Skin Pigmentation Influence on Pulse Oximetry Accuracy: A Systematic Review and Bibliometric Analysis

Ana M Cabanas, Macarena Fuentes-Guajardo, Katina Latorre, Dayneri León, Pilar Martín-Escudero, Ana M Cabanas, Macarena Fuentes-Guajardo, Katina Latorre, Dayneri León, Pilar Martín-Escudero

Abstract

Nowadays, pulse oximetry has become the standard in primary and intensive care units, especially as a triage tool during the current COVID-19 pandemic. Hence, a deeper understanding of the measurement errors that can affect precise readings is a key element in clinical decision-making. Several factors may influence the accuracy of pulse oximetry, such as skin color, body temperature, altitude, or patient movement. The skin pigmentation effect on pulse oximetry accuracy has long been studied reporting some contradictory conclusions. Recent studies have shown a positive bias in oxygen saturation measurements in patients with darkly pigmented skin, particularly under low saturation conditions. This review aims to study the literature that assesses the influence of skin pigmentation on the accuracy of these devices. We employed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to conduct a systematic review retrospectively since February 2022 using WOS, PubMed, and Scopus databases. We found 99 unique references, of which only 41 satisfied the established inclusion criteria. A bibliometric and scientometrics approach was performed to examine the outcomes of an exhaustive survey of the thematic content and trending topics.

Keywords: accuracy; oxygen saturation; photoplethysmography; pulse oximetry; skin pigmentation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 2
Figure 2
Risk of bias assessment in individual studies judged according QUADAS−2. The right column shows the qualitative final conclusion reported by the selected studies [17,21,23,30,38,41,42,43,44,45,46,47,48,50,51,53,56,69,70,71,72,75,76,77,78,79,80,81,82,84,87,88,89,93] regarding the existence of inaccuracy related to skin pigmentation.
Figure 1
Figure 1
Flowchart consistent with preferred reporting items for systematic reviews (PRISMA) statement.
Figure 3
Figure 3
Annual publication trend of selected documents retrieved from Scopus, Pubmed and WOS between 1976 and 2022. A blue dashed line denotes the average TC¯ per year.
Figure 4
Figure 4
Network map of average co-occurrence citation of the most relevant keywords and dynamic view over time.

References

    1. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007;28:R1–R39. doi: 10.1088/0967-3334/28/3/R01.
    1. Alian A.A., Shelley K.H. Best Practice & Research Clinical Anaesthesiology. Photoplethysmography. 2014;28:395–406. doi: 10.1016/j.bpa.2014.08.006.
    1. Nasseri N., Kleiser S., Wolf U., Wolf M. Tissue oximetry by diffusive reflective visible light spectroscopy: Comparison of algorithms and their robustness. J. Biophoton. 2018;11:e201700367. doi: 10.1002/jbio.201700367.
    1. Nitzan M., Romem A., Koppel R. Pulse oximetry: Fundamentals and technology update. Med. Devices Evid. Res. 2014;7:231–239. doi: 10.2147/MDER.S47319.
    1. Jubran A. Pulse oximetry. Crit. Care. 2015;19:1–7. doi: 10.1186/s13054-015-0984-8.
    1. Martín-Escudero P., Cabanas A.M., Fuentes-Ferrer M., Galindo-Canales M. Oxygen Saturation Behavior by Pulse Oximetry in Female Athletes: Breaking Myths. Biosensors. 2021;11:391. doi: 10.3390/bios11100391.
    1. Lee I., Park N., Lee H., Hwang C., Kim J.H., Park S. Systematic Review on Human Skin-Compatible Wearable Photoplethysmography Sensors. Appl. Sci. 2021;11:2313. doi: 10.3390/app11052313.
    1. Kim N.H., Yu S.G., Kim S.E., Lee E.C. Non-Contact Oxygen Saturation Measurement Using YCgCr Color Space with an RGB Camera. Sensors. 2021;21:6120. doi: 10.3390/s21186120.
    1. Martín-Escudero P. Ph.D. Thesis. Universidad Complutense de Madrid; Madrid, Spain: 2003. La oximetría en Registro Continuo en el Esfuerzo máximo en Distintas Especialidades Deportivas.
    1. Collins J.A., Rudenski A., Gibson J., Howard L., O’Driscoll R. Relating oxygen partial pressure, saturation and content: The haemoglobin’oxygen dissociation curve. Breathe. 2015;11:194–201. doi: 10.1183/20734735.001415.
