Chronic Migraine Pathophysiology and Treatment: A Review of Current Perspectives

Tiffani J Mungoven, Luke A Henderson, Noemi Meylakh, Tiffani J Mungoven, Luke A Henderson, Noemi Meylakh

Abstract

Chronic migraine is a disabling neurological disorder that imposes a considerable burden on individual and socioeconomic outcomes. Chronic migraine is defined as headaches occurring on at least 15 days per month with at least eight of these fulfilling the criteria for migraine. Chronic migraine typically evolves from episodic migraine as a result of increasing attack frequency and/or several other risk factors that have been implicated with migraine chronification. Despite this evolution, chronic migraine likely develops into its own distinct clinical entity, with unique features and pathophysiology separating it from episodic migraine. Furthermore, chronic migraine is characterized with higher disability and incidence of comorbidities in comparison to episodic migraine. While existing migraine studies primarily focus on episodic migraine, less is known about chronic migraine pathophysiology. Mounting evidence on aberrant alterations suggest that pronounced functional and structural brain changes, central sensitization and neuroinflammation may underlie chronic migraine mechanisms. Current treatment options for chronic migraine include risk factor modification, acute and prophylactic therapies, evidence-based treatments such as onabotulinumtoxinA, topiramate and newly approved calcitonin gene-related peptide or receptor targeted monoclonal antibodies. Unfortunately, treatments are still predominantly ineffective in aborting migraine attacks and decreasing intensity and frequency, and poor adherence and compliance with preventative medications remains a significant challenge. Novel emerging chronic migraine treatments such as neuromodulation offer promising therapeutic approaches that warrant further investigation. The aim of this narrative review is to provide an update of current knowledge and perspectives regarding chronic migraine background, pathophysiology, current and emerging treatment options with the intention of facilitating future research into this debilitating and largely indeterminant disorder.

Keywords: CGRP; functional connectivity; hypothalamus; periaqueductal gray; spinal trigeminal nucleus; trigeminal nerve.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Mungoven, Henderson and Meylakh.

Figures

Figure 1
Figure 1
Central vs. peripheral mechanism of migraine. The prevailing theories of migraine initiation include the existence of a peripheral trigger and/or central nervous system changes including oscillations in the sensitivity of descending pain modulatory pathways across the migraine cycle. Such changes in brainstem “tone” are proposed to either prevent or allow an external trigger or basal brainstem activity from evoking activity changes in ascending pathways which are ultimately responsible for the presence of a migraine event.
Figure 2
Figure 2
Peripheral changes associated with migraine. (A) CGRP released from peripheral terminals onto receptors act on smooth muscle cells leading to potent vasodilation of meningeal arteries, subsequent neurogenic inflammation, activation of meningeal nociceptors and peripheral sensitization; (B) Secreted CGRP from the trigeminal ganglion interacts with adjacent CGRP receptors on satellite glia resulting in prolonged sensitization; (C) Alterations in trigeminal nerve volume and free water diffusivity evident in episodic migraineurs compared to healthy controls may also be associated with chronic migraine. Modified from (68).
Figure 3
Figure 3
Brain regions involved in underlying mechanisms of migraine and reported alterations. Modulation of incoming noxious inputs: spinal trigeminal nucleus (SpV), periaqueductal gray matter (PAG), rostral ventromedial medulla (RVM) and dorsal pons. Higher order processing: hypothalamus, thalamus, anterior cingulate cortex (ACC), insula and primary somatosensory cortex (S1).

References

    1. Natoli JL, Manack A, Dean B, Butler Q, Turkel CC, Stovner L, et al. . Global prevalence of chronic migraine: a systematic review. Cephalalgia. (2010) 30:599–609. 10.1111/j.1468-2982.2009.01941.x
    1. Lipton RB, Silberstein SD. Episodic and chronic migraine headache: breaking down barriers to optimal treatment and prevention. Headache. (2015) 55(Suppl. 2):103–22. 10.1111/head.12505_2
    1. Messali A, Sanderson JC, Blumenfeld AM, Goadsby PJ, Buse DC, Varon SF, et al. . Direct and indirect costs of chronic and episodic migraine in the United States: a web-based survey. Headache. (2016) 56:306–22. 10.1111/head.12755
    1. Bloudek LM, Stokes M, Buse DC, Wilcox TK, Lipton RB, Goadsby PJ, et al. . Cost of healthcare for patients with migraine in five European countries: results from the International Burden of Migraine Study (IBMS). J Headache Pain. (2012) 13:361–78. 10.1007/s10194-012-0460-7
