Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders

Catia Scassellati, Antonio Carlo Galoforo, Cristian Bonvicini, Ciro Esposito, Giovanni Ricevuti, Catia Scassellati, Antonio Carlo Galoforo, Cristian Bonvicini, Ciro Esposito, Giovanni Ricevuti

Abstract

Systems medicine is founded on a mechanism-based approach and identifies in this way specific therapeutic targets. This approach has been applied for the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Nrf2 plays a central role in different pathologies including neurodegenerative disorders (NDs), which are characterized by common pathogenetic features. We here present wide scientific background indicating how a natural bioactive molecule with antioxidant/anti-apoptotic and pro-autophagy properties such as the ozone (O3) can represent a potential new strategy to delay neurodegeneration. Our hypothesis is based on different evidence demonstrating the interaction between O3 and Nrf2 system. Through a meta-analytic approach, we found a significant modulation of O3 on endogenous antioxidant-Nrf2 (p < 0.00001, Odd Ratio (OR) = 1.71 95%CI:1.17-2.25) and vitagene-Nrf2 systems (p < 0.00001, OR = 1.80 95%CI:1.05-2.55). O3 activates also immune, anti-inflammatory signalling, proteasome, releases growth factors, improves blood circulation, and has antimicrobial activity, with potential effects on gut microbiota. Thus, we provide a consistent rationale to implement future clinical studies to apply the oxygen-ozone (O2-O3) therapy in an early phase of aging decline, when it is still possible to intervene before to potentially develop a more severe neurodegenerative pathology. We suggest that O3 along with other antioxidants (polyphenols, mushrooms) implicated in the same Nrf2-mechanisms, can show neurogenic potential, providing evidence as new preventive strategies in aging and in NDs.

Keywords: Neurodegenerative Disorders; Oxygen-Ozone (O(2)-O(3)) therapy; Ozone (O(3)); antioxidant system; nuclear factor (erythroid-derived 2)–like 2 (Nrf2); stress oxidative biomarkers.

Conflict of interest statement

The authors have declared no conflict of interest.

Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Molecular mechanisms linked to antioxidant/pro-authophagy activities of ozone (O3) via Nfr2 signalling. In the absence of stimuli, Nrf2 (nuclear factor erythroid 2–related factor 2) binds to its repressor Keap1 (kelch-like ECH-associated protein), an adapter between Nrf2 and Cullin 3 (Cul3) protein, which leads to ubiquitination followed by proteasome degradation. When O3 is administrated, it dissolves immediately and it reacts with PUFA (Poly-Unsaturated Fatty Acids) leading to the formation of fundamental messengers such as hydrogen peroxide (H2O2), 4-hydroxynonenal (4HNE) and lipid oxidation products (LOPs). These messengers can influence the modifications of cysteine residues present in Keap1 (S-HNE or ―S―S) inhibiting ubiquitin conjugation to Nrf2 by the Keap1 complex and provoking the nuclear accumulation of Nrf2. Once in the nucleus, Nrf2 dimerizes and binds to cis-acting DNA AREs (Antioxidant Response Elements) in different genes: Heme Oxygenase 1 (HO-1), Superoxide dismutases (SOD), Glutathione peroxidase (GSH-Px), Glutathione-S-Transferase (GST), Catalase (CAT), GSH-reductase (GR), NADPH quinone oxidoreductase 1 (NQO1), Heat Shock Proteins (HSPs), Cytochrome P450 monooxygenase (CYP450), Thioredoxin reductase (TrxR), phase II enzymes (UDP-glucuronosyltransferases, UGTs; N-acetyltransferases, NATs, sulfotransferases, SULTs). A) O3 involves casein kinase 2 (CK2), a regulator of the Nrf2 activity through its phosphorylation, and MAPK (mitogen-activated protein kinase) signalling pathway, that is inhibited with consequent inactivation of oxidative stress and apoptosis by O3 administration. B) O3 modulates the degradation protein systems (autophagy), via activation of the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. C) O3 downregulates inducible nitric oxide synthase (iNOS), which generates nitric oxide (NO) via NF-κB (Nuclear Factor Kappa B Subunit 1) pathway. (CO = carbon monoxide).
Fig. 2
Fig. 2
Molecular mechanisms linked to anti-apoptotic property of ozone (O3) via pro-apoptotic molecules inactivation. Various apoptotic stimuli, ischemia, Reactive Oxygen Species, ROS, ipoxia can activate directly p53 that in turn can play a role as transcription factor and activate the expression of pro-apoptotic genes. Among these, Bak (Bcl-2 homologous antagonist/killer) and Bax (Bcl-2-associated X protein) can stimulate in mitochondrial membrane the activation of Cytochrome C that in turn activates Apaf1 (Apoptotic protease activating factor-1) and caspase 9 to close the circle to stimulate the activity of caspase 3. Enzymes such as SOD (Superoxide dismutase), CAT (catalase), and GSH-Px (glutathione peroxidase), can regulate p53, Bax and Bcl-2. O3 administration decreases the expression of caspases 1-3-9, Hypoxia-inducible factor (HIFα), Tumor Necrosis Factor-α (TNF-α), Bax and p53 genes. (BID (BH3-interacting domain death agonist), Nrf2 (Nuclear Factor Erytroid 2-related factor 2), CUL3 (Cullin 3), Keap 1 (Kelch-like ECH-associated Protein), H2O2 (Hydrogen Peroxide), 4HNE (4-hydroxynonenal), LOPs (Lipid Oxidation Products), Cyt C (Cytochrome C), PUFAs (Poly-Unsaturated Fatty Acid), AREs (Antioxidant Response Elements)).
Fig. 3
Fig. 3
Forest plot for odds ratio from meta-analysis of the endogenous Nrf2- antioxidant pathway before and after ozone (O3) treatment. CI, confidence interval; Chi2, χ2 test of goodness of fit; Tau2, estimate of the between-study variance in a random-effects meta-analysis. Superoxide dismutase (SOD), catalase (CAT), Glutathione peroxidase (GSH-Px), Glutathione (GSH), Glutathione S-transferase (GST), Glutathione reductase (GR). RI = rectal insufflations; MATH = major autohemotherapy
Fig. 4
Fig. 4
Forest plot for odds ratio from meta-analysis of the endogenous Nrf2- vitagene pathway before and after ozone (O3) treatment. CI, confidence interval; Chi2, χ2 test of goodness of fit; Tau2, estimate of the between-study variance in a random-effects meta-analysis. Nuclear factor Nrf2, heme-oxigenase (HO-1), heat shock protein (HSP)

References

    1. Ademowo O.S., Dias H.K.I., Milic I., Devitt A., Moran R., Mulcahy R., Howard A.N., Nolan J.M., Griffiths H.R. Phospholipid oxidation and carotenoid supplementation in Alzheimer’s disease patients. Free Radic. Biol. Med. 2017;108:77–85.
    1. Ahmed L.A., Salem H.A., Mawsouf Mohamed N, Attia Amina S, Agha A.M. Cardioprotective effects of ozone oxidative preconditioning in an in vivo model of ischemia/reperfusion injury in rats. Scandinavian journal of clinical and laboratory investigation. 2012;(72):345–354. JID - 0404375.
    1. Ahmed S.M., Luo L., Namani A., Wang X.J., Tang X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2017;1863:585–597.
    1. Ajamieh H., Merino N., Candelario-Jalil E., Menendez S., Martinez-Sanchez G., Re L., Giuliani A., Leon O.S. Similar protective effect of ischaemic and ozone oxidative preconditionings in liver ischaemia/reperfusion injury. Pharmacol. Res. 2002;45:333–339.
    1. Ajamieh H.H., Berlanga J., Merino N., Sanchez G.M., Carmona A.M., Cepero S.M., Giuliani A., Re L., Leon O.S. Role of protein synthesis in the protection conferred by ozone-oxidative-preconditioning in hepatic ischaemia/reperfusion. Transpl. Int. 2005;18:604–612.
    1. Ajamieh H.H., Menéndez S., Martínez-Sánchez G., E Candelario-Jalil L Re, Giuliani A., Fernández O.S.L. Effects of ozone oxidative preconditioning on nitric oxide generation and cellular redox balance in a rat model of hepatic ischaemia-reperfusion. Liver international. 2004;(24):55–62.