    1. Breuer H.W., Groeben H., Schöndeling H., Worth H. Comparative analysis of arterial oxygen saturations during exercise by pulse oximetry, photometric measurements, and calculation procedures. Int. J. Sport. Med. 1990;11:22–25. doi: 10.1055/s-2007-1024756.
    1. Scherrenberg M., Wilhelm M., Hansen D., Völler H., Cornelissen V., Frederix I., Kemps H., Dendale P. The future is now: A call for action for cardiac telerehabilitation in the COVID-19 pandemic from the secondary prevention and rehabilitation section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2020:1–21. doi: 10.1177/2047487320939671.
    1. Channa A., Popescu N., Skibinska J., Burget R. The Rise of Wearable Devices during the COVID-19 Pandemic: A Systematic Review. Sensors. 2021;21:5787. doi: 10.3390/s21175787.
    1. Philip K.E.J., Bennett B., Fuller S., Lonergan B., McFadyen C., Burns J., Tidswell R., Vlachou A. Working accuracy of pulse oximetry in COVID-19 patients stepping down from intensive care: A clinical evaluation. BMJ Open Respir. Res. 2020;7:1–5. doi: 10.1136/bmjresp-2020-000778.
    1. Michard F., Shelley K., L’Her E. COVID-19: Pulse oximeters in the spotlight. J. Clin. Monit. Comput. 2021;35:11–14. doi: 10.1007/s10877-020-00550-7.
    1. England NHS Specialty Guides for Patient Management during the Coronavirus Pandemic. Guidance for the Role and Use of Non-Invasive Respiratory Support in Adult Patients with COVID-19 (Confirmed or Suspected) 6 April 2020, Version 2. 2020. [(accessed on 26 March 2020)]. Available online: .
    1. Wiles M.D., El-Nayal A., Elton G., Malaj M., Winterbottom J., Gillies C., Moppett I.K., Bauchmuller K. The effect of patient ethnicity on the accuracy of peripheral pulse oximetry in patients with COVID-19 pneumonitis: A single-centre, retrospective analysis. Anaesthesia. 2021;77:143–152. doi: 10.1111/anae.15581.
    1. Shah S., Majmudar K., Stein A., Gupta N., Suppes S., Karamanis M., Capannari J., Sethi S., Patte C. Novel Use of Home Pulse Oximetry Monitoring in COVID-19 Patients Discharged From the Emergency Department Identifies Need for Hospitalization. Acad. Emerg. Med. 2020;27:681–692. doi: 10.1111/acem.14053.
    1. Nematswerani N., Collie S., Chen T., Cohen M., Champion J., Feldman C., Richards G.A. The impact of routine pulse oximetry use on outcomes in COVID-19-infected patients at increased risk of severe disease: A retrospective cohort analysis. S. Afr. Med. J. Suid-Afr. Tydskr. Vir Geneeskd. 2021;111:950–956. doi: 10.7196/SAMJ.2021.v111i10.15880.
    1. World Health Organization . COVID-19 Clinical Management: Living Guidance, 25 January 2021. World Health Organization; Geneva, Switzerland: 2021. Technical Documents.
    1. Mendelson Y., Ochs B.D. Noninvasive pulse oximetry utilizing skin reflectance photoplethysmography. IEEE Trans. Biomed. Eng. 1988;35:798–805. doi: 10.1109/10.7286.
    1. Abay T.Y., Kyriacou P.A. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion. IEEE Trans. Biomed. Eng. 2015;62:2187–2195. doi: 10.1109/TBME.2015.2417863.
    1. Bickler P.E., Feiner J.R., Severinghaus J.W. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology. 2005;102:715–719. doi: 10.1097/00000542-200504000-00004.
    1. Feiner J.R., Severinghaus J.W., Bickler P.E. Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: The effects of oximeter probe type and gender. Anesth. Analg. 2007;105:S18–S23. doi: 10.1213/01.ane.0000285988.35174.d9.
    1. Sinex J.E. Pulse oximetry: Principles and limitations. Am. J. Emerg. Med. 1999;17:59–67. doi: 10.1016/S0735-6757(99)90019-0.
    1. Dünnwald T., Kienast R., Niederseer D., Burtscher M. The Use of Pulse Oximetry in the Assessment of Acclimatization to High Altitude. Sensors. 2021;21:1263. doi: 10.3390/s21041263.