    1. Economics DA. Migraine in Australia Whitepaper. Canberra, ACT: Deloitte Access Economics Report; (2018). p. 1–55.
    1. Scher AI, Stewart WF, Ricci JA, Lipton RB. Factors associated with the onset and remission of chronic daily headache in a population-based study. Pain. (2003) 106:81–9. 10.1016/S0304-3959(03)00293-8
    1. Buse DC, Manack AN, Fanning KM, Serrano D, Reed ML, Turkel CC, et al. . Chronic migraine prevalence, disability, and sociodemographic factors: results from the American migraine prevalence and prevention study. Headache. (2012) 52:1456–70. 10.1111/j.1526-4610.2012.02223.x
    1. Katsarava Z, Buse DC, Manack AN, Lipton RB. Defining the differences between episodic migraine and chronic migraine. Curr Pain Headache Rep. (2012) 16:86–92. 10.1007/s11916-011-0233-z
    1. Adams AM, Serrano D, Buse DC, Reed ML, Marske V, Fanning KM, et al. . The impact of chronic migraine: the Chronic Migraine Epidemiology and Outcomes (CaMEO) Study methods and baseline results. Cephalalgia. (2015) 35:563–78. 10.1177/0333102414552532
    1. Aurora SK, Brin MF. Chronic migraine: an update on physiology, imaging, and the mechanism of action of two available pharmacologic therapies. Headache. (2017) 57:109–25. 10.1111/head.12999
    1. Bigal ME, Rapoport AM, Lipton RB, Tepper SJ, Sheftell FD. Assessment of migraine disability using the migraine disability assessment (MIDAS) questionnaire: a comparison of chronic migraine with episodic migraine. Headache. (2003) 43:336–42. 10.1046/j.1526-4610.2003.03068.x
    1. ICHD-3 . Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. (2018) 38:1–211. 10.1177/0333102417738202
    1. Karsan N, Goadsby PJ. Biological insights from the premonitory symptoms of migraine. Nat Rev Neurol. (2018) 14:699–710. 10.1038/s41582-018-0098-4
    1. Charles A. The evolution of a migraine attack - a review of recent evidence. Headache. (2013) 53:413–9. 10.1111/head.12026
    1. Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. (2013) 154(Suppl. 1):S44–53. 10.1016/j.pain.2013.07.021
    1. Giffin NJ, Lipton RB, Silberstein SD, Olesen J, Goadsby PJ. The migraine postdrome: an electronic diary study. Neurology. (2016) 87:309–13. 10.1212/WNL.0000000000002789
    1. Bigal ME, Lipton RB. Modifiable risk factors for migraine progression. Headache. (2006) 46:1334–43. 10.1111/j.1526-4610.2006.00577.x
    1. Bigal ME, Serrano D, Buse D, Scher A, Stewart WF, Lipton RB. Acute migraine medications and evolution from episodic to chronic migraine: a longitudinal population-based study. Headache. (2008) 48:1157–68. 10.1111/j.1526-4610.2008.01217.x
    1. Lipton RB. Tracing transformation: chronic migraine classification, progression, and epidemiology. Neurology. (2009) 72:S3–7. 10.1212/WNL.0b013e3181974b19
    1. Breslau N, Davis GC. Migraine, physical health and psychiatric disorder: a prospective epidemiologic study in young adults. J Psychiatr Res. (1993) 27:211–21. 10.1016/0022-3956(93)90009-Q
    1. Jette N, Patten S, Williams J, Becker W, Wiebe S. Comorbidity of migraine and psychiatric disorders–a national population-based study. Headache. (2008) 48:501–16. 10.1111/j.1526-4610.2007.00993.x
    1. Buse DC, Manack A, Serrano D, Turkel C, Lipton RB. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J Neurol Neurosurg Psychiatry. (2010) 81:428–32. 10.1136/jnnp.2009.192492
    1. Buse DC, Silberstein SD, Manack AN, Papapetropoulos S, Lipton RB. Psychiatric comorbidities of episodic and chronic migraine. J Neurol. (2013) 260:1960–9. 10.1007/s00415-012-6725-x
    1. Karsan N, Goadsby PJ. Migraine is more than just headache: is the link to chronic fatigue and mood disorders simply due to shared biological systems? Front Hum Neurosci. (2021) 15:1–12. 10.3389/fnhum.2021.646692
