Motion Analysis of Core Stabilization Exercise in Women: Kinematics and Electromyographic Analysis

Kyeongjin Lee, Kyeongjin Lee

Abstract

As core stabilization exercise is essential for maintaining a stable spine and improving functional performance, understanding the activation of core muscles and the stabilization of the trunk and pelvis during such exercise is crucial. The purpose of this study was to investigate the muscle activation and stabilization of the lumbar-pelvic region during core stabilization exercise, with a specific focus on analyzing EMG and 3D motion kinematic data. The study aimed to understand how different tension settings on the reformer affect muscle activation and hip motion, as well as how these factors impact pelvic and trunk stability during the exercise. The reformer consists of a carriage that slides back and forth on rails, with springs providing resistance. The springs can be adjusted to vary the resistance level. Twenty-eight healthy women participating in this study were asked to perform 'side splits', a hip abduction exercise, on the reformer in both heavy and light tension settings. Activation of the internal oblique (IO), rectus abdominis (RA), multifidus (MU), costal lumbosacral (IL), gluteus medius (GM), and adductor muscles (AL) were measured using electromyography (EMG) and 3D motion. Kinematic data using an assay were also measured during exercise. GM, IO, and MU muscles were more active when heavy springs were used, and AL muscles were more active when light springs were used. Hip motion was more symmetrical when lighter springs were used with a greater range of hip motion. There was less pelvis and torso weight transfer and more torso and pelvis stability when the heavier springs were used. In this study, we confirmed that core stabilization exercise on an unstable surface activates the deep muscles of the abdomen and back and is effective for pelvic and trunk stabilization training.

Keywords: core exercises; core stability; electromyography; kinematics; pilates.

Conflict of interest statement

The author has no potential conflict of interest to declare.

Figures

Figure 1
Figure 1
Side split while standing on the Pilates reformer: (a) starting position with neutral spine; (b) end position with carriage pushed away.

