Hydrogel Formulations Incorporating Drug Nanocrystals Enhance the Therapeutic Effect of Rebamipide in a Hamster Model for Oral Mucositis

Noriaki Nagai, Ryotaro Seiriki, Saori Deguchi, Hiroko Otake, Noriko Hiramatsu, Hiroshi Sasaki, Naoki Yamamoto, Noriaki Nagai, Ryotaro Seiriki, Saori Deguchi, Hiroko Otake, Noriko Hiramatsu, Hiroshi Sasaki, Naoki Yamamoto

Abstract

A mouthwash formulation of rebamipide (REB) is commonly used to treat oral mucositis; however, this formulation does not provide sufficient treatment or prevention in cases of serious oral mucositis. To improve treatment, we attempted to design a hydrogel incorporating REB nanocrystals (R-NPs gel). The R-NPs gel was prepared by a bead mill method using carbopol hydrogel, methylcellulose and 2-hydroxypropyl-β-cyclodextrin, and another hydrogel incorporating REB microcrystals (R-MPs gel) was prepared following the same protocol but without the bead mill treatment. The REB particle size in the R-MPs gel was 0.15-25 μm, and while the REB particle size was 50-180 nm in the R-NPs gel. Next, we investigated the therapeutic effect of REB nanocrystals on oral mucositis using a hamster model. Almost all of the REB was released as drug nanocrystals from the R-NPs gel, and the REB content in the cheek pouch of hamsters treated with R-NPs gel was significantly higher than that of hamsters treated with R-MPs gel. Further, treatment with REB hydrogels enhanced the healing of oral wounds in the hamsters. REB accumulation in the cheek pouch of hamsters treated with the R-NPs gel was prevented by an inhibitor of clathrin-dependent endocytosis (CME) (40 μM dynasore). In conclusion, we designed an R-NPs gel and found that REB nanocrystals are taken up by tissues through CME, where they provide a persistent effect resulting in an enhancement of oral wound healing.

Keywords: endocytosis; hydrogel; nanocrystals; oral mucositis; rebamipide.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflicts of interest.

