm HL, Benkowitsch R, Kern W, Fehm-Wolfsdorf G, Pauschinger P, et al. (1986). Influences of corticosteroids, dexamethasone and hydrocortisone on sleep in humans. Neuropsychobiology, 16(4): 198-204.
    1. Erickson K, Drevets W, Schulkin J (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neurosci Biobehav Rev, 27(3): 233-246.
    1. Chowen JA, Garcia-Segura LM (2020). Microglia, neurodegeneration and loss of neuroendocrine control. Prog Neurobiol, 184: 101720.
    1. Roozendaal B (2000). 1999 curt P. richter award. glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology, 25(3): 213-238.
    1. Bernaus A, Blanco S, Sevilla A (2020). Glia crosstalk in neuroinflammatory diseases. Front Cell Neurosci, 14: 209.
    1. Tracy LM, Bergqvist F, Ivanova EV, Jacobsen KT, Iverfeldt K (2013). Exposure to the saturated free fatty acid palmitate alters BV-2 microglia inflammatory response. J Mol Neurosci, 51(3): 805-812.
    1. Aloisi F (2001). Immune function of microglia. Glia, 36(2): 165-179.
    1. Orihuela R, McPherson CA, Harry GJ (2016). Microglial M1/M2 polarization and metabolic states. Br J Pharmacol, 173(4): 649-665.
    1. Sarlus H, Heneka MT (2017). Microglia in alzheimer's disease. J Clin Invest, 127(9): 3240-3249.
    1. Das R, Chinnathambi S (2019). Microglial priming of antigen presentation and adaptive stimulation in alzheimer's disease. Cell Mol Life Sci, 76(19): 3681-3694.
    1. Franco R, Fernandez-Suarez D (2015). Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol, 131: 65-86.
    1. Zhang L, Zhang J, You Z (2018). Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci, 12: 306.
    1. Ahmed SM, Luo L, Namani A, Wang XJ, Tang X (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis, 1863(2): 585-597.
    1. Escartin C, Guillemaud O, Carrillo-de Sauvage MA (2019). Questions and (some) answers on reactive astrocytes. Glia, 67(12): 2221-2247.
    1. Perry VH, Holmes C (2014). Microglial priming in neurodegenerative disease. Nat Rev Neurol, 10(4): 217-224.
    1. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010). Mechanisms underlying inflammation in neurodegeneration. Cell, 140(6): 918-934.
    1. Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, et al. (2018). Inflammation: The link between comorbidities, genetics, and alzheimer's disease. J Neuroinflammation, 15(1): 276.
    1. Walsh KP, Minamide LS, Kane SJ, Shaw AE, Brown DR, et al. (2014). Amyloid-beta and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One, 9(4): e95995.
    1. Yang J, Wise L, Fukuchi KI (2020). TLR4 cross-talk with NLRP3 inflammasome and complement signaling pathways in alzheimer's disease. Front Immunol, 11: 724.
    1. Sastre M, Walter J, Gentleman SM (2008). Interactions between APP secretases and inflammatory mediators. J Neuroinflammation, 5: 25.
    1. Ballatore C, Lee VM, Trojanowski JQ (2007). Tau-mediated neurodegeneration in alzheimer's disease and related disorders. Nat Rev Neurosci, 8(9): 663-672.
    1. Verma AK, Ghosh S, Pradhan S, Basu A (2016). Microglial activation induces neuronal death in chandipura virus infection. Sci Rep, 6: 22544.
    1. Guadagno J, Xu X, Karajgikar M, Brown A, Cregan SP (2013). Microglia-derived TNFalpha induces apoptosis in neural precursor cells via transcriptional activation of the bcl-2 family member puma. Cell Death Dis, 4: e538.
    1. Miura Y, Misawa N, Kawano Y, Okada H, Inagaki Y, et al. (2003). Tumor necrosis factor-related apoptosis-inducing ligand induces neuronal death in a murine model of HIV central nervous system infection. Proc Natl Acad Sci U S A, 100(5): 2777-2782.
    1. Chen NN, Wei F, Wang L, Cui S, Wan Y, et al. (2016). Tumor necrosis factor alpha induces neural stem cell apoptosis through activating p38 MAPK pathway. Neurochem Res, 41(11): 3052-3062.