    1. Altman N. Healing Arts Press; Rochester, Vt: 2007. The oxygen prescription : the miracle of oxidative therapies.
    1. Altunoglu E., Guntas G., Erdenen F., Akkaya E., Topac I., Irmak H., Derici H., Yavuzer H., Gelisgen R., Uzun H. Ischemia-modified albumin and advanced oxidation protein products as potential biomarkers of protein oxidation in Alzheimer’s disease. Geriatr. Gerontol. Int. 2015;15:872–880.
    1. Amara I., Scuto M., Zappala A., Ontario M.L., Petralia A., Abid-Essefi S., Maiolino L., Signorile A., Trovato Salinaro A., Calabrese V. Hericium Erinaceus Prevents DEHP-Induced Mitochondrial Dysfunction and Apoptosis in PC12 Cells. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21062138.
    1. Ameli J., Banki A., Khorvash F., Simonetti V., Jafari N.J., Izadi M. Mechanisms of pathophysiology of blood vessels in patients with multiple sclerosis treated with ozone therapy: a systematic review. Acta Biomed. 2019;90:213–217.
    1. Aslaner A., Cakir T., Celik B., Dogan U., Mayir B., Akyuz C., Polat C., Basturk A., Soyer V., Koc S., Sehirli A.O. Does intraperitoneal medical ozone preconditioning and treatment ameliorate the methotrexate induced nephrotoxicity in rats? Int. J. Clin. Exp. Med. 2015;8:13811–13817.
    1. Aso E., Lomoio S., Lopez-Gonzalez I., Joda L., Carmona M., Fernandez-Yague N., Moreno J., Juves S., Pujol A., Pamplona R., Portero-Otin M., Martin V., Diaz M., Ferrer I. Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer’s disease. Brain Pathol. 2012;22:636–653.
    1. Ayala A., Munoz M.F., Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med. Cell. Longev. 2014;2014
    1. Azarpazhooh A., Limeback H., Lawrence H.P., Fillery E.D. Evaluating the effect of an ozone delivery system on the reversal of dentin hypersensitivity: a randomized, double-blinded clinical trial. J. Endod. 2009;35:1–9.
    1. Babior B.M., Takeuchi C., Ruedi J., Gutierrez A., Wentworth P., Jr Investigating antibody-catalyzed ozone generation by human neutrophils. Proc. Natl. Acad. Sci. U. S. A. 2003;100:3031–3034.
    1. Baker M.A., Weinberg A., Hetherington L., Villaverde A.I., Velkov T., Baell J., Gordon C.P. Defining the mechanisms by which the reactive oxygen species by-product, 4-hydroxynonenal, affects human sperm cell function. Biol. Reprod. 2015;92:108.
    1. Bakkal B.H., Gultekin F.A., Guven B., Turkcu U.O., Bektas S., Can M. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats. Braz. J. Med. Biol. Res. 2013;46:789–796.
    1. Barber E., Menendez S., Leon O.S., Barber M.O., Merino N., Calunga J.L., Cruz E., Bocci V. Prevention of renal injury after induction of ozone tolerance in rats submitted to warm ischaemia. Mediators Inflamm. 1999;8:37–41.
    1. Benedetti E., D’Angelo B., Cristiano L., Di Giacomo E., Fanelli F., Moreno S., Cecconi F., Fidoamore A., Antonosante A., Falcone R., Ippoliti R., Giordano A., Cimini A. Involvement of peroxisome proliferator-activated receptor beta/delta (PPAR beta/delta) in BDNF signaling during aging and in Alzheimer disease: possible role of 4-hydroxynonenal (4-HNE) Cell. Cycle. 2014;13:1335–1344.
    1. Bilge A., Ozturk O., Adali Y., Ustebay S. Could Ozone Treatment be a Promising Alternative for Osteomyelitis? an Experimental Study. Acta Ortop. Bras. 2018;26:67–71.
    1. Bocci V. How a calculated oxidative stress can yield multiple therapeutic effects. Free Radic. Res. 2012;46:1068–1075.
    1. Bocci V. Springer; Netherlands: 2011. Ozone. A New Medical Drug.
    1. Bocci V., Valacchi G. Nrf2 activation as target to implement therapeutic treatments. Front. Chem. 2015;3:4.
    1. Bocci V., Valacchi G., Corradeschi F., Fanetti G. Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production. Mediators Inflamm. 1998;7:313–317.
    1. Bocci V.A., Zanardi I., Travagli V. Ozone acting on human blood yields a hormetic dose-response relationship. J.Transl.Med. 2011;9 66-5876-9-66.
    1. Borrego A., Zamora Z.B., Gonzalez R., Romay C., Menendez S., Hernandez F., Montero T., Rojas E. Protection by ozone preconditioning is mediated by the antioxidant system in cisplatin-induced nephrotoxicity in rats. Mediators Inflamm. 2004;13:13–19.
    1. Bosco D.A., Fowler D.M., Zhang Q., Nieva J., Powers E.T., Wentworth P., Jr, Lerner R.A., Kelly J.W. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization. Nat. Chem. Biol. 2006;2:249–253.
    1. Braidy N., Izadi M., Sureda A., Jonaidi-Jafari N., Banki A., Nabavi S.F., Nabavi S.M. Therapeutic relevance of ozone therapy in degenerative diseases: Focus on diabetes and spinal pain. J. Cell. Physiol. 2018;233:2705–2714.
    1. Braithwaite S.P., Stock J.B., Lombroso P.J., Nairn A.C. Protein phosphatases and Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2012;106:343–379.
    1. Brigelius-Flohe R., Flohe L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid.Redox Signal. 2011;15:2335–2381.
    1. Cabiscol E., Tamarit J., Ros J. Protein carbonylation: proteomics, specificity and relevance to aging. Mass Spectrom. Rev. 2014;33:21–48.
    1. Cakatay U., Kayali R., Uzun H. Relation of plasma protein oxidation parameters and paraoxonase activity in the ageing population. Clin. Exp. Med. 2008;8:51–57.
    1. Calabrese E.J. Hormesis and Ginseng: Ginseng Mixtures and Individual Constituents Commonly Display Hormesis Dose Responses, Especially for Neuroprotective Effects. Molecules. 2020;25 doi: 10.3390/molecules25112719.
    1. Calabrese E.J. Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks. Pharmacol. Res. 2016;110:265–275.
    1. Calabrese E.J., Baldwin L.A. Chemical hormesis: its historical foundations as a biological hypothesis. Hum. Exp. Toxicol. 2000;19:2–31.
    1. Calabrese V., Cornelius C., Dinkova-Kostova A.T., Calabrese E.J., Mattson M.P. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid. Redox Signal. 2010;13:1763–1811.
    1. Calabrese E.J. Hormetic mechanisms. Crit. Rev. Toxicol. 2013;43:580–606.
    1. Calunga J.L., Trujillo Y., Menendez S., Zamora Z., Alonso Y., Merino N., Montero T. Ozone oxidative post-conditioning in acute renal failure. J. Pharm. Pharmacol. 2009;61:221–227.
    1. Can M., Varlibas F., Guven B., Akhan O., Yuksel G.A. Ischemia modified albumin and plasma oxidative stress markers in Alzheimer’s disease. Eur. Neurol. 2013;69:377–380.
    1. Candelario-Jalil E., Mohammed-Al-Dalain S., Fernandez O.S., Menendez S., Perez-Davison G., Merino N., Sam S., Ajamieh H.H. Oxidative preconditioning affords protection against carbon tetrachloride-induced glycogen depletion and oxidative stress in rats. J. Appl. Toxicol. 2001;21:297–301.
    1. Cattaneo A., Cattane N., Galluzzi S., Provasi S., Lopizzo N., Festari C., Ferrari C., Guerra U.P., Paghera B., Muscio C., Bianchetti A., Volta G.D., Turla M., Cotelli M.S., Gennuso M., Prelle A., Zanetti O., Lussignoli G., Mirabile D., Bellandi D., Gentile S., Belotti G., Villani D., Harach T., Bolmont T., Padovani A., Boccardi M., Frisoni G.B., INDIA-FBP Group Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging. 2017;49:60–68.
    1. Chen H., Xing B., Liu X., Zhan B., Zhou J., Zhu H., Chen Z. Ozone oxidative preconditioning inhibits inflammation and apoptosis in a rat model of renal ischemia/reperfusion injury. Eur. J. Pharmacol. 2008;581:306–314.