    1. Wolff HG. Headache and Other Head Pain. New York, NY: Oxford University Press; (1963).
    1. Goadsby PJ. Pathophysiology of migraine. Neurol Clin. (2009) 27:335–60. 10.1016/j.ncl.2008.11.012
    1. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. (2011) 12:570–84. 10.1038/nrn3057
    1. Giffin NJ, Ruggiero L, Lipton RB, Silberstein SD, Tvedskov JF, Olesen J, et al. . Premonitory symptoms in migraine: an electronic diary study. Neurology. (2003) 60:935–40. 10.1212/01.WNL.0000052998.58526.A9
    1. Lambert GA, Truong L, Zagami AS. Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system. Cephalalgia. (2011) 31:1439–51. 10.1177/0333102411422383
    1. Goadsby PJ, Akerman S. The trigeminovascular system does not require a peripheral sensory input to be activated–migraine is a central disorder. Focus on ‘Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system’. Cephalalgia. (2012) 32:3–5. 10.1177/0333102411430267
    1. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. (2015) 35:6619–29. 10.1523/JNEUROSCI.0373-15.2015
    1. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. (2017) 97:553–622. 10.1152/physrev.00034.2015
    1. Schulte LH, Mehnert J, May A. Longitudinal neuroimaging over 30 days: temporal characteristics of migraine. Ann Neurol. (2020) 87:646–51. 10.1002/ana.25697
    1. Puledda F, Messina R, Goadsby PJ. An update on migraine: current understanding and future directions. J Neurol. (2017) 264:2031–9. 10.1007/s00415-017-8434-y
    1. Diener H-C, Holle D, Solbach K, Gaul C. Medication-overuse headache: risk factors, pathophysiology and management. Nat Rev Neurol. (2016) 12:575–83. 10.1038/nrneurol.2016.124
    1. Limmroth V, Katsarava Z, Fritsche G, Przywara S, Diener H-C. Features of medication overuse headache following overuse of different acute headache drugs. Neurology. (2002) 59:1011–4. 10.1212/WNL.59.7.1011
    1. Cevoli S, Sancisi E, Grimaldi D, Pierangeli G, Zanigni S, Nicodemo M, et al. . Family history for chronic headache and drug overuse as a risk factor for headache chronification. Headache. (2009) 49:412–8. 10.1111/j.1526-4610.2008.01257.x
    1. Bahra A, Walsh M, Menon S, Goadsby PJ. Does chronic daily headache arise de novo in association with regular use of analgesics? Headache. (2003) 43:179–90. 10.1046/j.1526-4610.2003.03041.x
    1. Katsarava Z, Muessig M, Dzagnidze A, Fritsche G, Diener HC, Limmroth V. Medication overuse headache: rates and predictors for relapse in a 4-year prospective study. Cephalalgia. (2005) 25:12–5. 10.1111/j.1468-2982.2004.00789.x
    1. Saengjaroentham C, Strother LC, Dripps I, Sultan Jabir MR, Pradhan A, Goadsby PJ, et al. . Differential medication overuse risk of novel anti-migraine therapeutics. Brain. (2020) 143:2681–8. 10.1093/brain/awaa211
    1. Chanraud S, Di Scala G, Dilharreguy B, Schoenen J, Allard M, Radat F. Brain functional connectivity and morphology changes in medication-overuse headache: clue for dependence-related processes? Cephalalgia. (2014) 34:605–15. 10.1177/0333102413519514
    1. Lai TH, Chou KH, Fuh JL, Lee PL, Kung YC, Lin CP, et al. . Gray matter changes related to medication overuse in patients with chronic migraine. Cephalalgia. (2016) 36:1324–33. 10.1177/0333102416630593
    1. Torta DM, Costa T, Luda E, Barisone MG, Palmisano P, Duca S, et al. . Nucleus accumbens functional connectivity discriminates medication-overuse headache. NeuroImage Clin. (2016) 11:686–93. 10.1016/j.nicl.2016.05.007
    1. Riederer F, Marti M, Luechinger R, Lanzenberger R, Von Meyenburg J, Gantenbein AR, et al. . Grey matter changes associated with medication-overuse headache: correlations with disease related disability and anxiety. World J Biol Psychiatry. (2012) 13:517–25. 10.3109/15622975.2012.665175
    1. Riederer F, Gantenbein AR, Marti M, Luechinger R, Kollias S, Sándor PS. Decrease of gray matter volume in the midbrain is associated with treatment response in medication-overuse headache: possible influence of orbitofrontal cortex. J Neurosci. (2013) 33:15343–9. 10.1523/JNEUROSCI.3804-12.2013
    1. Kristoffersen ES, Lundqvist C. Medication-overuse headache: a review. J Pain Res. (2014) 7:367–78. 10.2147/JPR.S46071