    1. Tian DS, Peng J, Murugan M, Feng LJ, Liu JL, et al. (2017). Chemokine CCL2-CCR2 signaling induces neuronal cell death via STAT3 activation and IL-1beta production after status epilepticus. J Neurosci, 37(33): 7878-7892.
    1. Wang XJ, Kong KM, Qi WL, Ye WL, Song PS (2005). Interleukin-1 beta induction of neuron apoptosis depends on p38 mitogen-activated protein kinase activity after spinal cord injury. Acta Pharmacol Sin, 26(8): 934-942.
    1. Talley AK, Dewhurst S, Perry SW, Dollard SC, Gummuluru S, et al. (1995). Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: Protection by the antioxidant N-acetylcysteine and the genes bcl-2 and crmA. Mol Cell Biol, 15(5): 2359-2366.
    1. Holmgren S, Hjorth E, Schultzberg M, Larksater M, Frenkel D, et al. (2014). Neuropsychiatric symptoms in dementia-a role for neuroinflammation? Brain Res Bull, 108: 88-93.
    1. Cortes N, Andrade V, Maccioni RB (2018). Behavioral and neuropsychiatric disorders in alzheimer's disease. J Alzheimers Dis, 63(3): 899-910.
    1. Lasselin J, Elsenbruch S, Lekander M, Axelsson J, Karshikoff B, et al. (2016). Mood disturbance during experimental endotoxemia: Predictors of state anxiety as a psychological component of sickness behavior. Brain Behav Immun, 57: 30-37.
    1. Holmes C, Cunningham C, Zotova E, Culliford D, Perry VH (2011). Proinflammatory cytokines, sickness behavior, and alzheimer disease. Neurology, 77(3): 212-218.
    1. Maphis N, Xu G, Kokiko-Cochran ON, Jiang S, Cardona A, et al. (2015). Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain, 138(Pt 6): 1738-1755.
    1. Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, et al. (2013). Sustained interleukin-1beta overexpression exacerbates tau pathology despite reduced amyloid burden in an alzheimer's mouse model. J Neurosci, 33(11): 5053-5064.
    1. Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, et al. (2010). CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two alzheimer's disease mouse models. Am J Pathol, 177(5): 2549-2562.
    1. Jiang C, Li G, Huang P, Liu Z, Zhao B (2017). The gut microbiota and alzheimer's disease. J Alzheimers Dis, 58(1): 1-15.
    1. Shaik L, Kashyap R, Thotamgari SR, Singh R, Khanna S (2020). Gut-brain axis and its neuro-psychiatric effects: A narrative review. Cureus, 12(10): e11131.
    1. Liu S, Gao J, Zhu M, Liu K, Zhang HL (2020). Gut microbiota and dysbiosis in alzheimer's disease: Implications for pathogenesis and treatment. Mol Neurobiol,.
    1. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, et al. (2017). Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cell Mol Life Sci, 74(20): 3769-3787.
    1. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, et al. (2014). The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med, 6(263): 263ra158.
    1. van de Wouw M, Boehme M, Lyte JM, Wiley N, Strain C, et al. (2018). Short-chain fatty acids: Microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol, 596(20): 4923-4944.
    1. Friedland RP (2015). Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis, 45(2): 349-362.
    1. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, et al. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging, 49: 60-68.
    1. Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM (2016). The role of steroid hormones in the modulation of neuroinflammation by dietary interventions. Front Endocrinol (Lausanne), 7: 9.
    1. Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, et al. (2020). The role of sex and sex hormones in neurodegenerative diseases. Endocr Rev, 41(2): 273-319.
    1. Sierra A (2004). Neurosteroids: The StAR protein in the brain. J Neuroendocrinol, 16(9): 787-793.
    1. Rosen J, Miner JN (2005). The search for safer glucocorticoid receptor ligands. Endocr Rev, 26(3): 452-464.
    1. MacDonald AJ, Robb JL, Morrissey NA, Beall C, Ellacott KLJ (2019). Astrocytes in neuroendocrine systems: An overview. J Neuroendocrinol, 31(5): e12726.
    1. Akwa Y (2020). Steroids and alzheimer's disease: Changes associated with pathology and therapeutic potential. Int J Mol Sci, 21(13): 4812.
    1. Marx CE, Stevens RD, Shampine LJ, Uzunova V, Trost WT, et al. (2006). Neuroactive steroids are altered in schizophrenia and bipolar disorder: Relevance to pathophysiology and therapeutics. Neuropsychopharmacology, 31(6): 1249-1263.
