Regression of portal hypertension: underlying mechanisms and therapeutic strategies

Sonia Selicean, Cong Wang, Sergi Guixé-Muntet, Horia Stefanescu, Norifumi Kawada, Jordi Gracia-Sancho, Sonia Selicean, Cong Wang, Sergi Guixé-Muntet, Horia Stefanescu, Norifumi Kawada, Jordi Gracia-Sancho

Abstract

Portal hypertension is the main non-neoplastic complication of chronic liver disease, being the cause of important life-threatening events including the development of ascites or variceal bleeding. The primary factor in the development of portal hypertension is a pathological increase in the intrahepatic vascular resistance, due to liver microcirculatory dysfunction, which is subsequently aggravated by extra-hepatic vascular disturbances including elevation of portal blood inflow. Evidence from pre-clinical models of cirrhosis has demonstrated that portal hypertension and chronic liver disease can be reversible if the injurious etiological agent is removed and can be further promoted using pharmacological therapy. These important observations have been partially demonstrated in clinical studies. This paper aims at providing an updated review of the currently available data regarding spontaneous and drug-promoted regression of portal hypertension, paying special attention to the clinical evidence. It also considers pathophysiological caveats that highlight the need for caution in establishing a new dogma that human chronic liver disease and portal hypertension is reversible.

Keywords: Biomarker; Chronic liver disease; Cirrhosis; Hepatic circulation; Hepatic hemodynamic; Liver sinusoid; NAFLD; NASH; Portal pressure.

Conflict of interest statement

The author(s) declare that they have no conflicts of interest.

Figures

Fig. 1
Fig. 1
Schematic representation of complications of portal hypertension. Clinically significant portal hypertension may lead to hepatic encephalopathy, gastroesophageal varices prone to hemorrhage, liver failure, hepatorenal syndrome and ascites and it is also associated with an increased risk for hepatocellular carcinoma development. GEV gastroesophageal varices, SBP spontaneous bacterial peritonitis
Fig. 2
Fig. 2
Main cellular mechanisms contributing to the progression of chronic liver disease in response to liver damage. Chronic liver injury induces the expression of cell adhesion molecules by LSEC, leading to a recruitment of macrophages to the tissue. These, together with liver damage, lead to necroinflammation, capillarization of LSEC, polarization of macrophages, HSC activation and liver fibrosis. aHSC activated hepatic stellate cell, cLSEC capillarized liver sinusoidal endothelial cell, dxHep dysfunctional hepatocyte
Fig. 3
Fig. 3
Stage-specific features determining the probability of regression of portal hypertension and chronic liver disease. It is accepted that the likeliness of regression is inversely correlated to the severity of the disease, usually determined by factors such as HVPG, thickness of fibrous septa or acellularization. HVPG hepatic venous pressure gradient, HE hepatic encephalopathy
Fig. 4
Fig. 4
Molecular mechanisms modulating regression of chronic liver disease. Regression of cirrhosis and portal hypertension is usually impaired by liver architecture (altered extracellular matrix and acellularization) and microcirculatory dysfunction. All these may induce an activation response to hepatic cells, promoting progression rather than regression of chronic liver disease. On the other hand, modulation of the phenotype of hepatic cells (green box) may inhibit said alterations and represent potential targets for regression of chronic liver disease. ECM extracellular matrix, HSC hepatic stellate cell, LSEC liver sinusoidal endothelial cell

References

    1. Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol. 2019;70(1):151–171. doi: 10.1016/j.jhep.2018.09.014.
    1. Bosch J. Vascular deterioration in cirrhosis: the big picture. J Clin Gastroenterol. 2007;41(SUPPL 3):247–253. doi: 10.1097/MCG.0b013e3181572357.
    1. Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology. 2017;65(1):310–335. doi: 10.1002/hep.28906.
    1. Gracia-Sancho J, Marrone G, Fernández-Iglesias A. Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol. 2019;16(4):221–234. doi: 10.1038/s41575-018-0097-3.
    1. Gracia-Sancho J, Caparros E, Fernández-Iglesias A, Francés R. Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol 2021. 10.1038/s41575-020-00411-3
    1. Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bronk SF, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 2003;38(5):1188–1198. doi: 10.1053/jhep.2003.50472.
    1. Jiang JX, Mikami K, Venugopal S, Li Y, Török NJ. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-κB-dependent pathways. J Hepatol. 2009;51(1):139–148. doi: 10.1016/j.jhep.2009.03.024.
    1. Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol. 2010;53:976–980. doi: 10.1016/j.jhep.2010.07.004.
    1. Møller S, Bendtsen F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int. 2018;38:570–580. doi: 10.1111/liv.13589.
    1. Sauerbruch T, Schierwagen R, Trebicka J. Managing portal hypertension in patients with liver cirrhosis. F1000Res. 2018;7:1–17. doi: 10.12688/f1000research.13943.1.
    1. Brenner DA. Reversibility of liver fibrosis. Gastroenterol Hepatol (N Y) 2013;9(11):737–739.
    1. Lee YA, Friedman SL. Reversal, maintenance or progression: what happens to the liver after a virologic cure of hepatitis C? Antiviral Res. 2014;107:23–30. doi: 10.1016/j.antiviral.2014.03.012.