    1. Tannheimer M., Lechner R. The correct measurement of oxygen saturation at high altitude. Sleep Breath. Schlaf. Atm. 2019;23:1101–1106. doi: 10.1007/s11325-019-01784-9.
    1. Sütçü Çiçek H., Gümüs S., Deniz Ö., Yildiz S., Açikel C.H., Çakir E., Tozkoparan E., Uçar E., Bilgiç H. Effect of nail polish and henna on oxygen saturation determined by pulse oximetry in healthy young adult females. Emerg. Med. J. EMJ. 2011;28:783–785. doi: 10.1136/emj.2010.096073.
    1. Tobin R.M., Pologe J.A., Batchelder P.B. A characterization of motion affecting pulse oximetry in 350 patients. Anesth. Analg. 2002;94:S54–S61.
    1. Al-Naji A., Khalid G.A., Mahdi J.F., Chahl J. Non-Contact SpO2 Prediction System Based on a Digital Camera. Appl. Sci. 2021;11:4255. doi: 10.3390/app11094255.
    1. De Haan G., Van Leest A. Improved motion robustness of remote-PPG by using the blood volume pulse signature. Physiol. Meas. 2014;35:1913–1926. doi: 10.1088/0967-3334/35/9/1913.
    1. Van Gastel M., Stuijk S., De Haan G. Motion robust remote-PPG in infrared. IEEE Trans. Biomed. Eng. 2015;62:1425–1433. doi: 10.1109/TBME.2015.2390261.
    1. Colvonen P.J. Response to: Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med. 2021;4:38. doi: 10.1038/s41746-021-00408-5.
    1. Zonios G., Bykowski J., Kollias N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. J. Investig. Dermatol. 2001;117:1452–1457. doi: 10.1046/j.0022-202x.2001.01577.x.
    1. Castaneda D., Esparza A., Ghamari M., Soltanpur C., Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018;4:195–202. doi: 10.15406/ijbsbe.2018.04.00125.
    1. Yan L., Hu S., Alzahrani A., Alharbi S., Blanos P. A Multi-Wavelength Opto-Electronic Patch Sensor to Effectively Detect Physiological Changes against Human Skin Types. Biosensors. 2017;7:22. doi: 10.3390/bios7020022.
    1. Wassenaar E.B., Van den Brand J.G. Reliability of near-infrared spectroscopy in people with dark skin pigmentation. J. Clin. Monit. Comput. 2005;19:195–199. doi: 10.1007/s10877-005-1655-0.
    1. Alharbi S., Hu S., Mulvaney D., Blanos P. An applicable approach for extracting human heart rate and oxygen saturation during physical movements using a multi-wavelength illumination optoelectronic sensor system. In: Raghavachari R., editor. Progress in Biomedical Optics and Imaging—Proceedings of SPIE. Volume 10486. SPIE; Bellingham, WA, USA: 2018.
    1. Costa J., Vieira H., Louro P., Vieira M. Double junction photodiodes for multiwavelength photoplethysmography. In: Berghmans F.M.A.G., editor. Proceedings of SPIE—The International Society for Optical Engineering. Volume 10680. SPIE; Bellingham, WA, USA: 2018.
    1. Tamura T., Maeda Y., Sekine M., Yoshida M. Wearable photoplethysmographic sensors—past and present. Electronics. 2014;3:282–302. doi: 10.3390/electronics3020282.
    1. Saunders N.A., Powles A.C.P., Rebuck A.S. Ear oximetry: Accuracy and tracticability in the assessment of arterial oxygenation. Am. Rev. Respir. Dis. 1976;113:745–749.
    1. Emery J.R. Skin pigmentation as an influence on the accuracy of pulse oximetry. J. Perinatol. Off. J. Calif. Perinat. Assoc. 1987;7:329–330.
    1. Cecil W.T., Thorpe K.J., Fibuch E.E., Tuohy G.F. A clinical evaluation of the accuracy of the Nellcor N-100 and Ohmeda 3700 pulse oximeters. J. Clin. Monit. 1988;4:31–36. doi: 10.1007/BF01618105.