Figures

Figure 1
Figure 1
Condition of rebamipide (REB) in REB hydrogels. (A) Photographs of the R-MPs gel (hydrogel with incorporated rebamipide microcyrstals) and R-NPs gel (hydrogel with incorporated rebamipide nanocrystals). (B,C) Particle size in the R-MPs (B) and R-NPs (C) gels. (D) AFM image of the R-NPs gel. Bead mill treatment decreased the particle size of REB to the range of 50–180 nm.
Figure 2
Figure 2
Characteristics of REB in the R-MPs and R-NPs gels. (A) Non-uniformity in REB particle distribution in the R-MPs and R-NPs gels. (B) Solubility of REB in the R-MPs and R-NPs gels. (C) XRD pattern of REB particles after bead mill treatment. N = 7. * p < 0.05 vs. R-MPs for each category. The mill-treated REB retained its crystal structure, but the uniformity of REB distribution in the R-NPs gel was higher than the non-milled REB in the R-MPs gel. Moreover, solubility of REB was increased by bead mill treatment.
Figure 3
Figure 3
Drug release from R-MPs and R-NPs gels through a 220-nm pore membrane. (A) Release behavior of REB from R-MPs and R-NPs gels through a membrane. (B) and (C) Size distribution (B) and number (C) of REB nanocrystals in the reservoir chamber 24 h after R-NPs application. n = 7. N.D., not detectable. * p < 0.05 vs. R-MPs gel for each category. REB was released from the R-NPs gel in the form of nanocrystals.
Figure 4
Figure 4
Changes in REB content in the cheek pouch of hamsters treated with REB hydrogels for oral mucositis. (A) REB contents in the cheek pouch of hamsters 2 and 8 h after treatment with R-MPs and R-NPs gels. (B,C) REB contents in the cheek pouch of hamsters treated with endocytosis inhibitors 2 h (B) and 8 h (C) after the application of R-MPs and R-NPs gels. Control—R-NPs-treated hamster. Nystatin—nystatin-treated hamster treated with R-NPs. Dynasore—dynasore-treated hamster treated with R-NPs. Rottlerin—rottlerin-treated hamster treated with R-NPs. Cytochalasin D—cytochalasin D-treated hamster treated with R-NPs. n = 5–7. * p < 0.05, vs. R-MPs for each category. #p < 0.05 vs. Control for each category. REB content in hamsters treated with R-NPs gel was higher than in those treated with R-MPs gel; the CME pathway appears to be related to the penetration of REB into the cheek pouch tissues from the hydrogel formulations.
Figure 5
Figure 5
Therapeutic effect of R-NPs gel on wounds in the cheek pouch of hamsters. (A) Representative images of the cheek pouch of the hamster model for oral mucositis 0 and 3 d after treatment with REB hydrogels. (B), Wound area in the cheek pouch of the hamster model 0–3 d after treatment with REB hydrogels. n = 5–8. * p < 0.05, vs. Vehicle for each category. #p < 0.05 vs. R-MPs gel for each category. Treatment with REB hydrogel enhanced the therapeutic effect on oral mucositis. The wound areas in hamsters treated with R-NPs gel were significantly smaller than in hamsters treated with R-MPs gel.
Figure 6
Figure 6
Microscopic effects of the R-NPs gel on oral mucositis. (A) Images of H&E-stained cheek pouch tissue specimens from a hamster with oral mucositis three days after treatment with REB hydrogels (4× objective lens; bars indicate 200 μm). (B) High magnification images in the areas delineated by the squares in Figure A (10× objective lens; bars indicate 100 μm). (C) Images of immunostaining for multi-cytokeratin in the serial sections shown in Figure A (4× objective lens; bars indicate 200 μm). (D) High magnification images of the areas delineated by the squares in Figure C (10× objective lens; bars indicate 100 μm).
Figure 7
Figure 7
Drug delivery pathway and therapeutic effect of R-NPs gel in the cheek pouch of the hamster model for oral mucositis. N.D., not detectable.