    1. Luchetti S, Huitinga I, Swaab DF (2011). Neurosteroid and GABA-A receptor alterations in alzheimer's disease, parkinson's disease and multiple sclerosis. Neuroscience, 191: 6-21.
    1. Naylor JC, Kilts JD, Hulette CM, Steffens DC, Blazer DG, et al. (2010). Allopregnanolone levels are reduced in temporal cortex in patients with alzheimer's disease compared to cognitively intact control subjects. Biochim Biophys Acta, 1801(8): 951-959.
    1. Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, et al. (2002). Neurosteroid quantification in human brain regions: Comparison between alzheimer's and nondemented patients. J Clin Endocrinol Metab, 87(11): 5138-5143.
    1. Barrou Z, Charru P, Lidy C (1997). Dehydroepiandrosterone (DHEA) and aging. Arch Gerontol Geriatr, 24(3): 233-241.
    1. Hampl R, Bicikova M (2010). Neuroimmunomodulatory steroids in alzheimer dementia. J Steroid Biochem Mol Biol, 119(3-5): 97-104.
    1. Aldred S, Mecocci P (2010). Decreased dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) concentrations in plasma of alzheimer's disease (AD) patients. Arch Gerontol Geriatr, 51(1): e16-8.
    1. Hillen T, Lun A, Reischies FM, Borchelt M, Steinhagen-Thiessen E, et al. (2000). DHEA-S plasma levels and incidence of alzheimer's disease. Biol Psychiatry, 47(2): 161-163.
    1. Sunderland T, Merril CR, Harrington MG, Lawlor BA, Molchan SE, et al. (1989). Reduced plasma dehydroepiandrosterone concentrations in alzheimer's disease. Lancet, 2(8662): 570.
    1. Rosario ER, Chang L, Head EH, Stanczyk FZ, Pike CJ (2011). Brain levels of sex steroid hormones in men and women during normal aging and in alzheimer's disease. Neurobiol Aging, 32(4): 604-613.
    1. Yue X, Lu M, Lancaster T, Cao P, Honda S, et al. (2005). Brain estrogen deficiency accelerates abeta plaque formation in an alzheimer's disease animal model. Proc Natl Acad Sci U S A, 102(52): 19198-19203.
    1. Liu S, Wu H, Xue G, Ma X, Wu J, et al. (2013). Metabolic alteration of neuroactive steroids and protective effect of progesterone in alzheimer's disease-like rats. Neural Regen Res, 8(30): 2800-2810.
    1. Seo EJ, Fischer N, Efferth T (2018). Phytochemicals as inhibitors of NF-kappaB for treatment of alzheimer's disease. Pharmacol Res, 129: 262-273.
    1. Sharifi-Rad M, Lankatillake C, Dias DA, Docea AO, Mahomoodally MF, et al. (2020). Impact of natural compounds on neurodegenerative disorders: From preclinical to pharmacotherapeutics. J Clin Med, 9(4): 1061.
    1. Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, et al. (2019). Targeting inflammatory pathways in alzheimer's disease: A focus on natural products and phytomedicines. CNS Drugs, 33(5): 457-480.
    1. Khan H, Tundis R, Ullah H, Aschner M, Belwal T, et al. (2020). Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol, 146: 111817.
    1. Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, et al. (2020). Attenuation of Nrf2/Keap1/ARE in alzheimer's disease by plant secondary metabolites: A mechanistic review. Molecules, 25(21): 4926.
    1. Michalska P, Buendia I, Del Barrio L, Leon R (2017). Novel multitarget hybrid compounds for the treatment of alzheimer's disease. Curr Top Med Chem, 17(9): 1027-1043.
    1. Shishodia S, Singh T, Chaturvedi MM (2007). Modulation of transcription factors by curcumin. Adv Exp Med Biol, 595: 127-148.
    1. Chiu HF, Venkatakrishnan K, Wang CK (2020). The role of nutraceuticals as a complementary therapy against various neurodegenerative diseases: A mini-review. J Tradit Complement Med, 10(5): 434-439.
    1. Mishra S, Palanivelu K (2008). The effect of curcumin (turmeric) on alzheimer's disease: An overview. Ann Indian Acad Neurol, 11(1): 13-19.