    1. Chen H., Xing B., Liu X., Zhan B., Zhou J., Zhu H., Chen Z. Ozone oxidative preconditioning protects the rat kidney from reperfusion injury: the role of nitric oxide. J. Surg. Res. 2008;149:287–295.
    1. Chen H., Xing B., Liu X., Zhan B., Zhou J., Zhu H., Chen Z. Similarities between ozone oxidative preconditioning and ischemic preconditioning in renal ischemia/reperfusion injury. Arch. Med. Res. 2008;39:169–178.
    1. Chevion M., Berenshtein E., Stadtman E.R. Human studies related to protein oxidation: protein carbonyl content as a marker of damage. Free Radic. Res. 2000;33(Suppl):S99–108.
    1. Clark A.R., Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol. Ther. 2019;201:181–201.
    1. Clavo B., Santana-Rodriguez N., Llontop P., Gutierrez D., Suarez G., Lopez L., Rovira G., Martinez-Sanchez G., Gonzalez E., Jorge I.J., Perera C., Blanco J., Rodriguez-Esparragon F. Ozone Therapy as Adjuvant for Cancer Treatment: Is Further Research Warranted? Evid Based.Complement.Alternat Med. 2018;2018
    1. Costanzo M., Boschi F., Carton F., Conti G., Covi V., Tabaracci G., Sbarbati A., Malatesta M. Low ozone concentrations promote adipogenesis in human adipose-derived adult stem cells. Eur. J. Histochem. 2018;62 doi: 10.4081/ejh.2018.2969.
    1. Cristani M., Speciale A., Saija A., Gangemi S., Minciullo P.L., Cimino F. Circulating Advanced Oxidation Protein Products as Oxidative Stress Biomarkers and Progression Mediators in Pathological Conditions Related to Inflammation and Immune Dysregulation. Curr. Med. Chem. 2016;23:3862–3882.
    1. Csala M., Kardon T., Legeza B., Lizak B., Mandl J., Margittai E., Puskas F., Szaraz P., Szelenyi P., Banhegyi G. On the role of 4-hydroxynonenal in health and disease. Biochim. Biophys. Acta. 2015;1852:826–838.
    1. Cuadrado A., Manda G., Hassan A., Alcaraz M.J., Barbas C., Daiber A., Ghezzi P., Leon R., Lopez M.G., Oliva B., Pajares M., Rojo A.I., Robledinos-Anton N., Valverde A.M., Guney E., Schmidt H.H.H.W. Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacol. Rev. 2018;70:348–383.
    1. Cuadrado A., Rojo A.I., Wells G., Hayes J.D., Cousin S.P., Rumsey W.L., Attucks O.C., Franklin S., Levonen A.L., Kensler T.W., Dinkova-Kostova A.T. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat.Rev.Drug Discov. 2019;18:295–317.
    1. Curro M., Russo T., Ferlazzo N., Caccamo D., Antonuccio P., Arena S., Parisi S., Perrone P., Ientile R., Romeo C., Impellizzeri P. Anti-Inflammatory and Tissue Regenerative Effects of Topical Treatment with Ozonated Olive Oil/Vitamin E Acetate in Balanitis Xerotica Obliterans. Molecules. 2018;23 doi: 10.3390/molecules23030645.
    1. Delgado-Roche L., Hernandez-Matos Y., Medina E.A., Morejon D.A., Gonzalez M.R., Martinez-Sanchez G. Ozone-Oxidative Preconditioning Prevents Doxorubicin-induced Cardiotoxicity in Sprague-Dawley Rats. Sultan Qaboos Univ. Med. J. 2014;14:e342–8.
    1. Delgado-Roche L., Martinez-Sanchez G., Re L. Ozone oxidative preconditioning prevents atherosclerosis development in New Zealand White rabbits. J. Cardiovasc. Pharmacol. 2013;61:160–165.
    1. Delgado-Roche L., Riera-Romo M., Mesta F., Hernandez-Matos Y., Barrios J.M., Martinez-Sanchez G., Al-Dalaien S.M. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur. J. Pharmacol. 2017;811:148–154.
    1. Di Domenico F., Barone E., Mancuso C., Perluigi M., Cocciolo A., Mecocci P., Butterfield D.A., Coccia R. HO-1/BVR-a system analysis in plasma from probable Alzheimer’s disease and mild cognitive impairment subjects: a potential biochemical marker for the prediction of the disease. J. Alzheimers Dis. 2012;32:277–289.
    1. Díaz-Luis J., Menéndez-Cepero S., Macías-Abraham C., Fariñas-Rodríguez L. Systemic Ozone Therapy by Rectal Insufflation for Immunoglobulin A Deficiency. MEDICC Review. 2018;20:29–35.
    1. Dugger B.N., Dickson D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect. Biol. 2017;9 doi: 10.1101/cshperspect.a028035.
    1. El-Mehi A.E., Faried M.A. Controlled ozone therapy modulates the neurodegenerative changes in the frontal cortex of the aged albino rat. Ann. Anat. 2020;227
    1. El-Sawalhi M.M., Darwish H.A., Mausouf M.N., Shaheen A.A. Modulation of age-related changes in oxidative stress markers and energy status in the rat heart and hippocampus: a significant role for ozone therapy. Cell Biochem.Funct. 2013;31:518–525.
    1. Elvis A., Ekta J.S. 2011. Ozone therapy: A clinical review.
    1. Emon S.T., Uslu S., Aydinlar E.I., Irban A., Ince U., Orakdogen M., Suyen G.G. Effects of Ozone on Spinal Cord Recovery via the Wnt/ &Beta;-Catenin Pathway Following Spinal Cord Injury in Rats. Turk. Neurosurg. 2017;27:946–951.
    1. Eve D.J., Nisbet A.P., Kingsbury A.E., Hewson E.L., Daniel S.E., Lees A.J., Marsden C.D., Foster O.J. Basal ganglia neuronal nitric oxide synthase mRNA expression in Parkinson’s disease. Brain Res.Mol.Brain Res. 1998;63:62–71.
    1. Facchinetti M.M. Heme Oxygenase-1. Antioxidants & Redox Signaling. 2020
    1. Fedorova M., Bollineni R.C., Hoffmann R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom. Rev. 2014;33:79–97.
    1. Feitosa C.M., da Silva Oliveira G.L., do Nascimento Cavalcante A., Morais Chaves S.K., Rai M. Determination of Parameters of Oxidative Stress in vitro Models of Neurodegenerative Diseases-A Review. Curr. Clin. Pharmacol. 2018;13:100–109.
    1. Fernandez Iglesias A., Gonzalez Nunez L., Calunga Fernandez J.L., Rodriguez Salgueiro S., Santos Febles E. Ozone postconditioning in renal ischaemia-reperfusion model. Functional and morphological evidences. Nefrologia. 2011;31:464–470.
    1. Ferreiro E., Pita I.R., Mota S.I., Valero J., Ferreira N.R., Fernandes T., Calabrese V., Fontes-Ribeiro C.A., Pereira F.C., Rego A.C. Coriolus versicolor biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus. Oncotarget. 2018;9:32929–32942.
    1. Fitzpatrick E., Holland O.J., Vanderlelie J.J. Ozone therapy for the treatment of chronic wounds: A systematic review. Int. Wound. J. 2018;15:633–644.
    1. Forno L.S. Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 1996;55:259–272.
    1. Galie M., Costanzo M., Nodari A., Boschi F., Calderan L., Mannucci S., Covi V., Tabaracci G., Malatesta M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radic. Biol. Med. 2018;124:114–121.
    1. Garcia-Escudero V., Martin-Maestro P., Perry G., Avila J. Deconstructing mitochondrial dysfunction in Alzheimer disease. Oxid Med. Cell. Longev. 2013;2013
    1. Goh K.I., Cusick M.E., Valle D., Childs B., Vidal M., Barabasi A.L. The human disease network. Proc. Natl. Acad. Sci. U. S. A. 2007;104:8685–8690.
    1. Gu F., Chauhan V., Chauhan A. Glutathione redox imbalance in brain disorders. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:89–95.
    1. Guanche D., Hernandez F., Zamora Z., Alonso Y. Effect of ozone pre-conditioning on redox activity in a rat model of septic shock. Toxicology mechanisms and methods. 2010;20:466–471.