    1. Abdel-Aziz G, Lebeau G, Rescan PY, Clement B, Rissel M, Deugnier Y, et al. Reversibility of hepatic fibrosis in experimentally induced cholestasis in rat. Am J Pathol. 1990;137(6):1333–1342.
    1. Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MDA, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology. 2004;126(7):1795–1808. doi: 10.1053/j.gastro.2004.03.009.
    1. Ding Z-M, Xiao Y, Wu X, Zou H, Yang S, Shen Y, et al. Progression and regression of hepatic lesions in a mouse model of NASH induced by dietary intervention and its implications in pharmacotherapy. Front Pharmacol. 2018;9(MAY):410. doi: 10.3389/fphar.2018.00410.
    1. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, et al. Mechanisms of spontaneous resolution of rat liver fibrosis: hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998;102(3):538–549. doi: 10.1172/JCI1018.
    1. Kisseleva T, Cong M, Paik YH, Scholten D, Jiang C, Benner C, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(24):9448–9453. doi: 10.1073/pnas.1201840109.
    1. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology. 2012;143(4):1073–1083.e22. doi: 10.1053/j.gastro.2012.06.036.
    1. Müting D, Kalk JF, Fischer R, Wiewel D. Spontaneous regression of oesophageal varices after long-term conservative treatment. Retrospective study in 20 patients with alcoholic liver cirrhosis, posthepatitic cirrhosis and haemochromatosis with cirrhosis. J Hepatol. 1990;10(2):158–162. doi: 10.1016/0168-8278(90)90045-S.
    1. Klein CP, Kalk JF, Muting D, Klein CG. Influence of alcohol on portal-vein haemodynamics in nutritional-toxic cirrhosis of the liver. Dtsch Med Wochenschr. 1993;118(4):89–93. doi: 10.1055/s-2008-1059304.
    1. Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet. 2013;381(9865):468–475. doi: 10.1016/S0140-6736(12)61425-1.
    1. Chang T, Liaw Y, Wu S, Schiff E, Han K, Lai C, et al. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology. 2010;52:886–893. doi: 10.1002/hep.23785.
    1. Liaw Y-F, Sung JJY, Chow WC, Farrell G, Lee C-Z, Yuen H, et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med. 2004;351(15):1521–1531. doi: 10.1056/NEJMoa033364.
    1. Su TH, Hu TH, Chen CY, Huang YH, Chuang WL, Lin CC, et al. Four-year entecavir therapy reduces hepatocellular carcinoma, cirrhotic events and mortality in chronic hepatitis B patients. Liver Int. 2016;36(12):1755–1764. doi: 10.1111/liv.13253.
    1. Koga H, Ide T, Oho K, Kuwahara R, Hino T, Ogata K, et al. Lamivudine treatment-related morphological changes of esophageal varices in patients with liver cirrhosis. Hepatol Res. 2007;37(7):503–509. doi: 10.1111/j.1872-034X.2007.00087.x.
    1. Lampertico P, Invernizzi F, Viganò M, Loglio A, Mangia G, Facchetti F, et al. The long-term benefits of nucleos(t)ide analogs in compensated HBV cirrhotic patients with no or small esophageal varices: a 12-year prospective cohort study. J Hepatol. 2015;63(5):1118–1125. doi: 10.1016/j.jhep.2015.06.006.
    1. Jang JW, Choi JY, Kim YS, Woo HY, Choi SK, Lee CH, et al. Long-term effect of antiviral therapy on disease course after decompensation in patients with hepatitis B virus-related cirrhosis. Hepatology. 2015;61(6):1809–1820. doi: 10.1002/hep.27723.
    1. Manolakopoulos S, Triantos C, Theodoropoulos J, Vlachogiannakos J, Kougioumtzan A, Papatheodoridis G, et al. Antiviral therapy reduces portal pressure in patients with cirrhosis due to HBeAg-negative chronic hepatitis B and significant portal hypertension. J Hepatol. 2009;51(3):468–474. doi: 10.1016/j.jhep.2009.05.031.
    1. Bruno S, Crosignani A, Facciotto C, Rossi S, Roffi L, Redaelli A, et al. Sustained virologic response prevents the development of esophageal varices in compensated, child-pugh class A hepatitis C virus-induced cirrhosis. A 12-year prospective follow-up study. Hepatology. 2010;51(6):2069–2076. doi: 10.1002/hep.23528.
    1. Di Marco V, Calvaruso V, Ferraro D, Bavetta MG, Cabibbo G, Conte E, et al. Effects of eradicating hepatitis C virus infection in patients with cirrhosis differ with stage of portal hypertension. Gastroenterology. 2016;151(1):130–139.e2. doi: 10.1053/j.gastro.2016.03.036.
    1. Lens S, Rincón D, Albillos A, Calleja L, Bañares R, González-abraldes J, et al. Association between severe portal hypertension and risk of liver decompensation in patients with hepatitis C, regardless of response to antiviral therapy. Clin Gastroenterol Hepatol. 2015;13:1046–1053. doi: 10.1016/j.cgh.2015.04.013.