    1. Voulgaropoulou SD, van Amelsvoort TAMJ, Prickaerts J, Vingerhoets C (2019). The effect of curcumin on cognition in alzheimer's disease and healthy aging: A systematic review of pre-clinical and clinical studies. Brain Res, 1725: 146476.
    1. Balazi A, Sirotkin AV, Foldesiova M, Makovicky P, Chrastinova L, et al. (2019). Green tea can supress rabbit ovarian functions in vitro and in vivo. Theriogenology, 127: 72-79.
    1. Kakutani S, Watanabe H, Murayama N (2019). Green tea intake and risks for dementia, alzheimer's disease, mild cognitive impairment, and cognitive impairment: A systematic review. Nutrients, 11(5): 1165.
    1. Calabrese EJ, Kozumbo WJ (2020). The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res, 163: 105283.
    1. Nabavi SM, Habtemariam S, Daglia M, Braidy N, Loizzo MR, et al. (2015). Neuroprotective effects of ginkgolide B against ischemic stroke: A review of current literature. Curr Top Med Chem, 15(21): 2222-2232.
    1. Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G (2019). Neuroprotective and antioxidant effect of ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics, 16(3): 666-674.
    1. Kanowski S, Herrmann WM, Stephan K, Wierich W, Horr R (1996). Proof of efficacy of the ginkgo biloba special extract EGb 761 in outpatients suffering from mild to moderate primary degenerative dementia of the alzheimer type or multi-infarct dementia. Pharmacopsychiatry, 29(2): 47-56.
    1. Ihl R, Tribanek M, Bachinskaya N, GOTADAY Study Group (2012). Efficacy and tolerability of a once daily formulation of ginkgo biloba extract EGb 761(R) in alzheimer's disease and vascular dementia: Results from a randomised controlled trial. Pharmacopsychiatry, 45(2): 41-46.
    1. Gauthier S, Schlaefke S (2014). Efficacy and tolerability of ginkgo biloba extract EGb 761(R) in dementia: A systematic review and meta-analysis of randomized placebo-controlled trials. Clin Interv Aging, 9: 2065-2077.
    1. Tan MS, Yu JT, Tan CC, Wang HF, Meng XF, et al. (2015). Efficacy and adverse effects of ginkgo biloba for cognitive impairment and dementia: A systematic review and meta-analysis. J Alzheimers Dis, 43(2): 589-603.
    1. Yang G, Wang Y, Sun J, Zhang K, Liu J (2016). Ginkgo biloba for mild cognitive impairment and alzheimer's disease: A systematic review and meta-analysis of randomized controlled trials. Curr Top Med Chem, 16(5): 520-528.
    1. Wang BS, Wang H, Song YY, Qi H, Rong ZX, et al. (2010). Effectiveness of standardized ginkgo biloba extract on cognitive symptoms of dementia with a six-month treatment: A bivariate random effect meta-analysis. Pharmacopsychiatry, 43(3): 86-91.
    1. Hashiguchi M, Ohta Y, Shimizu M, Maruyama J, Mochizuki M (2015). Meta-analysis of the efficacy and safety of ginkgo biloba extract for the treatment of dementia. J Pharm Health Care Sci, 1: 14.
    1. Liu H, Ye M, Guo H (2020). An updated review of randomized clinical trials testing the improvement of cognitive function of ginkgo biloba extract in healthy people and alzheimer's patients. Front Pharmacol, 10: 1688.
    1. Kong D, Yan Y, He XY, Yang H, Liang B, et al. (2019). Effects of resveratrol on the mechanisms of antioxidants and estrogen in alzheimer's disease. Biomed Res Int, 2019: 8983752.
    1. Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, et al. (2017). Resveratrol regulates neuro-inflammation and induces adaptive immunity in alzheimer's disease. J Neuroinflammation, 14(1): 1.
    1. Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, et al. (2015). A randomized, double-blind, placebo-controlled trial of resveratrol for alzheimer disease. Neurology, 85(16): 1383-1391.
    1. Hernandez-Rodas MC, Valenzuela R, Echeverria F, Rincon-Cervera MA, Espinosa A, et al. (2017). Supplementation with docosahexaenoic acid and extra virgin olive oil prevents liver steatosis induced by a high-fat diet in mice through PPAR-alpha and Nrf2 upregulation with concomitant SREBP-1c and NF-kB downregulation. Mol Nutr Food Res, 61(12).
