Effects of Lumbar Stabilization Exercises on Isokinetic Strength and Muscle Tension in Sedentary Men

Seunghyeok Yeom, Hyeongdo Jeong, Hyungwoo Lee, Kyoungkyu Jeon, Seunghyeok Yeom, Hyeongdo Jeong, Hyungwoo Lee, Kyoungkyu Jeon

Abstract

Lumbar stabilization exercises (LSE) lead to high levels of erector spinae muscle (ESM) activation, which has a positive effect on improving physical function. The purpose of this study is to identify factors explaining changes in muscle strength after 7 weeks of LSE and to evaluate changes in stiffness and contraction of the ESM. All participants (male: n = 42, age = 28.26 ± 10.97) were assessed for 60°/s isokinetic extensor muscle strength and tension using a tensiomyography (TMG) and isokinetic device before and after LSE. Maximum displacement (Dm) and average velocity up to 90% Dm (Vc 90) were significantly different before and after LSE. Additionally, participants' 60°/s isokinetic extensor strength was significantly higher after exercise. A regression analysis was conducted to test the explanatory power of the variables, and positive results were obtained in the increase in extensor strength before and after Vc 90 and LSE. Furthermore, statistical significance was set at p < 0.05. After LSE, the increase in 60°/s isokinetic extensor strength and ESM's Dm and Vc 90 can be interpreted as positive changes post-exercise in endurance muscles with a higher percentage of type I fibers. Our results can contribute to predicting the long-term exercise effect in sedentary workers and developing an individualized strategic exercise program.

Keywords: erector spinae muscle; isokinetic; lumbar stabilization; strength; tensiomyography.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Measurement position of TMG.
Figure 2
Figure 2
Measurement posture of trunk isokinetic strength.
Figure 3
Figure 3
Variables of Tensiomyography measurement (International society of tensiomyography).
Figure 4
Figure 4
(A) Results of linear regression analysis of pre-exercise, (B) Results of linear regression analysis of Amount of change.