References

    1. Sciubba J.J., Goldenberg D. Oral complications of radiotherapy. Lancet Oncol. 2006;7:175–183. doi: 10.1016/S1470-2045(06)70580-0.
    1. Rodríguez-Caballero A., Torres-Lagares D., Robles-García M., Pachón-Ibáñez J., González-Padilla D., Gutiérrez-Pérez J.L. Cancer treatment-induced oral mucositis: A critical review. Int. J. Oral Maxillofac. Surg. 2012;41:225–238. doi: 10.1016/j.ijom.2011.10.011.
    1. Donnelly J.P., Blijlevens N.M., Verhagen C.A. Can anything be done about oral mucositis? Ann. Oncol. 2003;14:505–507. doi: 10.1093/annonc/mdg179.
    1. Sonis S.T. Oral mucositis in cancer therapy. J. Support. Oncol. 2004;2:3–8.
    1. Trotti A., Bellm L.A., Epstein J.B., Frame D., Fuchs H.J., Gwede C.K., Komaroff E., Nalysnyk L., Zilberberg M.D. Mucositis incidence, severity and associated outcomes in patients with head and neck cancer receiving radiotherapy with or without chemotherapy: A systematic literature review. Radiother. Oncol. 2003;66:253–262. doi: 10.1016/S0167-8140(02)00404-8.
    1. Sonis S.T., Elting L.S., Keefe D., Peterson D.E., Schubert M., Hauer-Jensen M., Bekele B.N., Raber-Durlacher J., Donnelly J.P., Rubenstein E.B. Perspectives on cancer therapy-induced mucosal injury: Pathogenesis, measurement, epidemiology, and consequences for patients. Cancer. 2004;100:1995–2025. doi: 10.1002/cncr.20162.
    1. Prescribing Information: Mucosta® Tablets 100 mg, Ohtsuka Japan Inc. [(accessed on 20 May 2020)];2017 Available online: . (In Japanese)
    1. Lalla R.V., Bowen J., Barasch A., Elting L., Epstein J., Keefe D.M., McGuire D.B., Migliorati C., Nicolatou-Galitis O., Peterson D.E., et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer. 2014;120:1453–1461. doi: 10.1002/cncr.28592.
    1. Bensinger W., Schubert M., Ang K.K., Brizel D., Brown E., Eilers J.G., Elting L., Mittal B.B., Schattner M.A., Spielberger R., et al. NCCN Task Force Report. prevention and management of mucositis in cancer care. J. Natl. Compr. Cancer Netw. 2008;6:S1–S21; quiz S22–S24.
    1. Peterson D.E., Boers-Doets C.B., Bensadoun R.J., Herrstedt J. ESMO Guidelines Committee Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann. Oncol. 2015;26:v139–v151. doi: 10.1093/annonc/mdv202.
    1. Murakami K., Okajima K., Uchiba M., Harada N., Johno M., Okabe H., Takatsuki K. Rebamipide attenuates indomethacin-induced gastric mucosal lesion formation by inhibiting activation of leukocytes in rats. Dig. Dis. Sci. 1997;42:319–325. doi: 10.1023/A:1018861818023.
    1. Yoshikawa T., Naito Y., Tanigawa T., Kondo M. Free radical scavenging activity of the novel anti-ulcer agent rebsamipide studied by electron spin resonance. Arzneimittelforschung. 1993;43:363–366.
    1. Nanke Y., Kobashigawa T., Yago T., Kawamoto M., Yamanaka H., Kotake S. Rebamipide, an Amino Acid Analog of 2(1H)-Quinolinone, Inhibits the Formation of Human Osteoclasts. BioMed Res. Int. 2016;2016:6824719. doi: 10.1155/2016/6824719.
    1. Tanaka H., Fukuda K., Ishida W., Harada Y., Sumi T., Fukushima A. Rebamipide increases barrier function and attenuates TNFalpha-induced barrier disruption and cytokine expression in human corneal epithelial cells. Br. J. Ophthalmol. 2013;97:912–916. doi: 10.1136/bjophthalmol-2012-302868.
    1. Yasuda T., Chiba H., Satomi T., Matsuo A., Kaneko T., Chikazu D., Miyamatsu H. Preventive effect of rebamipide gargle on chemoradiotherpy-induced oral mucositis in patients with oral cancer: A pilot study. J. Oral Maxillofac. Res. 2011;2:e3. doi: 10.5037/jomr.2011.2403.
