The differential activation of cardiovascular hormones across distinct stages of portal hypertension predicts clinical outcomes

Lukas Hartl, Mathias Jachs, Christopher Desbalmes, Dunja Schaufler, Benedikt Simbrunner, Rafael Paternostro, Philipp Schwabl, David Josef Maria Bauer, Georg Semmler, Bernhard Scheiner, Theresa Bucsics, Ernst Eigenbauer, Rodrig Marculescu, Thomas Szekeres, Markus Peck-Radosavljevic, Stefan Kastl, Michael Trauner, Mattias Mandorfer, Thomas Reiberger, Lukas Hartl, Mathias Jachs, Christopher Desbalmes, Dunja Schaufler, Benedikt Simbrunner, Rafael Paternostro, Philipp Schwabl, David Josef Maria Bauer, Georg Semmler, Bernhard Scheiner, Theresa Bucsics, Ernst Eigenbauer, Rodrig Marculescu, Thomas Szekeres, Markus Peck-Radosavljevic, Stefan Kastl, Michael Trauner, Mattias Mandorfer, Thomas Reiberger

Abstract

Background and aims: The cardiovascular hormones renin/angiotensin/aldosterone (RAA), brain-type natriuretic peptide (BNP)and arginine-vasopressin (AVP) are key regulators of systemic circulatory homeostasis in portal hypertension (PH). We assessed (i) the activation of renin, BNP and AVP across distinct stages of PH and (ii) whether activation of these hormones correlates with clinical outcomes.

Methods: Plasma levels of renin, proBNP and copeptin (AVP biomarker) were determined in 663 patients with advanced chronic liver disease (ACLD) undergoing hepatic venous pressure gradient (HVPG) measurement at the Vienna General Hospital between 11/2011 and 02/2019. We stratified for Child stage (A-C), HVPG (6-9 mmHg, 10-15 mmHg, ≥ 16 mmHg) and compensated vs. decompensated ACLD.

Results: With increasing PH, hyperdynamic state was indicated by higher heart rates (6-9 mmHg: median 71.0 [IQR 18.0] bpm, 10-15 mmHg: 76.0 [19.0] bpm, ≥ 16 mmHg: 80.0 [22.0] bpm; p < 0.001), lower mean arterial pressure (6-9 mmHg: 103.0 [13.5] mmHg, 10-15 mmHg: 101.0 [19.5] mmHg, ≥ 16 mmHg: 99.0 [21.0] mmHg; p = 0.032) and lower serum sodium (6-9 mmHg: 139.0 [3.0] mmol/L, 10-15 mmHg: 138.0 [4.0] mmol/L, ≥ 16 mmHg: 138.0 [5.0] mmol/L; p < 0.001). Across HVPG strata (6-9 mmHg vs. 10-15 mmHg vs ≥ 16 mmHg), median plasma levels of renin (21.0 [50.5] vs. 25.1 [70.9] vs. 65.4 [219.6] µIU/mL; p < 0.001), proBNP (86.1 [134.0] vs. 63.6 [118.0], vs. 132.2 [208.9] pg/mL; p = 0.002) and copeptin (7.8 [7.7] vs. 5.6 [8.0] vs. 10.7 [18.6] pmol/L; p = 0.024) increased with severity of PH. Elevated renin levels independently predicted first hepatic decompensation (adjusted hazard ratio [aHR]: 1.69; 95% confidence interval [95% CI] 1.07-2.68; p = 0.025) and mortality in compensated patients (aHR: 3.15; 95% CI 1.70-5.84; p < 0.001) and the overall cohort aHR: 1.42; 95% CI 1.01-2.01; p = 0.046). Elevated copeptin levels predicted mortality in decompensated patients (aHR: 5.77; 95% CI 1.27-26.33; p = 0.024) and in the overall cohort (aHR: 3.29; 95% CI 1.36-7.95; p = 0.008). ProBNP levels did not predict clinical outcomes.

Conclusions: The cardiovascular hormones renin, proBNP and AVP are activated with progression of ACLD and PH. Renin activation is a risk factor for hepatic decompensation and mortality, especially in compensated patients. Increased plasma copeptin is a risk factor for mortality, in particular in decompensated patients.