    1. Rincon D, Ripoll C, Iacono OL, Salcedo M, Catalina MV, Alvarez E, et al. Antiviral therapy decreases hepatic venous pressure gradient in patients with chronic hepatitis C and advanced fibrosis. Am J Gastroenterol. 2006;18:2269–2274. doi: 10.1111/j.1572-0241.2006.00743.x.
    1. Roberts S, Gordon A, Mclean C, Pedersen J, Bowden S, Thomson K, et al. Effect of sustained viral response on hepatic venous pressure gradient in hepatitis C—related cirrhosis. Clin Gastroenterol Hepatol. 2007;5:932–937. doi: 10.1016/j.cgh.2007.02.022.
    1. D’Ambrosio R, Aghemo A, Rumi MG, Ronchi G, Donato MF, Paradis V, et al. A morphometric and immunohistochemical study to assess the benefit of a sustained virological response in hepatitis C virus patients with cirrhosis. Hepatology. 2012;56(2):532–543. doi: 10.1002/hep.25606.
    1. Casado JL, Quereda C, Moreno A, Pérez-Elías MJ, Martí-Belda P, Moreno S. Regression of liver fibrosis is progressive after sustained virological response to HCV therapy in patients with hepatitis C and HIV coinfection. J Viral Hepat. 2013;20(12):829–837. doi: 10.1111/jvh.12108.
    1. Pan JJ, Bao F, Du E, Skillin C, Frenette CT, Waalen J, et al. Morphometry confirms fibrosis regression from sustained virologic response to direct-acting antivirals for hepatitis C. Hepatol Commun. 2018;2(11):1320–1330. doi: 10.1002/hep4.1228.
    1. Lens S, Alvarado-Tapias E, Mariño Z, Londoño MC, LLop E, Martinez J, et al. Effects of all-oral anti-viral therapy on HVPG and systemic hemodynamics in patients with hepatitis C virus-associated cirrhosis. Gastroenterology. 2017;153(5):1273–1283. doi: 10.1053/j.gastro.2017.07.016.
    1. Schwabl P, Mandorfer M, Steiner S, Scheiner B, Chromy D, Herac M, et al. Interferon-free regimens improve portal hypertension and histological necroinflammation in HIV/HCV patients with advanced liver disease. Aliment Pharmacol Ther. 2017;45(1):139–149. doi: 10.1111/apt.13844.
    1. Mandorfer M, Kozbial K, Schwabl P, Freissmuth C, Schwarzer R, Stern R, et al. Sustained virologic response to interferon-free therapies ameliorates HCV-induced portal hypertension. J Hepatol. 2016;65(4):692–699. doi: 10.1016/j.jhep.2016.05.027.
    1. Mauro E, Crespo G, Montironi C, Londoño MC, Hernández-Gea V, Ruiz P, et al. Portal pressure and liver stiffness measurements in the prediction of fibrosis regression after sustained virological response in recurrent hepatitis C. Hepatology. 2018;67(5):1683–1694. doi: 10.1002/hep.29557.
    1. Winters A, Luedtke S, Moreland A, Jangouk P, Weng G, Silveira M, et al. In hepatitis C virus-related advanced fibrosis and cirrhosis, early decline of liver stiffness following antiviral therapy with DAAs is related to decline in liver inflammation. J Hepatol. 2017;66(1):S280. doi: 10.1016/S0168-8278(17)30876-0.
    1. Afdhal N, Everson GT, Calleja JL, McCaughan GW, Bosch J, Brainard DM, et al. Effect of viral suppression on hepatic venous pressure gradient in hepatitis C with cirrhosis and portal hypertension. J Viral Hepat. 2017;24(10):823–831. doi: 10.1111/jvh.12706.
    1. Mandorfer M, Kozbial K, Schwabl P, Chromy D, Semmler G, Stättermayer AF, et al. Changes in hepatic venous pressure gradient predict hepatic decompensation in patients who achieved sustained virologic response to interferon-free therapy. Hepatology. 2020;71(3):1023–1036. doi: 10.1002/hep.30885.
    1. Lens S, Baiges A, Alvarado E, LLop E, Martinez J, Fortea JI, et al. Clinical outcome and hemodynamic changes following HCV eradication with oral antiviral therapy in patients with clinically significant portal hypertension. J Hepatol. 2020;73:1415–1424. doi: 10.1016/j.jhep.2020.05.050.
    1. Garg G, Dixit VK, Shukla SK, Singh SK, Sachan S, Tiwari A, et al. Impact of direct acting antiviral drugs in treatment Naïve HCV cirrhosis on fibrosis and severity of liver disease: a real life experience from a tertiary care center of North India. J Clin Exp Hepatol. 2018;8(3):241–249. doi: 10.1016/j.jceh.2017.11.011.
    1. Carrat F, Fontaine H, Dorival C, Simony M, Diallo A, Hezode C, et al. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: a prospective cohort study. Lancet. 2019;393(10179):1453–1464. doi: 10.1016/S0140-6736(18)32111-1.