    1. Nabeta I., Nakamura K., Kimura M., Kaya M., Tsuneizumi M., Nakagami K., Kawarasaki T., Honma M. The effect of rebamipide for prevention of mucositis associated with anthracycline chemotherapy for breast cancer. J. Jpn. Soc. Hosp. Pharm. 2010;46:1629–1634. (In Japanese)
    1. Chaitanya B., Pai K.M., Yathiraj P.H., Fernandes D., Chhaparwal Y. Rebamipide gargle in preventive management of chemo-radiotherapy induced oral mucositis. Oral Oncol. 2017;72:179–182. doi: 10.1016/j.oraloncology.2017.07.024.
    1. Yokota T., Ogawa T., Takahashi S., Okami K., Fujii T., Tanaka K., Iwae S., Ota I., Ueda T., Monden N., et al. Efficacy and safety of rebamipide liquid for chemoradiotherapy-induced oral mucositis in patients with head and neck cancer: A multicenter, randomized, double-blind, placebo-controlled, parallel-group phase II study. BMC Cancer. 2017;17:314. doi: 10.1186/s12885-017-3295-4.
    1. Ishihara K., Komuro Y., Nishiyama N., Yamasaki K., Hotta K. Effect of rebamipide on mucus secretion by endogenous prostaglandin-independent mechanism in rat gastric mucosa. Arzneimittelforschung. 1992;42:1462–1466.
    1. Yamasaki K., Kanbe T., Chijiwa T., Ishiyama H., Morita S. Gastric mucosal protection by OPC-12759, a novel antiulcer compound, in the rat. Eur. J. Pharmacol. 1987;142:23–29. doi: 10.1016/0014-2999(87)90649-2.
    1. Kleine A., Kluge S., Peskar B.M. Stimulation of prostaglandin biosynthesis mediates gastroprotective effect of rebamipide in rats. Dig. Dis. Sci. 1993;38:1441–1449. doi: 10.1007/BF01308601.
    1. Nagano C., Azuma A., Ishiyama H., Sekiguchi K., Imagawa K., Kikuchi M. Rebamipide suppresses formyl-methionyl-leucylphenylalanine (fMLP)-induced superoxide production by inhibiting fMLP-receptor binding in human neutrophils. J. Pharmacol. Exp. Ther. 2001;297:388–394.
    1. Kobayashi T., Zinchuk V.S., del Saz E.G., Jiang F., Yamasaki Y., Kataoka S., Okada T., Tsunawaki S., Seguchi H. Suppressive effect of rebamipide, an antiulcer agent, against activation of human neutrophils exposed to formyl-methionyl-leucyl-phenylalanine. Histol. Histopathol. 2000;15:1067–1076.
    1. Masamune A., Yoshida M., Sakai Y., Shimosegawa T. Rebamipide inhibits ceramide-induced interleukin-8 production in Kato III human gastric cancer cells. J. Pharmacol. Exp. Ther. 2001;298:485–492.
    1. Kim C.D., Kim H.H., Hong K.W. Inhibitory effect of rebamipide on the neutrophil adherence stimulated by conditioned media from helicobacter pylori-infected gastric epithelial cells. J. Pharmacol. Exp. Ther. 1999;288:133–138.
    1. Arakawa T., Kobayashi K., Yoshikawa T., Tarnawski A. Rebamipide: Overview of its mechanisms of action and efficacy in mucosal protection and ulcer healing. Dig. Dis. Sci. 1998;43:5S–13S.
    1. Tarnawski A., Arakawa T., Kobayashi K. Rebamipide treatment activates epidermal growth factor and its receptor expression in normal and ulcerated gastric mucosa in rats: One mechanism for its ulcer healing action? Dig. Dis. Sci. 1998;43:90S–98S.
    1. Shioya Y., Kashiyama E., Okada K., Kusumoto N., Abe Y. Metabolic fate of the anti-ulcer agent, (±)-2-(4-chlorobenzoylamino)-3-[2(1H)-quinolinon-4-yl]propionic acid (OPC-12759): Absorption, distribution, and excretion in rats and dogs. Iyakuhin Kenkyu. 1989;20:522–533.
    1. Sanders N.N., De Smedt S.C., Van Rompaey E., Simoens P., De Baets F., Demeester J. Cystic fibrosis sputum: A barrier to the transport of nanospheres. Am. J. Respir. Crit. Care Med. 2000;162:1905–1911. doi: 10.1164/ajrccm.162.5.9909009.
    1. Szentkuti L. Light microscopical observations on luminally administered dyes, dextrans, nanospheres and microspheres in the pre-epithelial mucus gel layer of the rat distal colon. J. Control. Release. 1997;46:233–242. doi: 10.1016/S0168-3659(96)01600-8.