    1. Del Fiacco M, Quartu M, Boi M, Serra MP, Melis T, Boccaletti R, et al. . TRPV1, CGRP and SP in scalp arteries of patients suffering from chronic migraine. J Neurol Neurosurg Psychiatry. (2015) 86:393–7. 10.1136/jnnp-2014-308813
    1. Su M, Yu S. Chronic migraine: a process of dysmodulation and sensitization. Mol Pain. (2018) 14:1–10. 10.1177/1744806918767697
    1. Agostoni EC, Barbanti P, Calabresi P, Colombo B, Cortelli P, Frediani F, et al. . Current and emerging evidence-based treatment options in chronic migraine: a narrative review. J Headache Pain. (2019) 20:1–9. 10.1186/s10194-019-1038-4
    1. Cernuda-Morollón E, Martínez-Camblor P, Ramón C, Larrosa D, Serrano-Pertierra E, Pascual J. CGRP and VIP levels as predictors of efficacy of Onabotulinumtoxin type A in chronic migraine. Headache. (2014) 54:987–95. 10.1111/head.12372
    1. Shimizu T, Shibata M, Toriumi H, Iwashita T, Funakubo M, Sato H, et al. . Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A. Neurobiol Dis. (2012) 48:367–78. 10.1016/j.nbd.2012.07.010
    1. Cernuda-Morollón E, Larrosa D, Ramón C, Vega J, Martínez-Camblor P, Pascual J. Interictal increase of CGRP levels in peripheral blood as a biomarker for chronic migraine. Neurology. (2013) 81:1191–6. 10.1212/WNL.0b013e3182a6cb72
    1. Cernuda-Morollón E, Martínez-Camblor P, Alvarez R, Larrosa D, Ramón C, Pascual J. Increased VIP levels in peripheral blood outside migraine attacks as a potential biomarker of cranial parasympathetic activation in chronic migraine. Cephalalgia. (2015) 35:310–6. 10.1177/0333102414535111
    1. Filippi M, Messina R. The chronic migraine brain: what have we learned from neuroimaging? Front Neurol. (2019) 10:1–10. 10.3389/fneur.2019.01356
    1. Pérez-Pereda S, Toriello-Suárez M, Ocejo-Vinyals G, Guiral-Foz S, Castillo-Obeso J, Montes-Gómez S, et al. . Serum CGRP, VIP, and PACAP usefulness in migraine: a case-control study in chronic migraine patients in real clinical practice. Mol Biol Rep. (2020) 47:7125–38. 10.1007/s11033-020-05781-0
    1. Edvinsson L, Juul R, Jansen I. Perivascular neuropeptides (NPY, VIP. CGRP and SP) in human brain vessels after subarachnoid haemorrhage. Acta Neurol Scand. (1994) 90:324–30. 10.1111/j.1600-0404.1994.tb02732.x
    1. Hirabayashi T, Nakamachi T, Shioda S. Discovery of PACAP and its receptors in the brain. J Headache Pain. (2018) 19:1–8. 10.1186/s10194-018-0855-1
    1. Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR. Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol. (1993) 136:159–66. 10.1677/joe.0.1360159
    1. Amin FM, Hougaard A, Schytz HW, Asghar MS, Lundholm E, Parvaiz AI, et al. . Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. (2014) 137:779–94. 10.1093/brain/awt369
    1. Rahmann A, Wienecke T, Hansen JM, Fahrenkrug J, Olesen J, Ashina M. Vasoactive intestinal peptide causes marked cephalic vasodilation, but does not induce migraine. Cephalalgia. (2008) 28:226–36. 10.1111/j.1468-2982.2007.01497.x
    1. Hansen JM, Sitarz J, Birk S, Rahmann AM, Oturai PS, Fahrenkrug J, et al. . Vasoactive intestinal polypeptide evokes only a minimal headache in healthy volunteers. Cephalalgia. (2006) 26:992–1003. 10.1111/j.1468-2982.2006.01149.x
    1. Markovics A, Kormos V, Gaszner B, Lashgarara A, Szoke E, Sandor K, et al. . Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol Dis. (2012) 45:633–44. 10.1016/j.nbd.2011.10.010
    1. Ploug KB, Baun M, Hay-Schmidt A, Olesen J, Jansen-Olesen I. Presence and vascular pharmacology of KATP channel subtypes in rat central and peripheral tissues. Eur J Pharmacol. (2010) 637:109–17. 10.1016/j.ejphar.2010.03.027
    1. Ploug KB, Amrutkar DV, Baun M, Ramachandran R, Iversen A, Lund TM, et al. . K(ATP) channel openers in the trigeminovascular system. Cephalalgia. (2012) 32:55–65. 10.1177/0333102411430266
    1. Al-Karagholi MA, Ghanizada H, Hansen JM, Skovgaard LT, Olesen J, Larsson HBW, et al. . Levcromakalim, an adenosine triphosphate-sensitive potassium channel opener, dilates extracerebral but not cerebral arteries. Headache. (2019) 59:1468–80. 10.1111/head.13634
    1. Al-Karagholi MA, Ghanizada H, Nielsen CW, Hougaard A, Ashina M. Opening of ATP sensitive potassium channels causes migraine attacks with aura. Brain. (2021). 10.1093/brain/awab136. [Epub ahead of print].