    1. Belli LS, Perricone G, Adam R, Cortesi PA, Strazzabosco M, Facchetti R, et al. Impact of DAAs on liver transplantation: Major effects on the evolution of indications and results. An ELITA study based on the ELTR registry. J Hepatol. 2018;69(4):810–817. doi: 10.1016/j.jhep.2018.06.010.
    1. Manco M, Mosca A, De Peppo F, Caccamo R, Cutrera R, Giordano U, et al. The benefit of sleeve gastrectomy in obese adolescents on nonalcoholic steatohepatitis and hepatic fibrosis. J Pediatr. 2017;180(31–37):e2.
    1. Parker BM, Wu J, You J, Barnes DS, Yerian L, Kirwan JP, et al. Reversal of fibrosis in patients with nonalcoholic steatohepatosis after gastric bypass surgery. BMC Obes. 2017;4(1):1–9. doi: 10.1186/s40608-017-0168-y.
    1. Lassailly G, Caiazzo R, Buob D, Pigeyre M, Verkindt H, Labreuche J, et al. Bariatric surgery reduces features of non-alcoholic steatohepatitis in morbidly obese patients. Gastroenterology. 2015;149:379–388. doi: 10.1053/j.gastro.2015.04.014.
    1. Berzigotti A, Albillos A, Villanueva C, Genescá J, Ardevol A, Augustín S, et al. Effects of an intensive lifestyle intervention program on portal hypertension in patients with cirrhosis and obesity: the SportDiet study. Hepatology. 2017;65(4):1293–1305. doi: 10.1002/hep.28992.
    1. Macías-rodríguez RU, Ilarraza-lomelí H, Ruiz-margáin A. Changes in hepatic venous pressure gradient induced by physical exercise in cirrhosis: results of a pilot randomized open clinical trial. Clin Transl Gastroenterol. 2016;7:e180. doi: 10.1038/ctg.2016.38.
    1. Wanless I, Stueck A. The mechanism of irreversibility of late stage cirrhosis. J Hepatol. 2018;2018(68):S692. doi: 10.1016/S0168-8278(18)31645-3.
    1. Garcia-Tsao G, Friedman S, Iredale J, Pinzani M. Now there are many (stages) where before there was one: in search of a pathophysiological classification of cirrhosis. Hepatology. 2010;51:1445–1449. doi: 10.1002/hep.23478.
    1. Fallowfield J, Hayes P. Pathogenesis and treatment of hepatic fibrosis: is cirrhosis reversible? Clin Med (Lond) 2011;11(2):179–183. doi: 10.7861/clinmedicine.11-2-179.
    1. Puente A, Fortea JI, Cabezas J, Arias Loste MT, Iruzubieta P, Llerena S, et al. LOXL2-A new target in antifibrogenic therapy? Int J Mol Sci. 2019;20(7):1634. doi: 10.3390/ijms20071634.
    1. Popov Y, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology. 2011;140(5):1642–1652. doi: 10.1053/j.gastro.2011.01.040.
    1. Pellicoro A, Aucott RL, Ramachandran P, Robson AJ, Fallowfield JA, Snowdon VK, et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology. 2012;55(6):1965–1975. doi: 10.1002/hep.25567.
    1. Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta. 2013;1832(7):876–883. doi: 10.1016/j.bbadis.2012.11.002.
    1. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol Nat Research 2020
    1. Issa R, Zhou X, Trim N, Millward-Sadler H, Krane S, Benyon C, et al. Mutation in collagen-1 that confers resistance to the action of collagenase results in failure of recovery from CCl4-induced liver fibrosis, persistence of activated hepatic stellate cells, and diminished hepatocyte regeneration. FASEB J. 2003;17(1):47–49. doi: 10.1096/fj.02-0494fje.
    1. Guixé-Muntet S, Ortega-Ribera M, Wang C, Selicean S, Andreu I, Kechagia JZ, et al. Nuclear deformation mediates liver cell mechanosensing in cirrhosis. JHEP Rep. 2020;2(5):100145. doi: 10.1016/j.jhepr.2020.100145.
    1. Yoshiji H. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology. 2002;36(4):850–860.
    1. Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur MJP, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition. Implications for reversibility of liver fibrosis. J Biol Chem. 2002;277(13):11069–11076. doi: 10.1074/jbc.M111490200.
    1. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015;64(5):830–841. doi: 10.1136/gutjnl-2014-306842.
    1. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol. 2009;50:604–620. doi: 10.1016/j.jhep.2008.12.011.
    1. Saffioti F, Pinzani M. Development and regression of cirrhosis. Dig Dis. 2016;34:374–381. doi: 10.1159/000444550.
    1. Wanless IR. The role of vascular injury and congestion in the pathogenesis of cirrhosis: the congestive escalator and the parenchymal extinction sequence. Curr Hepatol Rep. 2020;19(1):40–53. doi: 10.1007/s11901-020-00508-y.
    1. Hsu SJ, Tsai MH, Chang CC, Hsieh YH, Huang HC, Lee FY, et al. Extrahepatic angiogenesis hinders recovery of portal hypertension and collaterals in rats with cirrhosis resolution. Clin Sci. 2018;132(6):669–683. doi: 10.1042/CS20171370.