    1. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, et al. (2003). Consumption of fish and n-3 fatty acids and risk of incident alzheimer disease. Arch Neurol, 60(7): 940-946.
    1. Wu S, Ding Y, Wu F, Li R, Hou J, et al. (2015). Omega-3 fatty acids intake and risks of dementia and alzheimer's disease: A meta-analysis. Neurosci Biobehav Rev, 48: 1-9.
    1. Lee LK, Shahar S, Chin AV, Yusoff NA (2013). Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl), 225(3): 605-612.
    1. Hager K, Marahrens A, Kenklies M, Riederer P, Munch G (2001). Alpha-lipoic acid as a new treatment option for alzheimer [corrected] type dementia. Arch Gerontol Geriatr, 32(3): 275-282.
    1. Hager K, Kenklies M, McAfoose J, Engel J, Munch G (2007). Alpha-lipoic acid as a new treatment option for alzheimer's disease--a 48 months follow-up analysis. J Neural Transm Suppl, (72):189-93.
    1. Jerneren F, Cederholm T, Refsum H, Smith AD, Turner C, et al. (2019). Homocysteine status modifies the treatment effect of omega-3 fatty acids on cognition in a randomized clinical trial in mild to moderate alzheimer's disease: The OmegAD study. J Alzheimers Dis, 69(1): 189-197.
    1. Kim EN, Kim TY, Park EK, Kim JY, Jeong GS (2020). Panax ginseng fruit has anti-inflammatory effect and induces osteogenic differentiation by regulating Nrf2/HO-1 signaling pathway in in vitro and in vivo models of periodontitis. Antioxidants (Basel), 9(12): 1221.
    1. Xue K, Ruan L, Hu J, Fu Z, Tian D, et al. (2020). Panax notoginseng saponin R1 modulates TNF-alpha/NF-kappaB signaling and attenuates allergic airway inflammation in asthma. Int Immunopharmacol, 88: 106860.
    1. Heo JC, Woo SU, Kweon MA, Park JY, Lee HK, et al. (2008). Aqueous extract of the helianthus annuus seed alleviates asthmatic symptoms in vivo. Int J Mol Med, 21(1): 57-61.
    1. Heo JH, Lee ST, Oh MJ, Park HJ, Shim JY, et al. (2011). Improvement of cognitive deficit in alzheimer's disease patients by long term treatment with korean red ginseng. J Ginseng Res, 35(4): 457-461.
    1. Lee ST, Chu K, Sim JY, Heo JH, Kim M (2008). Panax ginseng enhances cognitive performance in alzheimer disease. Alzheimer Dis Assoc Disord, 22(3): 222-226.
    1. Khan A, Jahan S, Imtiyaz Z, Alshahrani S, Antar Makeen H, et al. (2020). Neuroprotection: Targeting multiple pathways by naturally occurring phytochemicals. Biomedicines, 8(8): 284.
    1. L Suraweera T, Rupasinghe HPV, Dellaire G, Xu Z (2020). Regulation of Nrf2/ARE pathway by dietary flavonoids: A friend or foe for cancer management? Antioxidants (Basel), 9(10): 973.
    1. Ianosi S, Ianosi G, Neagoe D, Ionescu O, Zlatian O, et al. (2016). Age-dependent endocrine disorders involved in the pathogenesis of refractory acne in women. Mol Med Rep, 14(6): 5501-5506.
    1. Petrakis D, Vassilopoulou L, Mamoulakis C, Psycharakis C, Anifantaki A, et al. (2017). Endocrine disruptors leading to obesity and related diseases. Int J Environ Res Public Health, 14(10): 1282.
    1. Gleason CE, Fischer BL, Dowling NM, Setchell KD, Atwood CS, et al. (2015). Cognitive effects of soy isoflavones in patients with alzheimer's disease. J Alzheimers Dis, 47(4): 1009-1019.
    1. Wong CB, Kobayashi Y, Xiao JZ (2018). Probiotics for Preventing Cognitive Impairment in Alzheimer's Disease. In: Evrensel A, Ünsalver BO, editors. Gut Microbiota - Brain Axis. Rijeka: IntechOpen, 2018.
    1. Reid G (2016). Probiotics: Definition, scope and mechanisms of action. Best Pract Res Clin Gastroenterol, 30(1): 17-25.