    1. Guclu A., Erken H.A., Erken G., Dodurga Y., Yay A., Ozcoban O., Simsek H., Akcilar A., Kocak F.E. The effects of ozone therapy on caspase pathways, TNF-alpha, and HIF-1alpha in diabetic nephropathy. Int. Urol. Nephrol. 2016;48:441–450.
    1. Gultekin F.A., Bakkal B.H., Guven B., Tasdoven I., Bektas S., Can M., Comert M. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats. J. Radiat. Res. 2013;54:36–44.
    1. Gultekin F.A., Cakmak G.K., Turkcu U.O., Yurdakan G., Demir F.E., Comert M. Effects of ozone oxidative preconditioning on liver regeneration after partial hepatectomy in rats. J. Invest. Surg. 2013;26:242–252.
    1. Guven A., Gundogdu G., Sadir S., Topal T., Erdogan E., Korkmaz A., Surer I., Ozturk H. The efficacy of ozone therapy in experimental caustic esophageal burn. J. Pediatr. Surg. 2008;43:1679–1684.
    1. Haj B., Sukhotnik I., Shaoul R., Pollak Y., Coran A.G., Bitterman A., Matter I. Effect of ozone on intestinal recovery following intestinal ischemia-reperfusion injury in a rat. Pediatr. Surg. Int. 2014;30:181–188.
    1. Hannibal L. Nitric Oxide Homeostasis in Neurodegenerative Diseases. Curr. Alzheimer Res. 2016;13:135–149.
    1. Hasanzadeh S., Read M.I., Bland A.R., Majeed M., Jamialahmadi T., Sahebkar A. Curcumin: an inflammasome silencer. Pharmacol. Res. 2020;159
    1. Hernandez Rosales F.A., Calunga Fernandez J.L., Turrent Figueras J., Menendez Cepero S., Montenegro Perdomo A. Ozone therapy effects on biomarkers and lung function in asthma. Arch. Med. Res. 2005;36:549–554.
    1. Hohn A., Tramutola A., Cascella R. Proteostasis Failure in Neurodegenerative Diseases: Focus on Oxidative Stress. Oxid Med. Cell. Longev. 2020;2020
    1. Holmstrom K.M., Kostov R.V., Dinkova-Kostova A.T. The multifaceted role of Nrf2 in mitochondrial function. Curr. Opin. Toxicol. 2016;1:80–91.
    1. Hsiao C.M., Wu Y.S., Nan F.H., Huang S.L., Chen L., Chen S.N. Immunomodulator’ mushroom beta glucan’ induces Wnt/beta catenin signalling and improves wound recovery in tilapia and rat skin: a histopathological study. Int. Wound. J. 2016;13:1116–1128.
    1. Hunot S., Boissiere F., Faucheux B., Brugg B., Mouatt-Prigent A., Agid Y., Hirsch E.C. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience. 1996;72:355–363.
    1. Ishii T., Itoh K., Ruiz E., Leake D.S., Unoki H., Yamamoto M., Mann G.E. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ. Res. 2004;94:609–616.
    1. Isler S.C., Unsal B., Soysal F., Ozcan G., Peker E., Karaca I.R. The effects of ozone therapy as an adjunct to the surgical treatment of peri-implantitis. J. Periodontal. Implant Sci. 2018;48:136–151.
    1. Izadi M., Kheirjou R., Mohammadpour R., Aliyoldashi M.H., Moghadam S.J., Khorvash F., Jafari N.J., Shirvani S., Khalili N. Efficacy of comprehensive ozone therapy in diabetic foot ulcer healing. Diabetes Metab. Syndr. 2019;13:822–825.
    1. Jiang B., Su Y., Chen Q., Dong L., Zhou W., Li H., Wang Y. Protective Effects of Ozone Oxidative Postconditioning on Long-term Injury After Renal Ischemia/Reperfusion in Rat. Transplant. Proc. 2020;52:365–372.
    1. Jung J., Na C., Huh Y. Alterations in nitric oxide synthase in the aged CNS. Oxid Med. Cell. Longev. 2012;2012
    1. Kesik V., Uysal B., Kurt B., Kismet E., Koseoglu V. Ozone ameliorates methotrexate-induced intestinal injury in rats. Cancer. Biol. Ther. 2009;8:1623–1628.
    1. Khatri I., Moger G., Kumar N.A. Evaluation of effect of topical ozone therapy on salivary Candidal carriage in oral candidiasis. Indian J. Dent. Res. 2015;26:158–162.
    1. Kikuchi S., Shinpo K., Ogata A., Tsuji S., Takeuchi M., Makita Z., Tashiro K. Detection of N epsilon-(carboxymethyl)lysine (CML) and non-CML advanced glycation end-products in the anterior horn of amyotrophic lateral sclerosis spinal cord. Amyotroph Lateral Scler. Other Motor Neuron. Disord. 2002;3:63–68.
    1. Kim T.S., Pae C.U., Yoon S.J., Jang W.Y., Lee N.J., Kim J.J., Lee S.J., Lee C., Paik I.H., Lee C.U. Decreased plasma antioxidants in patients with Alzheimer's disease. Int. J. Geriatr. Psychiatry. 2006;21:344–348.
    1. Knowles T.P., Vendruscolo M., Dobson C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 2014;15:384–396.
    1. Koca K., Yurttas Y., Yildiz C., Cayci T., Uysal B., Korkmaz A. Effect of hyperbaric oxygen and ozone preconditioning on oxidative/nitrosative stress induced by tourniquet ischemia/reperfusion in rat skeletal muscle. Acta Orthop. Traumatol. Turc. 2010;44:476–483.
    1. Koçak H.E., Taşkın Ü, Aydın S., Oktay M.F., Altınay S., Çelik D.S., Yücebaş K., Altaş B. Effects of ozone (O(3)) therapy on cisplatin-induced ototoxicity in rats. Eur. Arch. Otorhinolaryngol. 2016;273:4153–4159.
    1. Komosinska-Vassev K., Olczyk P., Winsz-Szczotka K., Kuznik-Trocha K., Klimek K., Olczyk K. Age- and gender-related alteration in plasma advanced oxidation protein products (AOPP) and glycosaminoglycan (GAG) concentrations in physiological ageing. Clin. Chem. Lab. Med. 2012;50:557–563.
    1. Kucukgul A., Erdogan S., Gonenci R., Ozan G. Beneficial effects of nontoxic ozone on H(2)O(2)-induced stress and inflammation". Biochemistry and cell biology = Biochimie et biologie cellulaire. 2016;94(6):577–583. JID - 8606068, [Online]
    1. Kurtoglu T., Durmaz S., Akgullu C., Gungor H., Eryilmaz U., Meteoglu I., Karul A., Boga M. Ozone preconditioning attenuates contrast-induced nephropathy in rats. J. Surg. Res. 2015;195:604–611.
    1. Lackie R.E., Maciejewski A., Ostapchenko V.G., Marques-Lopes J., Choy W.Y., Duennwald M.L., Prado V.F., Prado M.A.M. The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Front. Neurosci. 2017;11:254.
    1. León Fernández, O.S., Jorge, Ajamieh HH FAU - Berlanga, Berlanga J FAU - Menéndez, Silvia, Menéndez S FAU - Viebahn-Hánsler, Renate, Viebahn-Hánsler R FAU - Re, Lamberto, Re L FAU - Carmona, Anna, M. Carmona, A.M. 2008. Ozone oxidative preconditioning is mediated by A1 adenosine receptors in a rat model of liver ischemia/ reperfusion. Transplant international : official journal of the European Society for Organ Transplantation JID – 8908516.
    1. Leon Fernandez O.S., Pantoja M., Diaz Soto M.T., Dranguet J., Garcia Insua M., Viebhan-Hansler R., Menendez Cepero S., Calunga Fernandez J.L. Ozone oxidative post-conditioning reduces oxidative protein damage in patients with disc hernia. Neurol.Res. 2012;34:59–67.
    1. Leon O.S., Menendez S., Merino N., Castillo R., Sam S., Perez L., Cruz E., Bocci V. Ozone oxidative preconditioning: a protection against cellular damage by free radicals. Mediators Inflamm. 1998;7:289–294.