    1. Wang Y.T., Poh S.C. Noninvasive oximetry in pigmented patients. Ann. Acad. Med. 1985;14:427–429.
    1. Gabrielczyk M.R., Buist R.J. Pulse oximetry and postoperative hypothermia. Anaesthesia. 1988;43:402–404. doi: 10.1111/j.1365-2044.1988.tb09025.x.
    1. Bothma P.A., Joynt G.M., Lipman J., Hon H., Mathala B., Scribante J., Kromberg J. Accuracy of pulse oximetry in pigmented patients. S. Afr. Med. J. 1996;86:594–596.
    1. Adler J.N., Hughes L.A., Vivilecchia R., Camargo C.A.J. Effect of skin pigmentation on pulse oximetry accuracy in the emergency department. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 1998;5:965–970. doi: 10.1111/j.1553-2712.1998.tb02772.x.
    1. Foglia E.E., Whyte R.K., Chaudhary A., Mott A., Chen J., Propert K.J., Schmidt B. The Effect of Skin Pigmentation on the Accuracy of Pulse Oximetry in Infants with Hypoxemia. J. Pediatr. 2017;182:375–377.e2. doi: 10.1016/j.jpeds.2016.11.043.
    1. Bent B., Goldstein B.A., Kibbe W.A., Dunn J.P. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med. 2020;3:1–9. doi: 10.1038/s41746-020-0226-6.
    1. Sjoding M.W., Dickson R.P., Iwashyna T.J., Gay S.E., Valley T.S. Racial Bias in Pulse Oximetry Measurement. N. Engl. J. Med. 2020;383:2477–2478. doi: 10.1056/NEJMc2029240.
    1. Vesoulis Z., Tims A., Lodhi H., Lalos N., Whitehead H. Racial discrepancy in pulse oximeter accuracy in preterm infants. J. Perinatol. 2021;42:79–85. doi: 10.1038/s41372-021-01230-3.
    1. Okunlola O.E., Lipnick M.S., Batchelder P.B., Bernstein M., Feiner J.R., Bickler P.E. Pulse Oximeter Performance, Racial Inequity, and the Work Ahead. Respir. Care. 2022;67:252–257. doi: 10.4187/respcare.09795.
    1. Henry N.R., Hanson A.C., Schulte P.J., Warner N.S., Manento M.N., Weister T.J., Warner M.A. Disparities in Hypoxemia Detection by Pulse Oximetry Across Self-Identified Racial Groups and Associations with Clinical Outcomes. Crit. Care Med. 2022;50:204–211. doi: 10.1097/CCM.0000000000005394.
    1. Wong A.K.I., Charpignon M., Kim H., Josef C., De Hond A.A., Fojas J.J., Tabaie A., Liu X., Mireles-Cabodevila E., Carvalho L., et al. Analysis of Discrepancies between Pulse Oximetry and Arterial Oxygen Saturation Measurements by Race and Ethnicity and Association with Organ Dysfunction and Mortality. JAMA Netw. Open. 2021;4:1–14. doi: 10.1001/jamanetworkopen.2021.31674.
    1. Valbuena V.S.M., Barbaro R.P., Claar D., Valley T.S., Dickson R.P., Gay S.E., Sjoding M.W., Iwashyna T.J. Racial Bias in Pulse Oximetry Measurement Among Patients About to Undergo Extracorporeal Membrane Oxygenation in 2019–2020: A Retrospective Cohort Study. Chest. 2021;4:971–978. doi: 10.1016/j.chest.2021.09.025.
    1. Avant M. G; Lowe N.; Torres Jr., A. Comparison of accuracy and signal consistency of two reusable pulse oximeter probes in critically ill children. Respir. Care. 1997;42:698–704.
    1. Warren R., Wyden C.B. 2021.01.25 Letter to FDA re Bias in Pulse Oximetery Measurements. Technical Report; U.S. Food and Drug Administration; Silver Spring, MD, USA: 2021.
    1. NHS Race & Health Observatory . Pulse Oximetry and Racial Bias: Recommendations for National Healthcare, Regulatory and Research Bodies. National Health Service England; London, UK: 2021. Technical Report March.
    1. Hunasikatti M. Racial bias in accuracy of pulse oximetry and its impact on assessments of hypopnea and T90 in clinical studies. J. Clin. Sleep Med. 2021;17:1145. doi: 10.5664/jcsm.9178.
    1. Holder A.L., Wong A.-K.I. The Big Consequences of Small Discrepancies: Why Racial Differences in Pulse Oximetry Errors Matter. Crit. Care Med. 2022;50:335–337. doi: 10.1097/CCM.0000000000005447.