    1. Norris D.A., Sinko P.J. Effect of size, surface charge and hydrophobicity on the translocation of polyestyrene microspheres through gastrointestinal mucin. J. Appl. Polym. Sci. 1997;63:1481–1492. doi: 10.1002/(SICI)1097-4628(19970314)63:11<1481::AID-APP10>;2-5.
    1. Bravo-Osuna I., Vauthier C., Farabollini A., Palmieri G.F., Ponchel G. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials. 2007;28:2233–2243. doi: 10.1016/j.biomaterials.2007.01.005.
    1. Nagai N., Ishii M., Seiriki R., Ogata F., Otake H., Nakazawa Y., Okamoto N., Kanai K., Kawasaki N. Novel Sustained-Release Drug Delivery System for Dry Eye Therapy by Rebamipide Nanoparticles. Pharmaceutics. 2020;12:155. doi: 10.3390/pharmaceutics12020155.
    1. Nagai N., Iwamae A., Tanimoto S., Yoshioka C., Ito Y. Pharmacokinetics and Antiinflammatory Effect of a Novel Gel System Containing Ketoprofen Solid Nanoparticles. Biol. Pharm. Bull. 2015;38:1918–1924. doi: 10.1248/bpb.b15-00567.
    1. Nagai N., Ogata F., Otake H., Nakazawa Y., Kawasaki N. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int. J. Nanomed. 2018;13:5215–5229. doi: 10.2147/IJN.S173216.
    1. Mäger I., Langel K., Lehto T., Eiríksdóttir E., Langel U. The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochim. Biophys. Acta Biomembr. 2012;1818:502–511. doi: 10.1016/j.bbamem.2011.11.020.
    1. Hufnagel H., Hakim P., Lima A., Hollfelder F. Fluid phase endocytosis contributes to transfection of DNA by PEI-25. Mol. Ther. 2009;17:1411–1417. doi: 10.1038/mt.2009.121.
    1. Malomouzh A.I., Mukhitov A.R., Proskurina S.E., Vyskocil F., Nikolsky E.E. The effect of dynasore, a blocker of dynamin-dependent endocytosis, on spontaneous quantal and non-quantal release of acetylcholine in murine neuromuscular junctions. Dokl. Biol. Sci. 2014;459:330–333. doi: 10.1134/S0012496614060052.
    1. Nicolatou-Galitis O., Sarri T., Bowen J., Di Palma M., Kouloulias V.E., Niscola P., Riesenbeck D., Stokman M., Tissing W., Yeoh E., et al. Systematic review of anti-inflammatory agents for the management of oral mucositis in cancer patients. Support. Care Cancer. 2013;21:3179–3189. doi: 10.1007/s00520-013-1847-y.
    1. Nagai N., Ito Y., Okamoto N., Shimomura Y. A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability. Toxicology. 2014;319:53–62. doi: 10.1016/j.tox.2014.02.012.
    1. Nagai N., Ito Y. Therapeutic Effects of Gel Ointments containing Tranilast Nanoparticles on Paw Edema in Adjuvant-Induced Arthritis Rats. Biol. Pharm. Bull. 2014;37:96–104. doi: 10.1248/bpb.b13-00630.
    1. Ishii M., Fukuoka Y., Deguchi S., Otake H., Tanino T., Nagai N. Energy-Dependent Endocytosis is Involved in the Absorption of Indomethacin Nanoparticles in the Small Intestine. Int. J. Mol. Sci. 2019;20:476. doi: 10.3390/ijms20030476.
    1. Nagai N., Ito Y. Effect of Solid Nanoparticle of Indomethacin on Therapy for Rheumatoid Arthritis in Adjuvant-Induced Arthritis Rat. Biol. Pharm. Bull. 2014;37:1109–1118. doi: 10.1248/bpb.b13-00917.
    1. Wang J., Byrne J.D., Napier M.E., DeSimone J.M. More effective nanomedicines through particle design. Small. 2011;7:1919–1931. doi: 10.1002/smll.201100442.
    1. Rappoport J.Z. Focusing on clathrin-mediated endocytosis. Biochem. J. 2008;412:415–423. doi: 10.1042/BJ20080474.
    1. Zhang S., Li J., Lykotrafitis G., Bao G., Suresh S. Size-dependent endocytosis of nanoparticles. Adv. Mater. 2009;21:419–424. doi: 10.1002/adma.200801393.

Source: PubMed

3
订阅