    1. Maeso-Díaz R, Ortega-Ribera M, Lafoz E, JoséLozano J, Baiges A, Francés R, et al. Aging influences hepatic microvascular biology and liver fibrosis in advanced chronic liver disease. Aging Dis. 2019;10(4):684–698. doi: 10.14336/AD.2019.0127.
    1. Delire B, Lebrun V, Selvais C, Henriet P, Bertrand A, Horsmans Y, et al. Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling. Aging (Albany NY) 2017;9(1):98–113. doi: 10.18632/aging.101124.
    1. Pinzani M. Liver fibrosis in the post-HCV era. Semin Liver Dis. 2015;35(2):157–165. doi: 10.1055/s-0035-1550056.
    1. Guixé-Muntet S, Zhu C-P, Xie W-F, Gracia-Sancho J. Novel therapeutics for portal hypertension and fibrosis in chronic liver disease. Pharmacol Ther 2020;215:107626
    1. Zafra C, Abraldes JG, Turnes J, Berzigotti A, Fernández M, García-Pagán JC, et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology. 2004;126(3):749–755. doi: 10.1053/j.gastro.2003.12.007.
    1. Abraldes JG, Albillos A, Bañares R, Turnes J, González R, García-Pagán JC, et al. Simvastatin lowers portal pressure in patients with cirrhosis and portal hypertension: a randomized controlled trial. Gastroenterology. 2009;136(5):1651–1658. doi: 10.1053/j.gastro.2009.01.043.
    1. Pollo-Flores P, Soldan M, Santos UC, Kunz DG, Mattos DE, da Silva AC, et al. Three months of simvastatin therapy vs. placebo for severe portal hypertension in cirrhosis: a randomized controlled trial. Dig Liver Dis. 2015;47(11):957–963. doi: 10.1016/j.dld.2015.07.156.
    1. Abraldes JG, Villanueva C, Aracil C, Turnes J, Hernandez-Guerra M, Genesca J, et al. Addition of simvastatin to standard therapy for the prevention of variceal rebleeding does not reduce rebleeding but increases survival in patients with cirrhosis. Gastroenterology. 2016;150(5):1160–1170.e3. doi: 10.1053/j.gastro.2016.01.004.
    1. Wani ZA, Mohapatra S, Khan AA, Mohapatra A, Yatoo GN. Addition of simvastatin to carvedilol non responders: a new pharmacological therapy for treatment of portal hypertension. World J Hepatol. 2017;9(5):270–277. doi: 10.4254/wjh.v9.i5.270.
    1. Vijayaraghavan R, Jindal A, Arora V, Choudhary A, Kumar G, Sarin SK. Hemodynamic effects of adding simvastatin to carvedilol for primary prophylaxis of variceal bleeding. Am J Gastroenterol. 2020;115:729–737. doi: 10.14309/ajg.0000000000000551.
    1. U.S. National Library of Medicine; NCT03654053
    1. U.S. National Library of Medicine; NCT03150459
    1. Pelusi S, Petta S, Rosso C, Borroni V, Fracanzani L, Dongiovanni P, et al. Renin-angiotensin system inhibitors, type 2 diabetes and fibrosis progression: an observational study in patients with nonalcoholic fatty liver disease. PLoS ONE. 2016;11:e0163069. doi: 10.1371/journal.pone.0163069.
    1. Abu Dayyeh BK, Yang M, Dienstag JL, Chung RT. The effects of angiotensin blocking agents on the progression of liver fibrosis in the HALT-C Trial cohort. Dig Dis Sci. 2011;56(2):564–568. doi: 10.1007/s10620-010-1507-8.
    1. Tandon P, Abraldes JG, Berzigotti A, Garcia-pagan JC, Bosch J. Renin–angiotensin–aldosterone inhibitors in the reduction of portal pressure: a systematic review and meta-analysis research article angiotensinogen renin ACE inhibitors portal hypertension angiotensin aldosterone antagonists aldosterone. J Hepatol. 2010;53(2):273–282. doi: 10.1016/j.jhep.2010.03.013.
    1. Deibert P, Schumacher YO, Ruecker G, Opitz OG, Blum HE, Rössle M, et al. Effect of vardenafil, an inhibitor of phosphodiesterase-5, on portal haemodynamics in normal and cirrhotic liver—Results of a pilot study. Aliment Pharmacol Ther. 2006;23(1):121–128. doi: 10.1111/j.1365-2036.2006.02735.x.
    1. Kreisel W, Deibert P, Kupcinskas L, Sumskiene J, Appenrodt B, Roth S, et al. The phosphodiesterase-5-inhibitor udenafil lowers portal pressure in compensated preascitic liver cirrhosis. A dose-finding phase-II-study. Dig Liver Dis. 2015;47(2):144–150. doi: 10.1016/j.dld.2014.10.018.
    1. Lee KC, Yang YY, Wang YW, Hou MC, Lee FY, Lin HC, et al. Acute administration of sildenafil enhances hepatic cyclic guanosine monophosphate production and reduces hepatic sinusoid resistance in cirrhotic patients. Hepatol Res. 2008;38(12):1186–1193.