    1. Shi C., Goodall M., Dumville J., Hill J.E., Norman G., Hamer O., Clegg A., Watkins C.L., Georgiou G., Alexander Hodkinson A., et al. Article The effects of skin pigmentation on the accuracy of pulse oximetry in measuring oxygen saturation: A systematic review and meta-analysis The effects of skin pigmentation on the accuracy of pulse and meta-analysis. PLoS Med. 2022 doi: 10.1101/2022.02.16.22271062.
    1. Tranfield D., Denyer D., Smart P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review* Introduction: The need for an evidence- informed approach. Br. J. Manag. 2003;14:207–222. doi: 10.1111/1467-8551.00375.
    1. Ye S., Feng S., Huang L., Bian S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. Biosensors. 2020;10:205. doi: 10.3390/bios10120205.
    1. Pritišanac E., Urlesberger B., Schwaberger B., Pichler G. Accuracy of pulse oximetry in the presence of fetal hemoglobin—A systematic. Children. 2021;8:361. doi: 10.3390/children8050361.
    1. Merigó J.M., Blanco-Mesa F., Gil-Lafuente A.M., Yager R.R. Thirty Years of the International Journal of Intelligent Systems: A Bibliometric Review. Int. J. Intell. Syst. 2017;32:526–554. doi: 10.1002/int.21859.
    1. Guerrero-Gironés J., Ros-Valverde A., Pecci-Lloret M.P., Rodríguez-Lozano F.J., Pecci-Lloret M.R. Association between Pulpal-Periapical Pathology and Autoimmune Diseases: A Systematic Review. J. Clin. Med. 2021;10:4886. doi: 10.3390/jcm10214886.
    1. Aria M., Cuccurullo C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017;11:959–975. doi: 10.1016/j.joi.2017.08.007.
    1. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006;57:359–377. doi: 10.1002/asi.20317.
    1. Stell D., Noble J.J., Kay R.H., Kwong M.T., Jeffryes M.J.R., Johnston L., Glover G., Akinluyi E. Exploring the impact of pulse oximeter selection within the COVID-19 home-use pulse oximetry pathways. BMJ Open Respir. Res. 2022;9:1–8. doi: 10.1136/bmjresp-2021-001159.
    1. Allado E., Poussel M., Moussu A., Saunier V., Bernard Y., Albuisson E., Chenuel B. Innovative measurement of routine physiological variables (heart rate, respiratory rate and oxygen saturation) using a remote photoplethysmography imaging system: A prospective comparative trial protocol. BMJ Open. 2021;11:1–4. doi: 10.1136/bmjopen-2020-047896.
    1. Harskamp R.E., Bekker L., Himmelreich J.C.L., De Clercq L., Karregat E.P.M., Sleeswijk M.E., Lucassen W.A.M. Performance of popular pulse oximeters compared with simultaneous arterial oxygen saturation or clinical-grade pulse oximetry: A cross-sectional validation study in intensive care patients. BMJ Open Respir. Res. 2021;8:1–7. doi: 10.1136/bmjresp-2021-000939.
    1. Moço A., Verkruysse W. Pulse oximetry based on photoplethysmography imaging with red and green light: Calibratability and challenges. J. Clin. Monit. Comput. 2021;35:123–133. doi: 10.1007/s10877-019-00449-y.
    1. Philip K.E.J., Tidswell R., McFadyen C. Racial bias in pulse oximetry: More statistical detail may help tackle the problem. BMJ. 2021;372:n298. doi: 10.1136/bmj.n298.
    1. Poets C.F. Noninvasive Monitoring and Assessment of Oxygenation in Infants. Clin. Perinatol. 2019;46:417–433. doi: 10.1016/j.clp.2019.05.010.
    1. Baek H.J., Shin J., Cho J. The Effect of Optical Crosstalk on Accuracy of Reflectance-Type Pulse Oximeter for Mobile Healthcare. J. Healthc. Eng. 2018;2018:3521738. doi: 10.1155/2018/3521738.
    1. Ebmeier S.J., Barker M., Bacon M., Beasley R.C., Bellomo R., Chong C.K., Eastwood G.M., Gilchrist J., Kagaya H., Pilcher J., et al. A Two Centre Observational Study of Simultaneous Pulse Oximetry and Arterial Oxygen Saturation Recordings in Intensive Care Unit Patients. Anaesth. Intensive Care. 2018;46:297–303. doi: 10.1177/0310057X1804600307.