    1. Leri M., Scuto M., Ontario M.L., Calabrese V., Calabrese E.J., Bucciantini M., Stefani M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21041250.
    1. Lerner R.A., Eschenmoser A. Ozone in biology. Proc. Natl. Acad. Sci. U. S. A. 2003;100:3013–3015.
    1. Levonen A.L., Landar A., Ramachandran A., Ceaser E.K., Dickinson D.A., Zanoni G., Morrow J.D., Darley-Usmar V.M. Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J. 2004;378:373–382.
    1. Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., Abete P. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018;13:757–772.
    1. Liu H., Wang H., Shenvi S., Hagen T.M., Liu R.M. Glutathione metabolism during aging and in Alzheimer disease. Ann. N.Y. Acad. Sci. 2004;1019:346–349.
    1. Luth H.J., Holzer M., Gartner U., Staufenbiel M., Arendt T. Expression of endothelial and inducible NOS-isoforms is increased in Alzheimer’s disease, in APP23 transgenic mice and after experimental brain lesion in rat: evidence for an induction by amyloid pathology. Brain Res. 2001;913:57–67.
    1. Luth H.J., Munch G., Arendt T. Aberrant expression of NOS isoforms in Alzheimer’s disease is structurally related to nitrotyrosine formation. Brain Res. 2002;953:135–143.
    1. Mac Nair C.E., Schlamp C.L., Montgomery A.D., Shestopalov V.I., Nickells R.W. Retinal glial responses to optic nerve crush are attenuated in Bax-deficient mice and modulated by purinergic signaling pathways. J. Neuroinflammation. 2016;13 93-016-0558-y.
    1. Maciejczyk M., Zalewska A., Ladny J.R. Salivary Antioxidant Barrier, Redox Status, and Oxidative Damage to Proteins and Lipids in Healthy Children, Adults, and the Elderly. Oxid Med. Cell. Longev. 2019;2019
    1. Madej P., Plewka A., Madej J.A., Plewka D., Mroczka W., Wilk K., Dobrosz Z. Ozone therapy in induced endotoxemic shock. II. The effect of ozone therapy upon selected histochemical reactions in organs of rats in endotoxemic shock. Inflammation. 2007;30:69–86.
    1. Maes O.C., Kravitz S., Mawal Y., Su H., Liberman A., Mehindate K., Berlin D., Sahlas D.J., Chertkow H.M., Bergman H., Melmed C., Schipper H.M. Characterization of alpha1-antitrypsin as a heme oxygenase-1 suppressor in Alzheimer plasma. Neurobiol. Dis. 2006;24:89–100.
    1. Maki R.A., Holzer M., Motamedchaboki K., Malle E., Masliah E., Marsche G., Reynolds W.F. Human myeloperoxidase (hMPO) is expressed in neurons in the substantia nigra in Parkinson’s disease and in the hMPO-alpha-synuclein-A53T mouse model, correlating with increased nitration and aggregation of alpha-synuclein and exacerbation of motor impairment. Free Radic. Biol. Med. 2019;141:115–140.
    1. Manoto S.L., Maepa M.J., Motaung S.K. Medical ozone therapy as a potential treatment modality for regeneration of damaged articular cartilage in osteoarthritis. Saudi J.Biol.Sci. 2018;25:672–679.
    1. Mao Z.J., Lin H., Hou J.W., Zhou Q., Wang Q., Chen Y.H. A Meta-Analysis of Resveratrol Protects against Myocardial Ischemia/Reperfusion Injury: Evidence from Small Animal Studies and Insight into Molecular Mechanisms. Oxid Med.Cell.Longev. 2019;2019
    1. Martinez de Toda I., De la Fuente M. The role of Hsp70 in oxi-inflamm-aging and its use as a potential biomarker of lifespan. Biogerontology. 2015;16:709–721.
    1. Martinez-Sanchez G., Al-Dalain S.M., Menendez S., Re L., Giuliani A., Candelario-Jalil E., Alvarez H., Fernandez-Montequin J.I., Leon O.S. Therapeutic efficacy of ozone in patients with diabetic foot. Eur. J. Pharmacol. 2005;523:151–161.
    1. Massaad C.A. Neuronal and vascular oxidative stress in Alzheimer’s disease. Curr. Neuropharmacol. 2011;9:662–673.
    1. Mateo I., Infante J., Sanchez-Juan P., Garcia-Gorostiaga I., Rodriguez-Rodriguez E., Vazquez-Higuera J.L., Berciano J., Combarros O. Serum heme oxygenase-1 levels are increased in Parkinson’s disease but not in Alzheimer’s disease. Acta Neurol. Scand. 2010;121:136–138.
    1. Mattson M.P. Hormesis defined. Ageing Res. Rev. 2008;7:1–7.
    1. Mattson M.P. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430:631–639.
    1. Mazzetti A.P., Fiorile M.C., Primavera A., Lo Bello M. Glutathione transferases and neurodegenerative diseases. Neurochem. Int. 2015;82:10–18.
    1. Mecocci P., Boccardi V., Cecchetti R., Bastiani P., Scamosci M., Ruggiero C., Baroni M. A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. J. Alzheimers Dis. 2018;62:1319–1335.
    1. Mendez E.F., Sattler R. Biomarker development for C9orf72 repeat expansion in ALS. Brain Res. 2015;1607:26–35.
    1. Meng W., Xu Y., Li D., Zhu E., Deng L., Liu Z., Zhang G., Liu H. Ozone protects rat heart against ischemia-reperfusion injury: A role for oxidative preconditioning in attenuating mitochondrial injury. Biomed. Pharmacother. 2017;88:1090–1097.
    1. Merelli A., Rodriguez J.C.G., Folch J., Regueiro M.R., Camins A., Lazarowski A. Understanding the Role of Hypoxia Inducible Factor During Neurodegeneration for New Therapeutics Opportunities. Curr.Neuropharmacol. 2018;16:1484–1498.
    1. Moldogazieva N.T., Mokhosoev I.M., Mel’nikova T.I., Porozov Y.B., Terentiev A.A. Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med.Cell.Longev. 2019;2019
    1. Moreno-Fernandez A., Macias-Garcia L., Valverde-Moreno R., Ortiz T., Fernandez-Rodriguez A., Molini-Estrada A., De-Miguel M. Autohemotherapy with ozone as a possible effective treatment for Fibromyalgia. Acta Reumatol Port. 2019;44:244–249.
    1. Morsy M.D., Hassan W.N., Zalat S.I. Improvement of renal oxidative stress markers after ozone administration in diabetic nephropathy in rats. Diabetol.Metab.Syndr. 2010;2
    1. Moskalev A., Proshkina E., Belyi A., Solovev I. Genetics of aging and longevity. Russian Journal of Genetics: Applied Research. 2017;7:369–384.
    1. Mota A., Hemati-Dinarvand M., Akbar Taheraghdam A., Reza Nejabati H., Ahmadi R., Ghasemnejad T., Hasanpour M., Valilo M. Association of Paraoxonse1 (PON1) Genotypes with the Activity of PON1 in Patients with Parkinson’s Disease. Acta Neurol.Taiwan. 2019;28(3):66–74.
    1. Muller G.C., Gottlieb M.G., Luz Correa B., Gomes Filho I., Moresco R.N., Bauer M.E. The inverted CD4:CD8 ratio is associated with gender-related changes in oxidative stress during aging. Cell. Immunol. 2015;296:149–154.
    1. Nakabeppu Y., Tsuchimoto D., Yamaguchi H., Sakumi K. Oxidative damage in nucleic acids and Parkinson’s disease. J. Neurosci. Res. 2007;85:919–934.
    1. Nakamura T., Lipton S.A. Nitric Oxide-Dependent Protein Post-Translational Modifications Impair Mitochondrial Function and Metabolism to Contribute to Neurodegenerative Diseases. Antioxid.Redox Signal. 2020;32:817–833.
    1. Nasezadeh P., Shahi F., Fridoni M., Seydi E., Izadi M., Salimi A. Moderate O3/O2 therapy enhances enzymatic and non-enzymatic antioxidant in brain and cochlear that protects noise-induced hearing loss. Free Radic.Res. 2017;51:828–837.