    1. Mack DR (2005). Probiotics-mixed messages. Can Fam Physician, 51: 1455-7, 1462-4.
    1. Avolio E, Fazzari G, Zizza M, De Lorenzo A, Di Renzo L, et al. (2019). Probiotics modify body weight together with anxiety states via pro-inflammatory factors in HFD-treated syrian golden hamster. Behav Brain Res, 356: 390-399.
    1. Tamtaji OR, Heidari-Soureshjani R, Mirhosseini N, Kouchaki E, Bahmani F, et al. (2019). Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in alzheimer's disease: A randomized, double-blind, controlled trial. Clin Nutr, 38(6): 2569-2575.
    1. Kobayashi Y, Kinoshita T, Matsumoto A, Yoshino K, Saito I, et al. (2019). Bifidobacterium breve A1 supplementation improved cognitive decline in older adults with mild cognitive impairment: An open-label, single-arm study. J Prev Alzheimers Dis, 6(1): 70-75.
    1. Wang T, Kuang W, Chen W, Xu W, Zhang L, et al. (2020). A phase II randomized trial of sodium oligomannate in alzheimer's dementia. Alzheimers Res Ther, 12(1): 110.
    1. Wang X, Sun G, Feng T, Zhang J, Huang X, et al. (2019). Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit alzheimer's disease progression. Cell Res, 29(10): 787-803.
    1. Cascella M, Bimonte S, Muzio MR, Schiavone V, Cuomo A (2017). The efficacy of epigallocatechin-3-gallate (green tea) in the treatment of alzheimer's disease: An overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agent Cancer, 12: 36.
    1. Hodgson AB, Randell RK, Jeukendrup AE (2013). The effect of green tea extract on fat oxidation at rest and during exercise: Evidence of efficacy and proposed mechanisms. Adv Nutr, 4(2): 129-140.
    1. Renaud J, Martinoli MG (2019). Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int J Mol Sci, 20(8): 1883.
    1. Hu S, Maiti P, Ma Q, Zuo X, Jones MR, et al. (2015). Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother, 15(6): 629-637.
    1. Sharma RA, Steward WP, Gescher AJ (2007). Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol, 595: 453-470.
    1. Begum AN, Jones MR, Lim GP, Morihara T, Kim P, et al. (2008). Curcumin structure-function, bioavailability, and efficacy in models of neuroinflammation and alzheimer's disease. J Pharmacol Exp Ther, 326(1): 196-208.
    1. Rakotoarisoa M, Angelova A (2018). Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines (Basel), 5(4): 126.
    1. Shoji Y, Nakashima H (2004). Nutraceutics and delivery systems. J Drug Target, 12(6): 385-391.
    1. Coimbra M, Isacchi B, van Bloois L, Torano JS, Ket A, et al. (2011). Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm, 416(2): 433-442.
    1. Elvis AM, Ekta JS (2011). Ozone therapy: A clinical review. J Nat Sci Biol Med, 2(1): 66-70.
    1. Wentworth P Jr, McDunn JE, Wentworth AD, Takeuchi C, Nieva J, et al. (2002). Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science, 298(5601): 2195-2199.
    1. Lerner RA, Eschenmoser A (2003). Ozone in biology. Proc Natl Acad Sci U S A, 100(6): 3013-3015.
    1. Bocci VA, Zanardi I, Travagli V (2011). Ozone acting on human blood yields a hormetic dose-response relationship. J Transl Med, 9: 66.
    1. Bocci V, Borrelli E, Travagli V, Zanardi I (2009). The ozone paradox: Ozone is a strong oxidant as well as a medical drug. Med Res Rev, 29(4): 646-682.
    1. Viebahn-Hänsler R, León Fernández OS, Fahmy Z (2012). Ozone in medicine: The low-dose ozone Concept—Guidelines and treatment strategies. Ozone: Sci Eng, 34(6): 408-424.
    1. Re L, Malcangi G, MartinezSanchez G (2012). Medical ozone is now ready for a scientific challenge: Current status and future perspectives. Journal of Experimental and Integrative Medicine, 2: 1.
    1. Mehraban F, Seyedarabi A, Seraj Z, Ahmadian S, Poursasan N, et al. (2018). Molecular insights into the effect of ozone on human hemoglobin in autohemotherapy: Highlighting the importance of the presence of blood antioxidants during ozonation. Int J Biol Macromol, 119: 1276-1285.