    1. Sanyal S., Nundy K.K. Algorithms for Monitoring Heart Rate and Respiratory Rate From the Video of a User’s Face. IEEE J. Transl. Eng. Health Med. 2018;6:1–11. doi: 10.1109/JTEHM.2018.2818687.
    1. Kumar M., Veeraraghavan A., Sabharwal A. DistancePPG: Robust non-contact vital signs monitoring using a camera. Biomed. Opt. Express. 2015;6:1565–1588. doi: 10.1364/BOE.6.001565.
    1. Bensghir M., Houba A., El Hila J., Ahtil R., Azendour H., Kamili N.D. Henna dye: A cause of erroneous pulse oximetry readings. Saudi J. Anaesth. 2013;7:474–475. doi: 10.4103/1658-354X.121052.
    1. Fallow B.A., Tarumi T., Tanaka H. Influence of skin type and wavelength on light wave reflectance. J. Clin. Monit. Comput. 2013;27:313–317. doi: 10.1007/s10877-013-9436-7.
    1. Hameedullah, Rauf M.A., Khan F.A. Henna paste and pulse oximetry: Effect of different methods of application. J. Anaesthesiol. Clin. Pharmacol. 2002;18:193–196.
    1. Wouters P.F., Gehring H., Meyfroidt G., Ponz L., Gil-Rodriguez J., Hornberger C., Bonk R., Frankenberger H., Benekos K., Valais J., et al. Accuracy of pulse oximeters: The European multi-center trial. Anesth. Analg. 2002;94:S13-6.
    1. Gaskin L., Thomas J. Pulse Oximetry and Exercise. Physiotherapy. 1995;81:254–261. doi: 10.1016/S0031-9406(05)66819-8.
    1. Al-Majed S.A., Harakati M.S. The effect of henna paste on oxygen saturation reading obtained by pulse oximetry. Trop. Geogr. Med. 1994;46:38–39.
    1. Lee K.H., Hui K.P., Tan W.C., Lim T.K. Factors influencing pulse oximetry as compared to functional arterial saturation in multi-ethnic Singapore. Singap. Med. J. 1993;34:385–387.
    1. Ralston A.C., Webb R.K., Runciman W.B. Potential errors in pulse oximetry. I. Pulse oximeter evaluation. Anaesthesia. 1991;46:202–206. doi: 10.1111/j.1365-2044.1991.tb09410.x.
    1. Zeballos R.J., Weisman I.M. Reliability of noninvasive oximetry in black subjects during exercise and hypoxia. Am. Rev. Respir. Dis. 1991;144:1240–1244. doi: 10.1164/ajrccm/144.6.1240.
    1. Jubran A., Tobin M. Reliability of pulse oximetry in titrating supplemental oxygen therapy in ventilator-dependent patients. Chest. 1990;97:1420–1425. doi: 10.1378/chest.97.6.1420.
    1. Ries A.L., Prewitt L.M., Johnson J.J. Skin color and ear oximetry. Chest. 1989;96:287–290. doi: 10.1378/chest.96.2.287.
    1. Whiting P.F., Rutjes A.W.S., Westwood M.E., Mallett S., Deeks J.J., Reitsma J.B., Leeflang M.M.G., Sterne J.A.C., Bossuyt P.M.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011;155:529–536. doi: 10.7326/0003-4819-155-8-201110180-00009.
    1. Whiting D.P. Risk of Bias and Applicability Judgments. [(accessed on 26 March 2020)]. Available online:
    1. McGuinness L.A., Higgins J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods. 2020;12:55–61. doi: 10.1002/jrsm.1411.
    1. Lee T.Q., Barnett S.L., Shanfield S.L., Anzel S.H. Potential application of photoplethysmography technique in evaluating microcirculatory status of STAMP patients: Preliminary report. J. Rehabil. Res. Dev. 1990;27:363–368. doi: 10.1682/JRRD.1990.10.0363.
    1. Khanam F.T.Z., Perera A.G., Al-Naji A., Gibson K., Chahl J. Non-Contact Automatic Vital Signs Monitoring of Infants in a Neonatal Intensive Care Unit Based on Neural Networks. J. Imaging. 2021;7:122. doi: 10.3390/jimaging7080122.