    1. Negre-Salvayre A., Auge N., Ayala V., Basaga H., Boada J., Brenke R., Chapple S., Cohen G., Feher J., Grune T., Lengyel G., Mann G.E., Pamplona R., Poli G., Portero-Otin M., Riahi Y., Salvayre R., Sasson S., Serrano J., Shamni O., Siems W., Siow R.C., Wiswedel I., Zarkovic K., Zarkovic N. Pathological aspects of lipid peroxidation. Free Radic.Res. 2010;44:1125–1171.
    1. Nitti M., Piras S., Brondolo L., Marinari U.M., Pronzato M.A., Furfaro A.L. Heme Oxygenase 1 in the Nervous System: Does It Favor Neuronal Cell Survival or Induce Neurodegeneration? Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19082260.
    1. Nowotny K., Jung T., Grune T., Hohn A. Reprint of "accumulation of modified proteins and aggregate formation in aging". Exp. Gerontol. 2014;59:3–12.
    1. Oh S., Gwak J., Park S., Yang C.S. Green tea polyphenol EGCG suppresses Wnt/beta-catenin signaling by promoting GSK-3beta- and PP2A-independent beta-catenin phosphorylation/degradation. Biofactors. 2014;40:586–595.
    1. Oliveira P.V.S., Laurindo F.R.M. Implications of plasma thiol redox in disease. Clin.Sci. (Lond) 2018;132:1257–1280.
    1. Onal M., Elsurer C., Selimoglu N., Yilmaz M., Erdogan E., Bengi Celik J., Kal O., Onal O. Ozone Prevents Cochlear Damage From Ischemia-Reperfusion Injury in Guinea Pigs. Artificial organs JID - 2017;7802778(41):744–752.
    1. Ozkan H., Ekinci S., Uysal B., Akyildiz F., Turkkan S., Ersen O., Koca K., Seven M.M. Evaluation and comparison of the effect of hypothermia and ozone on ischemia-reperfusion injury of skeletal muscle in rats. J. Surg. Res. 2015;196:313–319.
    1. Ozturk O., Eroglu H.A., Ustebay S., Kuzucu M., Adali Y. An experimental study on the preventive effects of N-acetyl cysteine and ozone treatment against contrast-induced nephropathy. Acta cirurgica brasileira. 2018;33:508–517. JID - 9103983.
    1. Pan H., Kim E., Rankin G.O., Rojanasakul Y., Tu Y., Chen Y.C. Theaflavin-3, 3’-digallate inhibits ovarian cancer stem cells via suppressing Wnt/beta-Catenin signaling pathway. J. Funct. Foods. 2018;50:1–7.
    1. Paul B.D., Sbodio J.I., Snyder S.H. Cysteine Metabolism in Neuronal Redox Homeostasis. Trends Pharmacol. Sci. 2018;39:513–524.
    1. Pawlak-Osinska K., Kazmierczak H., Kazmierczak W., Szpoper M. Ozone therapy and pressure-pulse therapy in Meniere’s disease. Int. Tinnitus J. 2004;10:54–57.
    1. Pedruzzi L.M., Stockler-Pinto M.B., Leite M., Jr, Mafra D. Nrf2-keap1 system versus NF-kappaB: the good and the evil in chronic kidney disease? Biochimie. 2012;94:2461–2466.
    1. Perez D.I., Gil C., Martinez A. Protein kinases CK1 and CK2 as new targets for neurodegenerative diseases. Med. Res. Rev. 2011;31:924–954.
    1. Picon-Pages P., Garcia-Buendia J., Munoz F.J. Functions and dysfunctions of nitric oxide in brain. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865:1949–1967.
    1. Polidori M.C., Mecocci P., Browne S.E., Senin U., Beal M.F. Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci. Lett. 1999;272:53–56.
    1. Poulsen H.E., Nadal L.L., Broedbaek K., Nielsen P.E., Weimann A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim. Biophys. Acta. 2014;1840:801–808.
    1. Pratico D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol. Sci. 2008;29:609–615.
    1. Puspita L., Chung S.Y., Shim J.W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain. 2017;10
    1. Qing Z., Ling-Ling E., Dong-Sheng W., Hong-Chen L. Relationship of advanced oxidative protein products in human saliva and plasma: age- and gender-related changes and stability during storage. Free Radic. Res. 2012;46:1201–1206.
    1. Qiu T., Wang Z., Liu X., Chen H., Zhou J., Chen Z., Wang M., Jiang G., Wang L., Yu G., Zhang L., Shen Y., Zhang L., He L., Wang H., Zhang W. Effect of ozone oxidative preconditioning on oxidative stress injury in a rat model of kidney transplantation. Experimental and therapeutic medicine. 2017;13:1948–1955.
    1. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc. Natl. Acad. Sci. U. S. A. 2018;115:5839–5848.
    1. Ramirez-Acuna J.M., Cardenas-Cadena S.A., Marquez-Salas P.A., Garza-Veloz I., Perez-Favila A., Cid-Baez M.A., Flores-Morales V., Martinez-Fierro M.L. Diabetic Foot Ulcers: Current Advances in Antimicrobial Therapies and Emerging Treatments. Antibiotics (Basel) 2019;8 doi: 10.3390/antibiotics8040193.
    1. Ray R.S., Katyal A. Myeloperoxidase: Bridging the gap in neurodegeneration. Neurosci. Biobehav. Rev. 2016;68:611–620.
    1. Re L., Martinez-Sanchez G., Bordicchia M., Malcangi G., Pocognoli A., Morales-Segura M.A., Rothchild J., Rojas A. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur. J. Pharmacol. 2014;742:158–162.
    1. Re L., Martinez-Sanchez G., Perez-Davison G., Sirito M. Role of ozone/oxygen in fibroblast growth factor activation. Discovering the facts. International Journal of Ozone Therapy. 2010;9:55–58.
    1. Re L., Mawsouf M.N., Menendez S., Leon O.S., Sanchez G.M., Hernandez F. Ozone therapy: clinical and basic evidence of its therapeutic potential. Arch. Med. Res. 2008;39:17–26.
    1. Reutzel M., Grewal R., Dilberger B., Silaidos C., Joppe A., Eckert G.P. Cerebral Mitochondrial Function and Cognitive Performance during Aging: A Longitudinal Study in NMRI Mice. Oxidative Medicine and Cellular Longevity. 2020;2020
    1. Rizvi S.I., Jha R., Maurya P.K. Erythrocyte plasma membrane redox system in human aging. Rejuvenation Res. 2006;9:470–474.
    1. Rodriguez Z.Z., Guanche D., Alvarez R.G., Martinez Y., Alonso Y., Schulz S. Effects of ozone oxidative preconditioning on different hepatic biomarkers of oxidative stress in endotoxic shock in mice. Toxicol. Mech. Methods. 2011;21:236–240.
    1. Rodriguez Z.Z., Guanche D., Alvarez R.G., Rosales F.H., Alonso Y., Schulz S. Preconditioning with ozone/oxygen mixture induces reversion of some indicators of oxidative stress and prevents organic damage in rats with fecal peritonitis. Inflamm. Res. 2009;58:371–375.
    1. Rosenberger A.F., Morrema T.H., Gerritsen W.H., van Haastert E.S., Snkhchyan H., Hilhorst R., Rozemuller A.J., Scheltens P., van der Vies S.M., Hoozemans J.J. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer’s disease pathology. J. Neuroinflammation. 2016;13 4-015-0470-x.
    1. Rosul M.V., Patskan B.M. Ozone therapy effectiveness in patients with ulcerous lesions due to diabetes mellitus. Wiad. Lek. 2016;69:7–9.
    1. Rougemont M., Do K.Q., Castagne V. New model of glutathione deficit during development: Effect on lipid peroxidation in the rat brain. J. Neurosci. Res. 2002;70:774–783.
    1. Rusanova I., Diaz-Casado M.E., Fernandez-Ortiz M., Aranda-Martinez P., Guerra-Librero A., Garcia-Garcia F.J., Escames G., Manas L., Acuna-Castroviejo D. Analysis of Plasma MicroRNAs as Predictors and Biomarkers of Aging and Frailty in Humans. Oxid Med. Cell. Longev. 2018;2018
    1. Safwat M.H., El-Sawalhi M.M., Mausouf M.N., Shaheen A.A. Ozone ameliorates age-related oxidative stress changes in rat liver and kidney: effects of pre- and post-ageing administration. Biochemistry (Mosc) 2014;79:450–458.