    1. Bocci V, Valacchi G, Corradeschi F, Aldinucci C, Silvestri S, et al. (1998). Studies on the biological effects of ozone: 7. generation of reactive oxygen species (ROS) after exposure of human blood to ozone. J Biol Regul Homeost Agents, 12(3): 67-75.
    1. Inal M, Dokumacioglu A, Ozcelik E, Ucar O (2011). The effects of ozone therapy and coenzyme Q(1)(0) combination on oxidative stress markers in healthy subjects. Ir J Med Sci, 180(3): 703-707.
    1. Iliakis E, Petropoulos I, Iliaki A, Agapitos E, Agrogiannis G (2008). Is medical ozone safe when injected intra-articularly? A comparative histological study in rat. International Journal of Ozone Therapy, 7: 7-15.
    1. Bocci VA (2006). Scientific and medical aspects of ozone therapy. state of the art. Arch Med Res, 37(4): 425-435.
    1. Bocci V, Valacchi G, Corradeschi F, Fanetti G (1998). Studies on the biological effects of ozone: 8. effects on the total antioxidant status and on interleukin-8 production. Mediators Inflamm, 7(5): 313-317.
    1. Vaillant JD, Fraga A, Diaz MT, Mallok A, Viebahn-Hansler R, et al. (2013). Ozone oxidative postconditioning ameliorates joint damage and decreases pro-inflammatory cytokine levels and oxidative stress in PG/PS-induced arthritis in rats. Eur J Pharmacol, 714(1-3): 318-324.
    1. Siniscalco D, Trotta MC, Brigida AL, Maisto R, Luongo M, et al. (2018). Intraperitoneal administration of oxygen/ozone to rats reduces the pancreatic damage induced by streptozotocin. Biology (Basel), 7(1): 10.
    1. Galie M, Costanzo M, Nodari A, Boschi F, Calderan L, et al. (2018). Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic Biol Med, 124: 114-121.
    1. Re L, Martinez-Sanchez G, Bordicchia M, Malcangi G, Pocognoli A, et al. (2014). Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur J Pharmacol, 742: 158-162.
    1. Wardyn JD, Ponsford AH, Sanderson CM (2015). Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans, 43(4): 621-626.
    1. Fernández-Cuadros ME, Pérez Moro O, Florin MJ, Rabasa S (2020). Intra-articular ozone modulates inflammation, ameliorates pain and rigidity, improves function and has anabolic effect on knee osteoarthritis: A prospective quasi-experimental before-and-after study, 115 patients. Revista De La Sociedad Española Del Dolor, 27.
    1. Reth M (2002). Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol, 3(12): 1129-1134.
    1. Braidy N, Izadi M, Sureda A, Jonaidi-Jafari N, Banki A, et al. (2018). Therapeutic relevance of ozone therapy in degenerative diseases: Focus on diabetes and spinal pain. J Cell Physiol, 233(4): 2705-2714.
    1. Sagai M, Bocci V (2011). Mechanisms of action involved in ozone therapy: Is healing induced via a mild oxidative stress? Med Gas Res, 1: 29.
    1. Di Mauro R, Cantarella G, Bernardini R, Di Rosa M, Barbagallo I, et al. (2019). The biochemical and pharmacological properties of ozone: The smell of protection in acute and chronic diseases. Int J Mol Sci, 20(3): 634.
    1. Orakdogen M, Uslu S, Emon ST, Somay H, Meric ZC, et al. (2016). The effect of ozone therapy on experimental vasospasm in the rat femoral artery. Turk Neurosurg, 26(6): 860-865.
    1. Smith-Garvin JE, Koretzky GA, Jordan MS (2009). T cell activation. Annu Rev Immunol, 27: 591-619.
    1. Amasaki Y (2010). Calcineurin inhibitors and calcineurin-NFAT system. Nihon Rinsho Meneki Gakkai Kaishi, 33(5): 249-261.
    1. Karin M (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem, 270(28): 16483-16486.
    1. Dardes N, Covi V, Tabaracci G (2017). Ozone therapy as a complementary treatment in cardiovascular diseases. In: Fioranelli M, editor. Integrative Cardiology: A New Therapeutic Vision. Cham: Springer International Publishing, 165-172.