Keywords: Arginine vasopressin; Ascites; Cirrhosis; Copeptin; Decompensation; Hyperdynamic circulation; Natriuretic peptide; Renin; Renin/angiotensin/aldosterone system; brain; proBNP.

Conflict of interest statement

L.H., M.J., C.D., D.S., R.P., G.S., E.E., R.M., T.S. and S.K. declare no conflict of interest. B.Simbrunner received travel support from AbbVie and Gilead. P.S. received speaking honoraria from Bristol-Myers Squibb and Boehringer-Ingelheim, consulting fees from PharmaIN, and travel support from Falk. D.B. has received travel support from AbbVie and Gilead. B.Scheiner received travel support from Gilead, AbbVie and Ipsen. T.B. received travel support from AbbVie, Bristol-Myers Squibb, and Medis, as well as speaker fees from Bristol-Myers Squibb. M.P.-R. served as investigator for Abbott, Arqle-Daiichi, Bayer, BMS, Boehringer-Ingelheim, Gilead, Imclone, Ipsen, Novartis and Roche, as a speaker and/or advisor for Abbott, Bayer, BMS, Boehringer-Ingelheim, Eisai, Gilead, Ipsen, MSD and Roche, received grant support from Abbott, Bayer, Gilead, MSD and Roche; data and safety monitoring board: BMS, Lilly-Imclone, ONXEO. M.T. received grant support from Albireo, Cymabay, Falk, Gilead, Intercept, MSD, and Takeda, honoraria for consulting from Albireo, Boehringer Ingelheim, BiomX, Falk, Genfit, Gilead, Intercept, MSD, Novartis, Phenex, and 3Regulus, speaker fees from Bristol-Myers Squibb, Falk, Gilead, Intercept and MSD, as well as travel support from AbbVie, FalkGilead and Intercept. M.M. served as a speaker and/or consultant and/or advisory board member for AbbVie, Bristol-Myers Squibb, Gilead, and W. L. Gore & Associates and received travel support from AbbVie, Bristol-Myers Squibb, and Gilead. T.R. received grant support from AbbVie, Boehringer-Ingelheim, Gilead, MSD, Philips Healthcare, Gore; speaking honoraria from AbbVie, Gilead, Gore, Intercept, Roche, MSD; consulting/advisory board fee from AbbVie, Bayer, Boehringer-Ingelheim, Gilead, Intercept, MSD, Siemens; and travel support from Boehringer-Ingelheim, Gilead and Roche.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Plasma levels of renin, proBNP and copeptin stratified for HVPG (a–c) and CTP stage (d–f). a, d–f The borders of the whiskers are the 10th and the 90th percentile. b, c Depiction of plasma levels after outlier exclusion, the borders of the whiskers are the minimum and maximum. HVPG hepatic venous pressure gradient, CTP Child–Turcotte–Pugh, proBNP probrain-type natriuretic peptide; *p < 0.050; **p < 0.010; ***p < 0.001
Fig. 2
Fig. 2
Incidence of first decompensation in ac cACLD patients binary for elevated/non-elevated renin, proBNP and copeptin plasma levels. df Incidence of further decompensation in dACLD patients. Time to any first/further decompensation event (development/worsening of ascites or HE, or development of variceal bleeding), death or end of follow-up. Log-rank test is used to determine differences between the groups. proBNP probrain-type natriuretic peptide, ULN upper limit of normal
Fig. 3
Fig. 3
a-c Transplant-free mortality in ACLD binary for elevated/non-elevated renin, proBNP and copeptin plasma levels. Transplant-free mortality in d-f cACLD patients and in g-i dACLD patients. Time to death, liver transplantation or end of follow-up. Log-rank test is used to determine differences between the groups. proBNP probrain-type natriuretic peptide, ULN upper limit of normal