    1. Salminen A., Kaarniranta K., Kauppinen A. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res.Rev. 2016;28:15–26.
    1. Sancak E.B., Turkon H., Cukur S., Erimsah S., Akbas A., Gulpinar M.T., Toman H., Sahin H., Uzun M. Major Ozonated Autohemotherapy Preconditioning Ameliorates Kidney Ischemia-Reperfusion Injury. Inflammation. 2016;39:209–217.
    1. Scassellati C., Ciani M., Galoforo A.C., Zanardini R., Bonvicini C., Geroldi C. Molecular mechanisms in cognitive frailty: potential therapeutic targets for oxygen-ozone treatment. Mech. Ageing Dev. 2020;186
    1. Scassellati C., Costanzo M., Cisterna B., Nodari A., Galie M., Cattaneo A., Covi V., Tabaracci G., Bonvicini C., Malatesta M. Effects of mild ozonisation on gene expression and nuclear domains organization in vitro. Toxicol. In. Vitro. 2017;44:100–110.
    1. Schaffert L.N., Carter W.G. Do Post-Translational Modifications Influence Protein Aggregation in Neurodegenerative Diseases: A Systematic Review. Brain Sci. 2020;10 doi: 10.3390/brainsci10040232.
    1. Schipper H.M. Biological markers and Alzheimer disease: a canadian perspective. Int. J. Alzheimers Dis. 2010;2010 doi: 10.4061/2010/978182.
    1. Schipper H.M. Biomarker potential of heme oxygenase-1 in Alzheimer’s disease and mild cognitive impairment. Biomark Med. 2007;1:375–385.
    1. Schipper H.M., Chertkow H., Mehindate K., Frankel D., Melmed C., Bergman H. Evaluation of heme oxygenase-1 as a systemic biological marker of sporadic AD. Neurology. 2000;54:1297–1304.
    1. Schipper H.M., Song W., Tavitian A., Cressatti M. The sinister face of heme oxygenase-1 in brain aging and disease. Prog. Neurobiol. 2019;172:40–70.
    1. Schmidlin C.J., Dodson M.B., Madhavan L., Zhang D.D. Redox regulation by NRF2 in aging and disease. Free Radic. Biol. Med. 2019;134:702–707.
    1. Schwartz-Tapia A., Martínez-Sánchez G., Sabah F., Alvarado-Guémez F., Bazzano-Mastrelli N., Bikina O., Borroto-Rodrígez V., Cakir R., Clavo B., González-Sánchez E., Grechkanev G., Najm Dawood A.H., Izzo A., Konrad H., Masini M., Peretiagyn S., Pereyra V.R., Ruiz Reyes D., Shallenberger F., Vongay V., Xirezhati A., Quintero-Marino R. 2nd Madrid ed. ISCO3; 2015. Madrid Declaration on Ozone Therapy.
    1. Scuto M., Di Mauro P., Ontario M.L., Amato C., Modafferi S., Ciavardelli D., Trovato Salinaro A., Maiolino L., Calabrese V. Nutritional Mushroom Treatment in Meniere’s Disease with Coriolus versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration. Int. J. Mol. Sci. 2019;21 doi: 10.3390/ijms21010284.
    1. Selkoe D.J. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J.Alzheimers Dis. 2001;3:75–80.
    1. Shan Y., Schoenfeld R.A., Hayashi G., Napoli E., Akiyama T., Iodi Carstens M., Carstens E.E., Pook M.A., Cortopassi G.A. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid.Redox Signal. 2013;19:1481–1493.
    1. Shehata N.I., Abd-Elgawad H.M., Mawsouf M.N., Shaheen A.A. The potential role of ozone in ameliorating the age-related biochemical changes in male rat cerebral cortex. Biogerontology. 2012;13:565–581.
    1. Silva T.O., Jung I.E., Moresco R.N., Barbisan F., Ribeiro E.E., Ribeiro E.A., Motta K., Britto E., Tasch E., Bochi G., Duarte M.M., Oliveira A.R., Marcon M., Bello C., dos Santos Montagner G.F., da Cruz I.B. Association between advanced oxidation protein products and 5-year mortality risk among amazon riparian elderly population. Free Radic. Res. 2015;49:204–209.
    1. Silva-Palacios A., Ostolga-Chavarria M., Zazueta C., Konigsberg M. Nrf2: Molecular and epigenetic regulation during aging. Ageing Res. Rev. 2018;47:31–40.
    1. Singh A., Kukreti R., Saso L., Kukreti S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules. 2019;24 doi: 10.3390/molecules24081583.
    1. Siniscalco D., Trotta M.C., Brigida A.L., Maisto R., Luongo M., Ferraraccio F., D’Amico M., Di Filippo C. Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. Biology (Basel) 2018;7 doi: 10.3390/biology7010010.
    1. Sivandzade F., Prasad S., Bhalerao A., Cucullo L. NRF2 and NF-B interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol. 2019;21
    1. Smith N.L., Wilson A.L., Gandhi J., Vatsia S., Khan S.A. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med. Gas Res. 2017;7:212–219.
    1. Son T.G., Zou Y., Yu B.P., Lee J., Chung H.Y. Aging effect on myeloperoxidase in rat kidney and its modulation by calorie restriction. Free Radic. Res. 2005;39:283–289.
    1. Spillantini M.G., Crowther R.A., Jakes R., Hasegawa M., Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. U. S. A. 1998;95:6469–6473.
    1. Srikanth A., Sathish M., Sri Harsha A.V. Application of ozone in the treatment of periodontal disease. J. Pharm. Bioallied Sci. 2013;5:S89–94.
    1. Stadlbauer T.H., Eisele A., Heidt M.C., Tillmanns H.H., Schulz S. Preconditioning with ozone abrogates acute rejection and prolongs cardiac allograft survival in rats. Transplant. Proc. 2008;40:974–977.
    1. Sun W., Pei L. Ozone preconditioning and exposure to ketamine attenuates hepatic inflammation in septic rats. Arch. Med. Sci. 2012;8:918–923.
    1. Tang Z., Hu B., Zang F., Wang J., Zhang X., Chen H. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. Cell.Death Dis. 2019;10
    1. Tarafdar A., Pula G. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 2018;19 doi: 10.3390/ijms19123824.
    1. Tasdoven I., Emre A.U., Gultekin F.A., Oner M.O., Bakkal B.H., Turkcu U.O., Gun B.D., Tasdoven G.E. Effects of ozone preconditioning on recovery of rat colon anastomosis after preoperative radiotherapy. Adv. Clin. Exp. Med. 2019;28:1683–1689.
    1. Teskey G., Abrahem R., Cao R., Gyurjian K., Islamoglu H., Lucero M., Martinez A., Paredes E., Salaiz O., Robinson B., Venketaraman V. Glutathione as a Marker for Human Disease. Adv. Clin. Chem. 2018;87:141–159.
    1. Tieu K., Ischiropoulos H., Przedborski S. Nitric oxide and reactive oxygen species in Parkinson’s disease. IUBMB Life. 2003;55:329–335.
    1. Tirelli U., Cirrito C., Pavanello M., Piasentin C., Lleshi A., Taibi R. Ozone therapy in 65 patients with fibromyalgia: an effective therapy. Eur. Rev. Med. Pharmacol. Sci. 2019;23:1786–1788.
    1. Toda N., Ayajiki K., Okamura T. Cerebral blood flow regulation by nitric oxide in neurological disorders. Can. J. Physiol. Pharmacol. 2009;87:581–594.
    1. Trovato Salinaro A., Pennisi M., Di Paola R., Scuto M., Crupi R., Cambria M.T., Ontario M.L., Tomasello M., Uva M., Maiolino L., Calabrese E.J., Cuzzocrea S., Calabrese V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun.Ageing. 2018;15 8-017-0108-1. eCollection 2018.
    1. Trovato A., Siracusa R., Di Paola R., Scuto M., Fronte V., Koverech G., Luca M., Serra A., Toscano M.A., Petralia A., Cuzzocrea S., Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Coriolus versicolor in rat brain: Relevance to Alzheimer’s disease pathogenesis. Neurotoxicology. 2016;53:350–358.