    1. Tandon P, Inayat I, Tal M, Spector M, Shea M, Groszmann RJ, et al. Sildenafil has no effect on portal pressure but lowers arterial pressure in patients with compensated cirrhosis. Clin Gastroenterol Hepatol. 2010;8(6):546–549. doi: 10.1016/j.cgh.2010.01.017.
    1. Fukuda T, Narahara Y, Kanazawa H, Matsushita Y, Kidokoro H, Itokawa N, et al. Effects of fasudil on the portal and systemic hemodynamics of patients with cirrhosis. J Gastroenterol Hepatol. 2014;29(2):325–329. doi: 10.1111/jgh.12360.
    1. Sitbon O, Bosch J, Cottreel E, Csonka D, De GP, Hoeper MM, et al. Macitentan for the treatment of portopulmonary hypertension (PORTICO): a multicentre, randomised, double-blind, placebo-controlled, phase 4 trial. Lancet Respir. 2019;7(7):594–604. doi: 10.1016/S2213-2600(19)30091-8.
    1. Lebrec D, Bosch J, Jalan R, Dudley FJ, Jessic R, Moreau R, et al. Hemodynamics and pharmacokinetics of tezosentan, a dual endothelin receptor antagonist, in patients with cirrhosis. Eur J Clin Pharmacol. 2012;68:533–541. doi: 10.1007/s00228-011-1157-6.
    1. Disease L. Endothelin-1 contributes to maintenance of systemic but not portal haemodynamics in patients with early cirrhosis: a randomised controlled trial. Gut. 2006;55:1290–1295. doi: 10.1136/gut.2005.077453.
    1. Ling L, Kuc RE, Maguire JJ, Davie NJ, Webb DJ, Gibbs P, et al. Comparison of endothelin receptors in normal versus cirrhotic human liver and in the liver from endothelial cell-specific ETB knockout mice. In: Life Sciences. Pergamon; 2012. p. 716–22
    1. Zipprich A, Gittinger F, Winkler M, Dollinger MM, Ripoll C. Effect of ET-A blockade on portal pressure and hepatic arterial perfusion in patients with cirrhosis: a proof of concept study. Liver Int. 2020 doi: 10.1111/liv.14757.
    1. U.S. National Library of Medicine; NCT03827200
    1. Reverter E, Mesonero F, Seijo S, Martínez J, Abraldes JG, Peñas B, et al. Effects of sapropterin on portal and systemic hemodynamics in patients with cirrhosis and portal hypertension : a bicentric double-blind placebo-controlled study. Am J Gastroenterol. 2015;110:985–992. doi: 10.1038/ajg.2015.185.
    1. Gifford FJ, Dunne PDJ, Weir G, Ireland H, Graham C, Tuck S, et al. A phase 2 randomised controlled trial of serelaxin to lower portal pressure in cirrhosis (STOPP) Trials. 2020;21(1):1–10. doi: 10.1186/s13063-020-4203-9.
    1. Chalasani N, Abdelmalek MF, Garcia-Tsao G, Vuppalanchi R, Alkhouri N, Rinella M, et al. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology. 2020;158(5):1334–1345.e5. doi: 10.1053/j.gastro.2019.11.296.
    1. U.S. National Library of Medicine; NCT04365868
    1. Mookerjee R, Rosselli M, Pieri G, Beecher-Jones T, Hooshmand-Rad R, Chouhan M, et al. Effects of the FXR agonist obeticholic acid on hepatic venous pressure gradient (HVPG) in alcoholic cirrhosis: a proof of concept phase 2a study. J Hepatol. 2014;60(1):S7–8. doi: 10.1016/S0168-8278(14)60017-9.
    1. Pinter M, Sieghart W, Reiberger T, Ferlitsch A. Alimentary pharmacology and therapeutics the effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma—a pilot study. Aliment Pharmacol Ther. 2011;35:83–91. doi: 10.1111/j.1365-2036.2011.04896.x.
    1. Schwarzer R, Kivaranovic D, Mandorfer M, Paternostro R, Heinisch B, Wolrab D, Reiberger T, Ferlitsch M, et al. Randomised clinical study: the effects of oral taurine 6/day g vs placebo daily on portal hypertension. Aliment Pharmacol Ther. 2018;47:86–94. doi: 10.1111/apt.14377.
    1. Rincón D, Vaquero J, Hernando A, Galindo E, Ripoll C, Puerto M, et al. Oral probiotic VSL#3 attenuates the circulatory disturbances of patients with cirrhosis and ascites. Liver Int. 2014;34(10):1504–1512. doi: 10.1111/liv.12539.
    1. Jayakumar S, Carbonneau M, Hotte N, Befus AD, St. Laurent C, Owen R, et al. VSL#3® probiotic therapy does not reduce portal pressures in patients with decompensated cirrhosis. Liver Int. 2013;33(10):1470–1477. doi: 10.1111/liv.12280.
    1. Gupta N, Kumar A, Sharma P, Garg V, Sharma BC, Sarin SK. Effects of the adjunctive probiotic VSL#3 on portal haemodynamics in patients with cirrhosis and large varices: a randomized trial. Liver Int. 2013;33(8):1148–1157. doi: 10.1111/liv.12172.