    1. Polydorou O, Halili A, Wittmer A, Pelz K, Hahn P (2012). The antibacterial effect of gas ozone after 2 months of in vitro evaluation. Clin Oral Investig, 16(2): 545-550.
    1. Thanomsub B, Anupunpisit V, Chanphetch S, Watcharachaipong T, Poonkhum R, et al. (2002). Effects of ozone treatment on cell growth and ultrastructural changes in bacteria. J Gen Appl Microbiol, 48(4): 193-199.
    1. Brodowska AJ, Nowak A, Kondratiuk-Janyska A, Piatkowski M, Smigielski K (2017). Modelling the ozone-based treatments for inactivation of microorganisms. Int J Environ Res Public Health, 14(10): 1196.
    1. Gupta AK, Brintnell WC (2013). Sanitization of contaminated footwear from onychomycosis patients using ozone gas: A novel adjunct therapy for treating onychomycosis and tinea pedis? J Cutan Med Surg, 17(4): 243-249.
    1. Franzini M, Valdenassi L, Ricevuti G, Chirumbolo S, Depfenhart M, et al. (2020). Oxygen-ozone (O2-O3) immunoceutical therapy for patients with COVID-19. preliminary evidence reported. Int Immunopharmacol, 88: 106879.
    1. Fernandez-Cuadros ME, Albaladejo-Florin MJ, AlavaRabasa S, Usandizaga-Elio I, Martinez-Quintanilla Jimenez D, et al. (2020). Effect of rectal ozone (O3) in severe COVID-19 pneumonia: Preliminary results. SN Compr Clin Med, 2: 13281336.
    1. Fernandez-Cuadros ME Ozone fundamentals and effectiveness on Knee pain: Chondromalacia and Knee Osteoarthritis. LAP Lambert Academic Publishing; 2016.
    1. Bocci V Ozone: A new medical drug. Netherlands: Springer; 2011.
    1. Schwartz-Tapia A, Martínez-Sánchez G, Sabah F, et al.. Madrid declaration on ozone therapy. Madrid: ISCO3(International Scientific Committee of Ozone Therapy); 2015.
    1. Zhang F, Zhong RJ, Cheng C, Li S, Le WD (2020). New therapeutics beyond amyloid-beta and tau for the treatment of alzheimer's disease. Acta Pharmacol Sin, in press.
    1. Ito N, Saito H, Seki S, Ueda F, Asada T (2018). Effects of composite supplement containing astaxanthin and sesamin on cognitive functions in people with mild cognitive impairment: A randomized, double-blind, placebo-controlled trial. J Alzheimers Dis, 62(4): 1767-1775.
    1. Cooray R, Gupta V, Suphioglu C (2020). Current aspects of the endocannabinoid system and targeted THC and CBD phytocannabinoids as potential therapeutics for parkinson's and alzheimer's diseases: A review. Mol Neurobiol, 57(11): 4878-4890.
    1. Silva RL, Silveira GT, Wanderlei CW, Cecilio NT, Maganin AGM, et al. (2019). DMH-CBD, a cannabidiol analog with reduced cytotoxicity, inhibits TNF production by targeting NF-kB activity dependent on A2A receptor. Toxicol Appl Pharmacol, 368: 63-71.
    1. Timler A, Bulsara C, Bulsara M, Vickery A, Smith J, et al. (2020). Use of cannabinoid-based medicine among older residential care recipients diagnosed with dementia: Study protocol for a double-blind randomised crossover trial. Trials, 21(1): 188-020-4085-x.
    1. Naeini Z, Toupchian O, Vatannejad A, Sotoudeh G, Teimouri M, et al. (2020). Effects of DHA-enriched fish oil on gene expression levels of p53 and NF-kappaB and PPAR-gamma activity in PBMCs of patients with T2DM: A randomized, double-blind, clinical trial. Nutr Metab Cardiovasc Dis, 30(3): 441-447.
    1. Mielech A, Puscion-Jakubik A, Markiewicz-Zukowska R, Socha K (2020). Vitamins in alzheimer's disease-review of the latest reports. Nutrients, 12(11): 10.3390/nu12113458.
    1. Goyal D, Ali SA, Singh RK (2021). Emerging role of gut microbiota in modulation of neuroinflammation and neurodegeneration with emphasis on alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry, 106: 110112.

Source: PubMed

3
订阅