References

    1. Gombatto S.P., Brock T., DeLork A., Jones G., Madden E., Rinere C. Lumbar spine kinematics during walking in people with and people without low back pain. Gait Posture. 2015;42:539–544. doi: 10.1016/j.gaitpost.2015.08.010.
    1. Disease G.B.D., Injury I., Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet. 2016;388:1545–1602. doi: 10.1016/S0140-6736(16)31678-6.
    1. Lemeunier N., Leboeuf-Yde C., Gagey O. The natural course of low back pain: A systematic critical literature review. Chiropr Man Therap. 2012;20:33. doi: 10.1186/2045-709X-20-33.
    1. Louw Q.A., Morris L.D., Grimmer-Somers K. The prevalence of low back pain in Africa: A systematic review. BMC Musculoskelet Disord. 2007;8:105. doi: 10.1186/1471-2474-8-105.
    1. Matsudaira K., Konishi H., Miyoshi K., Isomura T., Takeshita K., Hara N., Yamada K., Machida H. Potential risk factors for new onset of back pain disability in Japanese workers: Findings from the Japan epidemiological research of occupation-related back pain study. Spine. 2012;37:1324–1333. doi: 10.1097/BRS.0b013e3182498382.
    1. Picavet H.S., Schouten J.S. Musculoskeletal pain in the Netherlands: Prevalences, consequences and risk groups, the DMC(3)-study. Pain. 2003;102:167–178. doi: 10.1016/s0304-3959(02)00372-x.
    1. Maher C., Underwood M., Buchbinder R. Non-specific low back pain. Lancet. 2017;389:736–747. doi: 10.1016/S0140-6736(16)30970-9.
    1. Hoy D., March L., Brooks P., Blyth F., Woolf A., Bain C., Williams G., Smith E., Vos T., Barendregt J., et al. The global burden of low back pain: Estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73:968–974. doi: 10.1136/annrheumdis-2013-204428.
    1. Treede R.D., Jensen T.S., Campbell J.N., Cruccu G., Dostrovsky J.O., Griffin J.W., Hansson P., Hughes R., Nurmikko T., Serra J. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology. 2008;70:1630–1635. doi: 10.1212/01.wnl.0000282763.29778.59.
    1. Hartvigsen J., Natvig B., Ferreira M. Is it all about a pain in the back? Best Pract. Res. Clin. Rheumatol. 2013;27:613–623. doi: 10.1016/j.berh.2013.09.008.
    1. Baron R., Binder A., Attal N., Casale R., Dickenson A.H., Treede R.D. Neuropathic low back pain in clinical practice. Eur. J. Pain. 2016;20:861–873. doi: 10.1002/ejp.838.
    1. Illés S.T. Low back pain: When and what to do. Orv. Hetil. 2015;156:1315–1320. doi: 10.1556/650.2015.30232.
    1. Manniche C., Hesselsøe G., Bentzen L., Christensen I., Lundberg E. Clinical trial of intensive muscle training for chronic low back pain. Lancet. 1988;2:1473–1476. doi: 10.1016/S0140-6736(88)90944-0.
    1. Searle A., Spink M., Ho A., Chuter V. Exercise interventions for the treatment of chronic low back pain: A systematic review and meta-analysis of randomised controlled trials. Clin. Rehabil. 2015;29:1155–1167. doi: 10.1177/0269215515570379.
    1. O’Sullivan P.B., Phyty G.D., Twomey L.T., Allison G.T. Evaluation of specific stabilizing exercise in the treatment of chronic low back pain with radiologic diagnosis of spondylolysis or spondylolisthesis. Spine. 1997;22:2959–2967. doi: 10.1097/00007632-199712150-00020.
    1. Cynn H.S., Oh J.S., Kwon O.Y., Yi C.H. Effects of lumbar stabilization using a pressure biofeedback unit on muscle activity and lateral pelvic tilt during hip abduction in sidelying. Arch Phys. Med. Rehabil. 2006;87:1454–1458. doi: 10.1016/j.apmr.2006.08.327.
    1. Oh J.S., Cynn H.S., Won J.H., Kwon O.Y., Yi C.H. Effects of performing an abdominal drawing-in maneuver during prone hip extension exercises on hip and back extensor muscle activity and amount of anterior pelvic tilt. J. Orthop Sports Phys. Ther. 2007;37:320–324. doi: 10.2519/jospt.2007.2435.
    1. Chance-Larsen K., Littlewood C., Garth A. Prone hip extension with lower abdominal hollowing improves the relative timing of gluteus maximus activation in relation to biceps femoris. Man Ther. 2010;15:61–65. doi: 10.1016/j.math.2009.07.001.
    1. Chevidikunnan M.F., Al Saif A., Gaowgzeh R.A., Mamdouh K.A. Effectiveness of core muscle strengthening for improving pain and dynamic balance among female patients with patellofemoral pain syndrome. J. Phys. Ther. Sci. 2016;28:1518–1523. doi: 10.1589/jpts.28.1518.
    1. Zazulak B.T., Hewett T.E., Reeves N.P., Goldberg B., Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: A prospective biomechanical-epidemiologic study. Am. J. Sports Med. 2007;35:1123–1130. doi: 10.1177/0363546507301585.
    1. Panjabi M.M. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J. Spinal Disord. 1992;5:383-383. doi: 10.1097/00002517-199212000-00001.
    1. Panjabi M.M. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J. Spinal Disord. 1992;5:390–397. doi: 10.1097/00002517-199212000-00002.
    1. Reeves N.P., Narendra K.S., Cholewicki J. Spine stability: The six blind men and the elephant. Clin. Biomech. 2007;22:266–274. doi: 10.1016/j.clinbiomech.2006.11.011.
    1. Thorstensson A., Carlson H., Zomlefer M.R., Nilsson J. Lumbar back muscle activity in relation to trunk movements during locomotion in man. Acta Physiol. Scand. 1982;116:13–20. doi: 10.1111/j.1748-1716.1982.tb10593.x.
    1. Comerford M.J., Mottram S.L. Movement and stability dysfunction--contemporary developments. Man Ther. 2001;6:15–26. doi: 10.1054/math.2000.0388.
    1. Comerford M.J., Mottram S.L. Functional stability re-training: Principles and strategies for managing mechanical dysfunction. Man Ther. 2001;6:3–14. doi: 10.1054/math.2000.0389.
    1. Hodges P.W., Richardson C.A. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine. 1996;21:2640–2650. doi: 10.1097/00007632-199611150-00014.