    1. De Gottardi A, Berzigotti A, Seijo S, D’Amico M, Thormann W, Abraldes JG, et al. Postprandial effects of dark chocolate on portal hypertension in patients with cirrhosis: results of a phase 2, double-blind, randomized controlled trial. Am J Clin Nutr. 2012;96(3):584–590. doi: 10.3945/ajcn.112.040469.
    1. Hernández-Guerra M, García-Pagán JC, Turnes J, Bellot P, Deulofeu R, Abraldes JG, et al. Ascorbic acid improves the intrahepatic endothelial dysfunction of patients with cirrhosis and portal hypertension. Hepatology. 2006;43(3):485–491. doi: 10.1002/hep.21080.
    1. Meissner EG, McLaughlin M, Matthews L, Gharib AM, Wood BJ, Levy E, et al. Simtuzumab treatment of advanced liver fibrosis in HIV and HCV-infected adults: results of a 6-month open-label safety trial. Liver Int. 2016;36(12):1783–1792. doi: 10.1111/liv.13177.
    1. Harrison SA, Abdelmalek MF, Caldwell S, Shiffman ML, Diehl AM, Ghalib R, et al. Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis. Gastroenterology. 2018;155(4):1140–1153. doi: 10.1053/j.gastro.2018.07.006.
    1. Muir AJ, Levy C, Janssen HLA, Montano-Loza AJ, Shiffman ML, Caldwell S, et al. Simtuzumab for primary sclerosing cholangitis: phase 2 study results with insights on the natural history of the disease. Hepatology. 2019;69(2):684–698. doi: 10.1002/hep.30237.
    1. Chen W, Yang A, Jia J, Popov YV, Schuppan D, You H. Lysyl oxidase (LOX) family members: rationale and their potential as therapeutic targets for liver fibrosis. Hepatology. 2020;72:729–741. doi: 10.1002/hep.31236.
    1. Garcia-Tsao G, Fuchs M, Shiffman M, Borg BB, Pyrsopoulos N, Shetty K, et al. Emricasan (IDN-6556) lowers portal pressure in patients with compensated cirrhosis and severe portal hypertension. Hepatology. 2019;69(2):717–728. doi: 10.1002/hep.30199.
    1. Garcia-Tsao G, Bosch J, Kayali Z, Harrison SA, Abdelmalek MF, Lawitz E, et al. Randomized placebo-controlled trial of emricasan for non-alcoholic steatohepatitis-related cirrhosis with severe portal hypertension. J Hepatol. 2020;72(5):885–895. doi: 10.1016/j.jhep.2019.12.010.
    1. Albillos A. Increased lipopolysaccharide binding protein in cirrhotic patients with marked immune and hemodynamic derangement. Hepatology. 2003;37(1):208–217. doi: 10.1053/jhep.2003.50038.
    1. Rasaratnam B, Kaye D, Jennings G, Dudley F, Chin-Dusting J. The effect of selective intestinal decontamination on the hyperdynamic circulatory state in cirrhosis. Ann Intern Med. 2003;139(3):186. doi: 10.7326/0003-4819-139-3-200308050-00008.
    1. Kemp W, Colman J, Thompson K, Madan A, Vincent M, Chin-Dusting J, et al. Norfloxacin treatment for clinically significant portal hypertension: results of a randomised double-blind placebo-controlled crossover trial. Liver Int. 2009;29(3):427–433. doi: 10.1111/j.1478-3231.2008.01850.x.
    1. Vlachogiannakos J, Saveriadis AS, Viazis N, Theodoropoulos I, Foudoulis K, Manolakopoulos S, et al. Intestinal decontamination improves liver haemodynamics in patients with alcohol-related decompensated cirrhosis. Aliment Pharmacol Ther. 2009;29(9):992–999. doi: 10.1111/j.1365-2036.2009.03958.x.
    1. Vlachogiannakos J, Viazis N, Vasianopoulou P, Vafiadis I, Karamanolis DG, Ladas SD. Long-term administration of rifaximin improves the prognosis of patients with decompensated alcoholic cirrhosis. J Gastroenterol Hepatol. 2013;28(3):450–455. doi: 10.1111/jgh.12070.
    1. Kimer N, Pedersen JS, Busk TM, Gluud LL, Hobolth L, Krag A, et al. Rifaximin has no effect on hemodynamics in decompensated cirrhosis: a randomized, double-blind, placebo-controlled trial. Hepatology. 2017;65(2):592–603. doi: 10.1002/hep.28898.
    1. Lim YL, Kim MY, Jang YO, Baik SK, Kwon SO. Rifaximin and propranolol combination therapy is more effective than propranolol monotherapy for the reduction of portal pressure: an open randomized controlled pilot study. Gut Liver. 2017;11(5):702–710. doi: 10.5009/gnl16478.
    1. Moreau R, Elkrief L, Bureau C, Perarnau JM, Thévenot T, Saliba F, et al. Effects of long-term norfloxacin therapy in patients with advanced cirrhosis. Gastroenterology. 2018;155(6):1816–1827.e9. doi: 10.1053/j.gastro.2018.08.026.