References

    1. Bull F.C., Al-Ansari S.S., Biddle S., Borodulin K., Buman M.P., Cardon G., Carty C., Chaput J.-P., Chastin S., Chou R. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020;54:1451–1462. doi: 10.1136/bjsports-2020-102955.
    1. Stockwell S., Trott M., Tully M., Shin J., Barnett Y., Butler L., McDermott D., Schuch F., Smith L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021;7:e000960. doi: 10.1136/bmjsem-2020-000960.
    1. Piercy K.L., Troiano R.P., Ballard R.M., Carlson S.A., Fulton J.E., Galuska D.A., George S.M., Olson R.D. The physical activity guidelines for Americans. JAMA. 2018;320:2020–2028. doi: 10.1001/jama.2018.14854.
    1. Heneweer H., Vanhees L., Picavet H.S.J. Physical activity and low back pain: A U-shaped relation? Pain. 2009;143:21–25. doi: 10.1016/j.pain.2008.12.033.
    1. Chang W.-D., Lin H.-Y., Lai P.-T. Core strength training for patients with chronic low back pain. J. Phys. Ther. Sci. 2015;27:619–622. doi: 10.1589/jpts.27.619.
    1. Gladwell V., Head S., Haggar M., Beneke R. Does a program of Pilates improve chronic non-specific low back pain? J. Sport Rehabil. 2006;15:338–350. doi: 10.1123/jsr.15.4.338.
    1. Collins J.D., O’Sullivan L.W. Musculoskeletal disorder prevalence and psychosocial risk exposures by age and gender in a cohort of office based employees in two academic institutions. Int. J. Ind. Ergon. 2015;46:85–97. doi: 10.1016/j.ergon.2014.12.013.
    1. Ayanniyi O., Ukpai B., Adeniyi A.F. Differences in prevalence of self-reported musculoskeletal symptoms among computer and non-computer users in a Nigerian population: A cross-sectional study. BMC Musculoskelet. Disord. 2010;11:177. doi: 10.1186/1471-2474-11-177.
    1. Mörl F., Bradl I. Lumbar posture and muscular activity while sitting during office work. J. Electromyogr. Kinesiol. 2013;23:362–368. doi: 10.1016/j.jelekin.2012.10.002.
    1. Nairn B.C., Azar N.R., Drake J.D. Transient pain developers show increased abdominal muscle activity during prolonged sitting. J. Electromyogr. Kinesiol. 2013;23:1421–1427. doi: 10.1016/j.jelekin.2013.09.001.
    1. Raabe M.E., Chaudhari A.M. Biomechanical consequences of running with deep core muscle weakness. J. Biomech. 2018;67:98–105. doi: 10.1016/j.jbiomech.2017.11.037.
    1. Khosrokiani Z., Letafatkar A., Sheikhi B., Thomas A.C., Aghaie-Ataabadi P., Hedayati M.-T. Hip and Core Muscle Activation During High-Load Core Stabilization Exercises. Sport. Health. 2022;14:415–423. doi: 10.1177/19417381211015225.
    1. Behm D.G., Cappa D., Power G.A. Trunk muscle activation during moderate-and high-intensity running. Appl. Physiol. Nutr. Metab. 2009;34:1008–1016. doi: 10.1139/H09-102.
    1. Willardson J.M., Behm D.G., Huang S.Y., Rehg M.D., Kattenbraker M.S., Fontana F.E. A comparison of trunk muscle activation: Ab Circle vs. traditional modalities. J. Strength Cond. Res. 2010;24:3415–3421. doi: 10.1519/JSC.0b013e3181f639af.
    1. Okubo Y., Kaneoka K., Imai A., Shiina I., Tatsumura M., Izumi S., Miyakawa S. Electromyographic analysis of transversus abdominis and lumbar multifidus using wire electrodes during lumbar stabilization exercises. J. Orthop. Sport. Phys. Ther. 2010;40:743–750. doi: 10.2519/jospt.2010.3192.
    1. Hsu S.-L., Oda H., Shirahata S., Watanabe M., Sasaki M. Effects of core strength training on core stability. J. Phys. Ther. Sci. 2018;30:1014–1018. doi: 10.1589/jpts.30.1014.
    1. Sandrey M.A., Mitzel J.G. Improvement in dynamic balance and core endurance after a 6-week core-stability-training program in high school track and field athletes. J. Sport Rehabil. 2013;22:264–271. doi: 10.1123/jsr.22.4.264.
    1. Kuukkanen T., Mälkiä E. Effects of a three-month therapeutic exercise programme on flexibility in subjects with low back pain. Physiother. Res. Int. 2000;5:46–61. doi: 10.1002/pri.183.
    1. Gomes-Neto M., Lopes J.M., Conceicao C.S., Araujo A., Brasileiro A., Sousa C., Carvalho V.O., Arcanjo F.L. Stabilization exercise compared to general exercises or manual therapy for the management of low back pain: A systematic review and meta-analysis. Phys. Ther. Sport. 2017;23:136–142. doi: 10.1016/j.ptsp.2016.08.004.