References

    1. Rowe IA. Lessons from epidemiology: the burden of liver disease. Dig Dis. 2017;35(4):304–309. doi: 10.1159/000456580.
    1. Ripoll C, Groszmann R, Garcia-Tsao G, Grace N, Burroughs A, Planas R, et al. Hepatic venous pressure gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 2007;133(2):481–488. doi: 10.1053/j.gastro.2007.05.024.
    1. Simbrunner B, Mandorfer M, Trauner M, Reiberger T. Gut-liver axis signaling in portal hypertension. World J Gastroenterol. 2019;25(39):5897–5917. doi: 10.3748/wjg.v25.i39.5897.
    1. Reiberger T, Bucsics T, Paternostro R, Pfisterer N, Riedl F, Mandorfer M. Small esophageal varices in patients with cirrhosis-should we treat them? Curr Hepatol Rep. 2018;17(4):301–315. doi: 10.1007/s11901-018-0420-z.
    1. Garcia-Tsao G, Bosch J. Management of varices and variceal hemorrhage in cirrhosis. N Engl J Med. 2010;362(9):823–832. doi: 10.1056/NEJMra0901512.
    1. Berzigotti A, Rossi V, Tiani C, Pierpaoli L, Zappoli P, Riili A, et al. Prognostic value of a single HVPG measurement and Doppler-ultrasound evaluation in patients with cirrhosis and portal hypertension. J Gastroenterol. 2011;46(5):687–695. doi: 10.1007/s00535-010-0360-z.
    1. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35(2):478–491. doi: 10.1053/jhep.2002.31432.
    1. Colombato LA, Albillos A, Groszmann RJ. Temporal relationship of peripheral vasodilatation, plasma volume expansion and the hyperdynamic circulatory state in portal-hypertensive rats. Hepatology. 1992;15(2):323–328. doi: 10.1002/hep.1840150224.
    1. Gines P, Guevara M. Hyponatremia in cirrhosis: pathogenesis, clinical significance, and management. Hepatology. 2008;48(3):1002–1010. doi: 10.1002/hep.22418.
    1. Maslennikov R, Driga A, Ivashkin K, Ivashkin V. NT-proBNP as a biomarker for hyperdynamic circulation in decompensated cirrhosis. Gastroenterol Hepatol Bed Bench. 2018;11(4):325–332.
    1. Shim KY, Eom YW, Kim MY, Kang SH, Baik SK. Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension. Korean J Intern Med. 2018;33(3):453–461. doi: 10.3904/kjim.2017.317.
    1. Schrier RW, Berl T, Anderson RJ. Osmotic and nonosmotic control of vasopressin release. Am J Physiol. 1979;236(4):F321–F332.
    1. Nakagawa Y, Nishikimi T, Kuwahara K. Atrial and brain natriuretic peptides: hormones secreted from the heart. Peptides. 2019;111:18–25. doi: 10.1016/j.peptides.2018.05.012.
    1. Kurtz A. Control of renin synthesis and secretion. Am J Hypertens. 2012;25(8):839–847. doi: 10.1038/ajh.2011.246.
    1. Bosch J, Arroyo V, Betriu A, Mas A, Carrilho F, Rivera F, et al. Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis. Gastroenterology. 1980;78(1):92–99. doi: 10.1016/0016-5085(80)90197-3.
    1. Kuiper JJ, Boomsma F, van Buren H, de Man R, Danser AH, van den Meiracker AH. Components of the renin-angiotensin-aldosterone system in plasma and ascites in hepatic cirrhosis. Eur J Clin Investig. 2008;38(12):939–944. doi: 10.1111/j.1365-2362.2008.02044.x.
    1. Paternostro R, Reiberger T, Mandorfer M, Schwarzer R, Schwabl P, Bota S, et al. Plasma renin concentration represents an independent risk factor for mortality and is associated with liver dysfunction in patients with cirrhosis. J Gastroenterol Hepatol. 2017;32(1):184–190. doi: 10.1111/jgh.13439.
    1. Kerbert AJ, Weil D, Verspaget HW, Moreno JP, van Hoek B, Cervoni JP, et al. Copeptin is an independent prognostic factor for transplant-free survival in cirrhosis. Liver Int. 2016;36(4):530–537. doi: 10.1111/liv.12992.