    1. Villa E, Cammà C, Marietta M, Luongo M, Critelli R, Colopi S, et al. Enoxaparin prevents portal vein thrombosis and liver decompensation in patients with advanced cirrhosis. Gastroenterology. 2012;143(5):1253–1260.e4. doi: 10.1053/j.gastro.2012.07.018.
    1. U.S. National Library of Medicine; NCT02643212
    1. Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 2016;387:679–690. doi: 10.1016/S0140-6736(15)00803-X.
    1. Harrison SA, Wong VW, Okanoue T, Bzowej N, Vuppalanchi R, Younes Z, et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: results from randomized Ph III STELLAR trials. J Hepatol. 2020;73:26–39. doi: 10.1016/j.jhep.2020.02.027.
    1. Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology. 2018;67(5):1754–1767. doi: 10.1002/hep.29477.
    1. U.S. National Library of Medicine; NCT03028740
    1. U.S. National Library of Medicine; NCT03517540
    1. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675–1685. doi: 10.1056/NEJMoa0907929.
    1. Francque SM, Bedossa P, Ratziu V, Anstee QM, Bugianesi E, Sanyal AJ, et al. The pan-PPAR agonist lanifibranor induces both resolution of NASH and regression of fibrosis after 24 weeks of treatment in non-cirrhotic NASH: results of the NATIVE phase 2b TRIAL Sven. Hepatology. 2020;72(S1):1–1159.
    1. Newsome PN, Fox R, King AL, Barton D, Than NN, Moore J, et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2018;3(1):25–36. doi: 10.1016/S2468-1253(17)30326-6.
    1. Qi X, Berzigotti A, Cardenas A, Sarin SK. Review emerging non-invasive approaches for diagnosis and monitoring of portal hypertension. Lancet Gastroenterol Hepatol. 2018;3(10):708–719. doi: 10.1016/S2468-1253(18)30232-2.
    1. Castera L. Non-invasive tests for liver fibrosis progression and regression. J Hepatol. 2016;64(1):232–233. doi: 10.1016/j.jhep.2015.10.011.
    1. Sayyar M, Saidi M, Zapatka S, Deng Y, Ciarleglio M, Garcia-Tsao G. Platelet count increases after viral elimination in chronic HCV, independent of the presence or absence of cirrhosis. Liver Int. 2019;39(11):2061–2065. doi: 10.1111/liv.14203.
    1. Ghosh Laskar M, Eriksson M, Rudling M, Angelin B. Treatment with the natural FXR agonist chenodeoxycholic acid reduces clearance of plasma LDL whilst decreasing circulating PCSK9, lipoprotein(a) and apolipoprotein C-III. J Intern Med. 2017;281(6):575–585. doi: 10.1111/joim.12594.
    1. Radu C, Stancu O, Sav R, Bugariu A, Suciu A, Grigoras C, et al. Liver stiffness better predicts portal hypertension after HCV eradication. J Gastrointestin Liver Dis. 2018;27:201–205. doi: 10.15403/jgld.2014.1121.272.fef.
    1. Ravaioli F, Colecchia A, Dajti E, Marasco G, Alemanni LV, Tamè M, et al. Spleen stiffness mirrors changes in portal hypertension after successful interferon-free therapy in chronic-hepatitis C virus patients. World J Hepatol. 2018;27(10):731–742. doi: 10.4254/wjh.v10.i10.731.
    1. Kim HY, So YH, Kim W, Ahn DW, Jung YJ, Woo H, et al. Non-invasive response prediction in prophylactic carvedilol therapy for cirrhotic patients with esophageal varices. J Hepatol. 2019;70(3):412–422. doi: 10.1016/j.jhep.2018.10.018.
    1. Thabut D, Bureau C, Layese R, Bourcier V, Hammouche M, Cagnot C, et al. Validation of Baveno VI criteria for screening and surveillance of esophageal varices in patients with compensated cirrhosis and a sustained response to antiviral therapy. Gastroenterology. 2019;156(4):997–1009.e5. doi: 10.1053/j.gastro.2018.11.053.
    1. Karsdal MA, Hjuler ST, Luo Y, Rasmussen DGK, Nielsen MJ, Nielsen SH, et al. Assessment of liver fibrosis progression and regression by a serological collagen turnover profile. Am J Physiol. 2019;316(1):G25–31.
    1. Jansen C, Leeming DJ, Mandorfer M, Byrjalsen I, Schierwagen R, Schwabl P, et al. PRO-C3-levels in patients with HIV/HCV-Co-infection reflect fibrosis stage and degree of portal hypertension. PLoS ONE. 2014;9(9):e108544. doi: 10.1371/journal.pone.0108544.
    1. Leeming DJ, Karsdal MA, Byrjalsen I, Bendtsen F, Trebicka J, Nielsen MJ, et al. Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension. Aliment Pharmacol Ther. 2013;38(9):1086–1096. doi: 10.1111/apt.12484.
    1. Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease – A practical approach for translational research. J Hepatol 2020;73(2):423–40

Source: PubMed

3
订阅