    1. García-García O., Cuba-Dorado A., Riveiro-Bozada A., Carballo-López J., Álvarez-Yates T., López-Chicharro J. A maximal incremental test in cyclists causes greater peripheral fatigue in biceps femoris. Res. Q. Exerc. Sport. 2020;91:460–468. doi: 10.1080/02701367.2019.1680789.
    1. Martín-San Agustín R., Medina-Mirapeix F., Casaña-Granell J., García-Vidal J.A., Lillo-Navarro C., Benítez-Martínez J.C. Tensiomyographical responsiveness to peripheral fatigue in quadriceps femoris. PeerJ. 2020;8:e8674. doi: 10.7717/peerj.8674.
    1. Simunic B., Degens H., Rittweger J., Narici M., Mekjavic I., Pisot R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med. Sci. Sport. Exerc. 2011;43:1619–1625. doi: 10.1249/MSS.0b013e31821522d0.
    1. Park S. Theory and usage of tensiomyography and the analysis method for the patient with low back pain. J. Exerc. Rehabil. 2020;16:325. doi: 10.12965/jer.2040420.210.
    1. Goubert D., De Pauw R., Meeus M., Willems T., Cagnie B., Schouppe S., Van Oosterwijck J., Dhondt E., Danneels L. Lumbar muscle structure and function in chronic versus recurrent low back pain: A cross-sectional study. Spine J. 2017;17:1285–1296. doi: 10.1016/j.spinee.2017.04.025.
    1. Domaszewski P., Pakosz P., Konieczny M., Bączkowicz D., Sadowska-Krępa E. Caffeine-induced effects on human skeletal muscle contraction time and maximal displacement measured by tensiomyography. Nutrients. 2021;13:815. doi: 10.3390/nu13030815.
    1. Lee H., Kim C., An S., Jeon K. Effects of Core Stabilization Exercise Programs on Changes in Erector Spinae Contractile Properties and Isokinetic Muscle Function of Adult Females with a Sedentary Lifestyle. Appl. Sci. 2022;12:2501. doi: 10.3390/app12052501.
    1. Lohr C., Schmidt T., Braumann K.-M., Reer R., Medina-Porqueres I. Sex-based differences in tensiomyography as assessed in the lower erector spinae of healthy participants: An observational study. Sport. Health. 2020;12:341–346. doi: 10.1177/1941738120917932.
    1. Šimunič B. Two-dimensional spatial error distribution of key tensiomyographic parameters. J. Biomech. 2019;92:92–97. doi: 10.1016/j.jbiomech.2019.05.035.
    1. Sánchez-Sánchez J., García-Unanue J., Hernando E., López-Fernández J., Colino E., León-Jiménez M., Gallardo L. Repeated sprint ability and muscular responses according to the age category in elite youth soccer players. Front. Physiol. 2019;10:175. doi: 10.3389/fphys.2019.00175.
    1. Karatas G.K., Gögüs F., Meray J. Reliability of isokinetic trunk muscle strength measurement. Am. J. Phys. Med. Rehabil. 2002;81:79–85. doi: 10.1097/00002060-200202000-00001.
    1. Cruz-Montecinos C., Bustamante A., Candia-González M., Gonzalez-Bravo C., Gallardo-Molina P., Andersen L.L., Calatayud J. Perceived physical exertion is a good indicator of neuromuscular fatigue for the core muscles. J. Electromyogr. Kinesiol. 2019;49:102360. doi: 10.1016/j.jelekin.2019.102360.
    1. Lee B.C., McGill S.M. Effect of long-term isometric training on core/torso stiffness. J. Strength Cond. Res. 2015;29:1515–1526. doi: 10.1519/JSC.0000000000000740.
    1. Estrázulas J.A., Estrázulas J.A., de Jesus K., de Jesus K., da Silva R.A., Dos Santos J.O.L. Evaluation isometric and isokinetic of trunk flexor and extensor muscles with isokinetic dynamometer: A systematic review. Phys. Ther. Sport. 2020;45:93–102. doi: 10.1016/j.ptsp.2020.06.008.
    1. Macgregor L.J., Hunter A.M., Orizio C., Fairweather M.M., Ditroilo M. Assessment of skeletal muscle contractile properties by radial displacement: The case for tensiomyography. Sport. Med. 2018;48:1607–1620. doi: 10.1007/s40279-018-0912-6.
    1. Moise S., Hampton D. The Reliability of Tensiomyography for Assessment of Muscle Function: A Systematic Review. [(accessed on 13 February 2023)];UCF DPT Res. Capstone. 2021 24 Available online: .
    1. Lohr C., Braumann K.-M., Reer R., Schroeder J., Schmidt T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur. J. Appl. Physiol. 2018;118:1349–1359. doi: 10.1007/s00421-018-3867-2.