    1. Henriksen JH, Gotze JP, Fuglsang S, Christensen E, Bendtsen F, Moller S. Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: relation to cardiovascular dysfunction and severity of disease. Gut. 2003;52(10):1511–1517. doi: 10.1136/gut.52.10.1511.
    1. Arroyo V, Bosch J, Gaya-Beltrán J, Kravetz D, Estrada L, Rivera F, et al. Plasma renin activity and urinary sodium excretion as prognostic indicators in nonazotemic cirrhosis with ascites. Ann Intern Med. 1981;94(2):198–201. doi: 10.7326/0003-4819-94-2-198.
    1. Sansoe G, Aragno M, Wong F. Pathways of hepatic and renal damage through non-classical activation of the renin-angiotensin system in chronic liver disease. Liver Int. 2020;40(1):18–31. doi: 10.1111/liv.14272.
    1. Wang LK, An XF, Wu XL, Zhang SM, Yang RM, Han C, et al. Doppler myocardial performance index combined with plasma B-type natriuretic peptide levels as a marker of cardiac function in patients with decompensated cirrhosis. Medicine. 2018;97(48):e13302. doi: 10.1097/MD.0000000000013302.
    1. Mandorfer M, Kozbial K, Schwabl P, Chromy D, Semmler G, Stattermayer AF, et al. Changes in hepatic venous pressure gradient predict hepatic decompensation in patients who achieved sustained virologic response to interferon-free therapy. Hepatology. 2020;71(3):1023–1036. doi: 10.1002/hep.30885.
    1. Kulkarni AV, Kumar P, Sharma M, Sowmya TR, Talukdar R, Rao PN, et al. Pathophysiology and prevention of paracentesis-induced circulatory dysfunction: a concise review. J Clin Transl Hepatol. 2020;8(1):42–48.
    1. Schepke M, Wiest R, Flacke S, Heller J, Stoffel-Wagner B, Herold T, et al. Irbesartan plus low-dose propranolol versus low-dose propranolol alone in cirrhosis: a placebo-controlled, double-blind study. Am J Gastroenterol. 2008;103(5):1152–1158. doi: 10.1111/j.1572-0241.2007.01759.x.
    1. Tandon P, Abraldes JG, Berzigotti A, Garcia-Pagan JC, Bosch J. Renin-angiotensin-aldosterone inhibitors in the reduction of portal pressure: a systematic review and meta-analysis. J Hepatol. 2010;53(2):273–282. doi: 10.1016/j.jhep.2010.03.013.
    1. De BK, Bandyopadhyay K, Das TK, Das D, Biswas PK, Majumdar D, et al. Portal pressure response to losartan compared with propranolol in patients with cirrhosis. Am J Gastroenterol. 2003;98(6):1371–1376. doi: 10.1111/j.1572-0241.2003.07497.x.
    1. Papakrivopoulou E, Lillywhite S, Davenport A. Is N-terminal probrain-type natriuretic peptide a clinically useful biomarker of volume overload in peritoneal dialysis patients? Nephrol Dial Transplant. 2012;27(1):396–401. doi: 10.1093/ndt/gfr338.
    1. Izzy M, VanWagner LB, Lin G, Altieri M, Findlay JY, Oh JK, et al. Redefining cirrhotic cardiomyopathy for the modern era. Hepatology. 2020;71(1):334–345. doi: 10.1002/hep.30875.
    1. Billey C, Billet S, Robic MA, Cognet T, Guillaume M, Vinel JP, et al. A prospective study identifying predictive factors of cardiac decompensation after transjugular intrahepatic portosystemic shunt: the Toulouse algorithm. Hepatology. 2019;70(6):1928–1941. doi: 10.1002/hep.30934.
    1. Peri A, Pirozzi N, Parenti G, Festuccia F, Mene P. Hyponatremia and the syndrome of inappropriate secretion of antidiuretic hormone (SIADH) J Endocrinol Investig. 2010;33(9):671–682. doi: 10.1007/BF03346668.
    1. Kerbert AJ, Verbeke L, Chiang FW, Laleman W, van der Reijden JJ, van Duijn W, et al. Copeptin as an indicator of hemodynamic derangement and prognosis in liver cirrhosis. PLoS ONE. 2015;10(9):e0138264. doi: 10.1371/journal.pone.0138264.

Source: PubMed

3
订阅