    1. Trovato A., Siracusa R., Di Paola R., Scuto M., Ontario M.L., Bua O., Di Mauro P., Toscano M.A., Petralia C.C.T., Maiolino L., Serra A., Cuzzocrea S., Calabrese V. Redox modulation of cellular stress response and lipoxin A4 expression by Hericium Erinaceus in rat brain: relevance to Alzheimer’s disease pathogenesis. Immun.Ageing. 2016;13 23-016-0078-8. eCollection 2016.
    1. Tunez I., Sanchez-Lopez F., Aguera E., Fernandez-Bolanos R., Sanchez F.M., Tasset-Cuevas I. Important role of oxidative stress biomarkers in Huntington’s disease. J. Med. Chem. 2011;54:5602–5606.
    1. Tusat M., Mentese A., Demir S., Alver A., Imamoglu M. Medical ozone therapy reduces oxidative stress and testicular damage in an experimental model of testicular torsion in rats. Int. Braz. J. Urol. 2017;43:1160–1166.
    1. Uysal B., Yasar M., Ersoz N., Coskun O., Kilic A., Cayc T., Kurt B., Oter S., Korkmaz A., Guven A. Efficacy of hyperbaric oxygen therapy and medical ozone therapy in experimental acute necrotizing pancreatitis. Pancreas. 2010;39:9–15.
    1. Vaillant J.D., Fraga A., Diaz M.T., Mallok A., Viebahn-Hansler R., Fahmy Z., Barbera A., Delgado L., Menendez S., Fernandez O.S. Ozone oxidative postconditioning ameliorates joint damage and decreases pro-inflammatory cytokine levels and oxidative stress in PG/PS-induced arthritis in rats. Eur. J. Pharmacol. 2013;714:318–324.
    1. Veal E., Jackson T., Latimer H. Role/s of’ Antioxidant’ Enzymes in Ageing. Subcell. Biochem. 2018;90:425–450.
    1. Vikram A., Anish R., Kumar A., Tripathi D.N., Kaundal R.K. Oxidative Stress and Autophagy in Metabolism and Longevity. Oxid Med.Cell.Longev. 2017;2017
    1. Vina E.R., Fang A.J., Wallace D.J., Weisman M.H. Chronic inflammatory demyelinating polyneuropathy in patients with systemic lupus erythematosus: prognosis and outcome. Semin. Arthritis Rheum. 2005;35:175–184.
    1. Vonsattel J.P., DiFiglia M. Huntington disease. J. Neuropathol. Exp. Neurol. 1998;57:369–384.
    1. Wang J., Zhang Y., Zhu Q., Liu Y., Cheng H., Zhang Y., Li T. Emodin protects mice against radiation-induced mortality and intestinal injury via inhibition of apoptosis and modulation of p53. Environ. Toxicol. Pharmacol. 2016;46:311–318.
    1. Wang L., Chen H., Liu X.H., Chen Z.Y., Weng X.D., Qiu T., Liu L. The protective effect of ozone oxidative preconditioning against hypoxia/reoxygenation injury in rat kidney cells. Ren.Fail. 2014;36:1449–1454.
    1. Wang L., Chen H., Liu X.H., Chen Z.Y., Weng X.D., Qiu T., Liu L., Zhu H.C. Ozone oxidative preconditioning inhibits renal fibrosis induced by ischemia and reperfusion injury in rats. Exp.Ther.Med. 2014;8:1764–1768.
    1. Wang L., Chen Z., Liu Y., Du Y., Liu X. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway. Drug Des.Devel.Ther. 2018;12:1293–1301.
    1. Wang L., Chen Z., Weng X., Wang M., Du Y., Liu X. Combined Ischemic Postconditioning and Ozone Postconditioning Provides Synergistic Protection Against Renal Ischemia and Reperfusion Injury Through Inhibiting Pyroptosis. Urology. 2019;123:296.e1–296.e8.
    1. Wang X. Emerging roles of ozone in skin diseases. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018;43:114–123.
    1. Wang X., Wang W., Li L., Perry G., Lee H.G., Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim.Biophys.Acta. 2014;1842:1240–1247.
    1. Wang Y., Li H., Li Y., Zhao Y., Xiong F., Liu Y., Xue H., Yang Z., Ni S., Sahil A., Che H., Wang L. Coriolus versicolor alleviates diabetic cardiomyopathy by inhibiting cardiac fibrosis and NLRP3 inflammasome activation. Phytother.Res. 2019;33:2737–2748.
    1. Wang Z., Bai Z., Qin X., Cheng Y. Aberrations in Oxidative Stress Markers in Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Oxid Med.Cell.Longev. 2019;2019
    1. Wang Z., Han Q., Guo Y.L., Liu X.H., Qiu T. Effect of ozone oxidative preconditioning on inflammation and oxidative stress injury in rat model of renal transplantation. Acta Cir.Bras. 2018;33:238–249.
    1. Wang Z., Zhang A., Meng W., Wang T., Li D., Liu Z., Liu H. Ozone protects the rat lung from ischemia-reperfusion injury by attenuating NLRP3-mediated inflammation, enhancing Nrf2 antioxidant activity and inhibiting apoptosis. Eur.J.Pharmacol. 2018;835:82–93.
    1. Wentworth P., Jr, McDunn J.E., Wentworth A.D., Takeuchi C., Nieva J., Jones T., Bautista C., Ruedi J.M., Gutierrez A., Janda K.D., Babior B.M., Eschenmoser A., Lerner R.A. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science. 2002;298:2195–2199.
    1. WHO . 2011. Global Health and Aging. [Online]. Available from:
    1. Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539:180–186.
    1. Xing B., Chen H., Wang L., Weng X., Chen Z., Li X. Ozone oxidative preconditioning protects the rat kidney from reperfusion injury via modulation of the TLR4-NF-kappaB pathway. Acta Cir.Bras. 2015;30:60–66.
    1. Yanar K., Atayik M.C., Simsek B., Cakatay U. Novel biomarkers for the evaluation of aging-induced proteinopathies. Biogerontology. 2020
    1. Yeo E.J. Hypoxia and aging. Exp.Mol.Med. 2019;51:1–15.
    1. Yong L., Lyu X., Huang C., Xu Y. 2017. "Effect of local ozone treatment on inflammatory cytokine, growth cytokine and apoptosis molecule expression in anal fistula wound".
    1. Yu G., Bai Z., Chen Z., Chen H., Wang G., Wang G., Liu Z. The NLRP3 inflammasome is a potential target of ozone therapy aiming to ease chronic renal inflammation in chronic kidney disease. Int.Immunopharmacol. 2017;43:203–209.
    1. Zamora Z.B., Borrego A., Lopez O.Y., Delgado R., Gonzalez R., Menendez S., Hernandez F., Schulz S. Effects of ozone oxidative preconditioning on TNF-alpha release and antioxidant-prooxidant intracellular balance in mice during endotoxic shock. Mediators Inflamm. 2005;2005:16–22.
    1. Zamora Z.B., Borrego A., Lopez O.Y., Delgado R., Menendez S., Schulz S., Hernandez F. Inhibition of tumor necrosis factor-alpha release during endotoxic shock by ozone oxidative preconditioning in mice. Arzneimittelforschung. 2004;54:906–909.
    1. Zhang H., Davies K.J.A., Forman H.J. Oxidative stress response and Nrf2 signaling in aging. Free Radic.Biol.Med. 2015;88:314–336.
    1. Zhang J., Guan M., Xie C., Luo X., Zhang Q., Xue Y. Increased growth factors play a role in wound healing promoted by noninvasive oxygen-ozone therapy in diabetic patients with foot ulcers. Oxid Med.Cell.Longev. 2014;2014
    1. Zhao X., Li Y., Lin X., Wang J., Zhao X., Xie J., Sun T., Fu Z. Ozone induces autophagy in rat chondrocytes stimulated with IL-1beta through the AMPK/mTOR signaling pathway. J.Pain Res. 2018;11:3003–3017.
    1. Zhao Y., Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med.Cell.Longev. 2013;2013
    1. Zheng Z., Dong M., Hu K. A preliminary evaluation on the efficacy of ozone therapy in the treatment of COVID-19. J.Med.Virol. 2020
    1. Zhou M., Hou J., Li Y., Mou S., Wang Z., Horch R.E., Sun J., Yuan Q. The pro-angiogenic role of hypoxia inducible factor stabilizer FG-4592 and its application in an in vivo tissue engineering chamber model. Sci. Rep. 2019;9

Source: PubMed

3
订阅