    1. De Paula Simola R.Á., Harms N., Raeder C., Kellmann M., Meyer T., Pfeiffer M., Ferrauti A. Assessment of neuromuscular function after different strength training protocols using tensiomyography. J. Strength Cond. Res. 2015;29:1339–1348. doi: 10.1519/JSC.0000000000000768.
    1. Shimia M., Babaei-Ghazani A., Sadat B.E., Habibi B., Habibzadeh A. Risk factors of recurrent lumbar disk herniation. Asian J. Neurosurg. 2013;8:93. doi: 10.4103/1793-5482.116384.
    1. Chen L.-C., Kuo C.-W., Hsu H.-H., Chang S.-T., Ni S.-M., Ho C.-W. Concurrent measurement of isokinetic muscle strength of the trunk, knees, and ankles in patients with lumbar disc herniation with sciatica. Spine. 2010;35:E1612–E1618. doi: 10.1097/BRS.0b013e3181d12642.
    1. Sekendiz B., Cug M., Korkusuz F. Effects of Swiss-ball core strength training on strength, endurance, flexibility, and balance in sedentary women. J. Strength Cond. Res. 2010;24:3032–3040. doi: 10.1519/JSC.0b013e3181d82e70.
    1. Dedecan H., Çakmakçi E., Biçer M., Akcan F. The effects of core training on some physical and physiological features of male adolescent students. Eur. J. Phys. Educ. Sport Sci. 2016:2. doi: 10.46827/ejpe.v0i0.312.
    1. Fisher J., Bruce-Low S., Smith D. A randomized trial to consider the effect of Romanian deadlift exercise on the development of lumbar extension strength. Phys. Ther. Sport. 2013;14:139–145. doi: 10.1016/j.ptsp.2012.04.001.
    1. Wilson M.T., Ryan A.M., Vallance S.R., Dias-Dougan A., Dugdale J.H., Hunter A.M., Hamilton D.L., Macgregor L.J. Tensiomyography derived parameters reflect skeletal muscle architectural adaptations following 6-weeks of lower body resistance training. Front. Physiol. 2019;10:1493. doi: 10.3389/fphys.2019.01493.
    1. Rusu L.D., Cosma G.G., Cernaianu S.M., Marin M.N., Rusu P.A., Ciocănescu D.P., Neferu F.N. Tensiomyography method used for neuromuscular assessment of muscle training. J. Neuroeng. Rehabil. 2013;10:67. doi: 10.1186/1743-0003-10-67.
    1. Loturco I., Gil S., de Souza Laurino C.F., Roschel H., Kobal R., Abad C.C.C., Nakamura F.Y. Differences in muscle mechanical properties between elite power and endurance athletes: A comparative study. J. Strength Cond. Res. 2015;29:1723–1728. doi: 10.1519/JSC.0000000000000803.
    1. Mannion A.F., Dumas G.A., Cooper R.G., Espinosa F., Faris M.W., Stevenson J.M. Muscle fibre size and type distribution in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: Normal values and sex differences. J. Anat. 1997;190:505–513. doi: 10.1046/j.1469-7580.1997.19040505.x.
    1. Zubac D., Šimunic B. Skeletal muscle contraction time and tone decrease after 8 weeks of plyometric training. J. Strength Cond. Res. 2017;31:1610–1619. doi: 10.1519/JSC.0000000000001626.
    1. Suchomel T.J., Nimphius S., Bellon C.R., Stone M.H. The importance of muscular strength: Training considerations. Sport. Med. 2018;48:765–785. doi: 10.1007/s40279-018-0862-z.
    1. Loturco I., Pereira L.A., Kobal R., Kitamura K., Ramírez-Campillo R., Zanetti V., Abad C.C.C., Nakamura F.Y. Muscle contraction velocity: A suitable approach to analyze the functional adaptations in elite soccer players. J. Sport. Sci. Med. 2016;15:483.
    1. Valenzuela P.L., Montalvo Z., Sánchez-Martínez G., Torrontegi E., De La Calle-Herrero J., Dominguez-Castells R., Maffiuletti N.A., De La Villa P. Relationship between skeletal muscle contractile properties and power production capacity in female Olympic rugby players. Eur. J. Sport Sci. 2018;18:677–684. doi: 10.1080/17461391.2018.1438521.
    1. Widrick J.J., Stelzer J.E., Shoepe T.C., Garner D.P. Functional properties of human muscle fibers after short-term resistance exercise training. Am. J. Physiol. -Regul. Integr. Comp. Physiol. 2002;283:R408–R416. doi: 10.1152/ajpregu.00120.2002.
    1. Malisoux L., Francaux M., Nielens H., Theisen D. Stretch-shortening cycle exercises: An effective training paradigm to enhance power output of human single muscle fibers. J. Appl. Physiol. 2006;100:771–779. doi: 10.1152/japplphysiol.01027.2005.

Source: PubMed

3
订阅