    1. Hodges P.W., Richardson C.A. Transversus abdominis and the superficial abdominal muscles are controlled independently in a postural task. Neurosci. Lett. 1999;265:91–94. doi: 10.1016/S0304-3940(99)00216-5.
    1. Hodges P.W., Richardson C.A. Contraction of the abdominal muscles associated with movement of the lower limb. Phys. Ther. 1997;77:132–142. doi: 10.1093/ptj/77.2.132.
    1. Kong M.H., Hymanson H.J., Song K.Y., Chin D.K., Cho Y.E., Yoon D.H., Wang J.C. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit. J. Neurosurg. Spine. 2009;10:357–365. doi: 10.3171/2008.12.SPINE08321.
    1. Stokes I.A., Gardner-Morse M.G., Henry S.M. Abdominal muscle activation increases lumbar spinal stability: Analysis of contributions of different muscle groups. Clin. Biomech. 2011;26:797–803. doi: 10.1016/j.clinbiomech.2011.04.006.
    1. Larivière C., Bilodeau M., Forget R., Vadeboncoeur R., Mecheri H. Poor back muscle endurance is related to pain catastrophizing in patients with chronic low back pain. Spine. 2010;35:E1178–E1186. doi: 10.1097/BRS.0b013e3181e53334.
    1. Brumagne S., Cordo P., Lysens R., Verschueren S., Swinnen S. The role of paraspinal muscle spindles in lumbosacral position sense in individuals with and without low back pain. Spine. 2000;25:989–994. doi: 10.1097/00007632-200004150-00015.
    1. França F.R., Burke T.N., Hanada E.S., Marques A.P. Segmental stabilization and muscular strengthening in chronic low back pain: A comparative study. Clinics. 2010;65:1013–1017. doi: 10.1590/S1807-59322010001000015.
    1. Marshall P.W., Murphy B.A. Core stability exercises on and off a swiss ball. Arch Phys. Med. Rehabil. 2005;86:242–249. doi: 10.1016/j.apmr.2004.05.004.
    1. Verhagen E., van der Beek A., Twisk J., Bouter L., Bahr R., van Mechelen W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: A prospective controlled trial. Am. J. Sports Med. 2004;32:1385–1393. doi: 10.1177/0363546503262177.
    1. Cosio-Lima L.M., Reynolds K.L., Winter C., Paolone V., Jones M.T. Effects of physioball and conventional floor exercises on early phase adaptations in back and abdominal core stability and balance in women. J. Strength Cond. Res. 2003;17:721–725. doi: 10.1519/1533-4287(2003);2.
    1. Desai I., Marshall P.W. Acute effect of labile surfaces during core stability exercises in people with and without low back pain. J. Electromyogr. Kinesiol. 2010;20:1155–1162. doi: 10.1016/j.jelekin.2010.08.003.
    1. Imai A., Kaneoka K., Okubo Y., Shiina I., Tatsumura M., Izumi S., Shiraki H. Trunk muscle activity during lumbar stabilization exercises on both a stable and unstable surface. J. Orthop. Sports Phys. Ther. 2010;40:369–375. doi: 10.2519/jospt.2010.3211.
    1. Tankisi H., Burke D., Cui L., de Carvalho M., Kuwabara S., Nandedkar S.D., Rutkove S., Stalberg E., van Putten M., Fuglsang-Frederiksen A. Standards of instrumentation of EMG. Clin. Neurophysiol. 2020;131:243–258. doi: 10.1016/j.clinph.2019.07.025.
    1. Lee K. The relationship of trunk muscle activation and core stability: A biomechanical analysis of pilates-based stabilization exercise. Int. J. Environ. Res. Public Health. 2021;18:12804. doi: 10.3390/ijerph182312804.
    1. Mukaka M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012;24:69–71.
    1. Dancey C.P., Reidy J. Statistics Without Maths for Psychology. Pearson; London, UK: 2017.
    1. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop. Scand. Suppl. 1989;230:1–54. doi: 10.3109/17453678909154177.
    1. Pulkovski N., Mannion A.F., Caporaso F., Toma V., Gubler D., Helbling D., Sprott H. Ultrasound assessment of transversus abdominis muscle contraction ratio during abdominal hollowing: A useful tool to distinguish between patients with chronic low back pain and healthy controls? Eur. Spine J. 2012;21:S750–S759. doi: 10.1007/s00586-011-1707-8.
    1. Atkins S.J., Bentley I., Brooks D., Burrows M.P., Hurst H.T., Sinclair J.K. Electromyographic response of global abdominal stabilizers in response to stable- and unstable-base isometric exercise. J. Strength Cond. Res. 2015;29:1609–1615. doi: 10.1519/JSC.0000000000000795.
    1. Panhan A.C., Gonçalves M., Eltz G.D., Villalba M.M., Cardozo A.C., Bérzin F. Core muscle activation during Pilates exercises on the Wunda chair. J. Bodyw. Mov. Ther. 2021;25:165–169. doi: 10.1016/j.jbmt.2020.10.025.
    1. Panhan A.C., Gonçalves M., Eltz G.D., Villalba M.M., Cardozo A.C., Bérzin F. Electromyographic evaluation of trunk core muscles during Pilates exercise on different supporting bases. J. Bodyw. Mov. Ther. 2019;23:855–859. doi: 10.1016/j.jbmt.2019.03.014.
    1. Barbosa A.C., Vieira E.R., Silva A.F., Coelho A.C., Martins F.M., Fonseca D.S., Barbosa M.A., Bordachar D. Pilates experience vs. muscle activation during abdominal drawing-in maneuver. J. Bodyw. Mov. Ther. 2018;22:467–470. doi: 10.1016/j.jbmt.2017.05.002.
    1. Gala-Alarcón P., Calvo-Lobo C., Serrano-Imedio A., Garrido-Marín A., Martín-Casas P., Plaza-Manzano G. Ultrasound evaluation of the abdominal wall and lumbar multifidus muscles in participants who practice pilates: A 1-year follow-up case series. J. Manip. Physiol. Ther. 2018;41:434–444. doi: 10.1016/j.jmpt.2017.10.007.
    1. Alves M.C., de Souza Neto R.J., Barbosa R.I., Marcolino A.M., Kuriki H.U. Effects of a Pilates protocol in individuals with non-specific low back pain compared with healthy individuals: Clinical and electromyographic analysis. Clin. Biomech. 2020;72:172–178. doi: 10.1016/j.clinbiomech.2019.12.009.

Source: PubMed

3
订阅