    1. Liu H., Ivanov K., Wang Y., Wang L. A novel method based on two cameras for accurate estimation of arterial oxygen saturation. Biomed. Eng. Online. 2015;14:52. doi: 10.1186/s12938-015-0045-1.
    1. Guazzi A.R., Villarroel M., Jorge J., Daly J., Frise M.C., Robbins P.A., Tarassenko L. Non-contact measurement of oxygen saturation with an RGB camera. Biomed. Opt. Express. 2015;6:3320–3338. doi: 10.1364/BOE.6.003320.
    1. Song Y., Chen X., Hao T., Liu Z., Lan Z. Exploring two decades of research on classroom dialogue by using bibliometric analysis. Comput. Educ. 2019;137:12–31. doi: 10.1016/j.compedu.2019.04.002.
    1. van Eck N.J., Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010;84:523–538. doi: 10.1007/s11192-009-0146-3.
    1. Wosik J., Fudim M., Cameron B., Gellad Z.F., Cho A., Phinney D., Curtis S., Roman M., Poon E.G., Ferranti J., et al. Telehealth transformation: COVID-19 and the rise of virtual care. J. Am. Med. Inform. Assoc. Jamia. 2020;27:957–962. doi: 10.1093/jamia/ocaa067.
    1. van Gastel M., Stuijk S., de Haan G. New principle for measuring arterial blood oxygenation, enabling motion-robust remote monitoring. Sci. Rep. 2016;6:38609. doi: 10.1038/srep38609.
    1. Fine J., Branan K.L., Rodriguez A.J., Boonya-ananta T., Ajmal, Ramella-Roman J.C., McShane M.J., Coté G.L. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors. 2021;11:126. doi: 10.3390/bios11040126.
    1. Maeda Y., Sekine M., Tamura T. The advantages of wearable green reflected photoplethysmography. J. Med. Syst. 2011;35:829–834. doi: 10.1007/s10916-010-9506-z.
    1. de Kock J.P., Reynolds K.J., Tarassenko L., Moyle J.T. The effect of varying LED intensity on pulse oximeter accuracy. J. Med. Eng. Technol. 1991;15:111–115. doi: 10.3109/03091909109016208.
    1. Bossuyt P.M., Reitsma J.B., Bruns D.E., Gatsonis C.A., Glasziou P.P., Irwig L., Lijmer J.G., Moher D., Rennie D., de Vet H.C.W., et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527. doi: 10.1136/bmj.h5527.
    1. Fitzpatrick T.B., Breathnach A.S. The epidermal melanin unit system. Dermatol. Wochenschr. 1963;147:481–489.
    1. Fitzpatrick T.B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 1988;124:869–871. doi: 10.1001/archderm.1988.01670060015008.
    1. Moreiras H., O’Connor C., Bell M., Tobin D.J. Visible light and human skin pigmentation: The importance of skin phototype. Exp. Dermatol. 2021;30:1324–1331. doi: 10.1111/exd.14400.
    1. Munsell A.H. Atlas of the Munsell Color System. Wadsworth, Howland & Co., Inc., Printers; Malden, MA, USA: 1915.
    1. Xiao K., Yates J.M., Zardawi F., Sueeprasan S., Liao N., Gill L., Li C., Wuerger S. Characterising the variations in ethnic skin colours: A new calibrated data base for human skin. Skin Res. Technol. 2017;23:21–29. doi: 10.1111/srt.12295.
    1. Kugelman A., Wasserman Y., Mor F., Goldinov L., Geller Y., Bader D. Reflectance Pulse Oximetry from Core Body in Neonates and Infants: Comparison to Arterial Blood Oxygen Saturation and to Transmission Pulse Oximetry. J. Perinatol. 2004;24:366–371. doi: 10.1038/sj.jp.7211102.
    1. Hay W.W.J., Brockway J.M., Eyzaguirre M. Neonatal pulse oximetry: Accuracy and reliability. Pediatrics. 1989;83:717–722. doi: 10.1542/peds.83.5.717.
    1. Luks A.M., Swenson E.R. Pulse oximetry for monitoring patients with COVID-19 at home potential pitfalls and practical guidance. Ann. Am. Thorac. Soc. 2020;17:1040–1046. doi: 10.1513/AnnalsATS.202005-418FR.

Source: PubMed

3
订阅