    1. Al-Karagholi MA, Hansen JM, Guo S, Olesen J, Ashina M. Opening of ATP-sensitive potassium channels causes migraine attacks: a new target for the treatment of migraine. Brain. (2019) 142:2644–54. 10.1093/brain/awz199
    1. Mungoven TJ, Meylakh N, Marciszewski KK, Macefield VG, Macey PM, Henderson LA. Microstructural changes in the trigeminal nerve of patients with episodic migraine assessed using magnetic resonance imaging. J Headache Pain. (2020) 21:1–11. 10.1186/s10194-020-01126-1
    1. Wilcox SL, Gustin SM, Eykman EN, Fowler G, Peck CC, Murray GM, et al. . Trigeminal nerve anatomy in neuropathic and non-neuropathic orofacial pain patients. J Pain. (2013) 14:865–72. 10.1016/j.jpain.2013.02.014
    1. Pettengill C. A comparison of headache symptoms between two groups: a TMD group and a general dental practice group. Cranio. (1999) 17:64–9. 10.1080/08869634.1999.11746079
    1. Goncalves DA, Camparis CM, Speciali JG, Castanharo SM, Ujikawa LT, Lipton RB, et al. . Treatment of comorbid migraine and temporomandibular disorders: a factorial, double-blind, randomized, placebo-controlled study. J Orofac Pain. (2013) 27:325–35. 10.11607/jop.1096
    1. Da Silva Junior AA, Krymchantowski AV, Gomes JB, Leite FM, Alves BM, Lara RP, et al. . Temporomandibular disorders and chronic daily headaches in the community and in specialty care. Headache. (2013) 53:1350–5. 10.1111/head.12130
    1. Fernandes G, Franco AL, Gonçalves DA, Speciali JG, Bigal ME, Camparis CM. Temporomandibular disorders, sleep bruxism, and primary headaches are mutually associated. J Oral Fac Pain Headache. (2013) 27:14–20. 10.11607/jop.921
    1. Shu H, Liu S, Tang Y, Schmidt BL, Dolan JC, Bellinger LL, et al. . A pre-existing myogenic temporomandibular disorder increases trigeminal calcitonin gene-related peptide and enhances nitroglycerin-induced hypersensitivity in mice. Int J Mol Sci. (2020) 21:1–16. 10.3390/ijms21114049
    1. Alshelh Z, Di Pietro F, Youssef AM, Reeves JM, Macey PM, Vickers ER, et al. . Chronic neuropathic pain: it's about the rhythm. J Neurosci. (2016) 36:1008–18. 10.1523/JNEUROSCI.2768-15.2016
    1. Meylakh N, Marciszewski KK, Di Pietro F, Macefield VG, Macey PM, Henderson LA. Deep in the brain: changes in subcortical function immediately preceding a migraine attack. Hum Brain Mapp. (2018) 39:2651–63. 10.1002/hbm.24030
    1. Bellamy J, Bowen EJ, Russo AF, Durham PL. Nitric oxide regulation of calcitonin gene-related peptide gene expression in rat trigeminal ganglia neurons. Eur J Neurosci. (2006) 23:2057–66. 10.1111/j.1460-9568.2006.04742.x
    1. Messlinger K, Lennerz JK, Eberhardt M, Fischer MJM. CGRP and NO in the trigeminal system: mechanisms and role in headache generation. Headache. (2012) 52:1411–27. 10.1111/j.1526-4610.2012.02212.x
    1. Edvinsson L. Role of CGRP in migraine. Handbook Exp Pharmacol. (2019) 255:121–30. 10.1007/164_2018_201
    1. Edvinsson L, Ekman R, Jansen I, Mcculloch J, Uddman R. Calcitonin gene-related peptide and cerebral blood vessels: distribution and vasomotor effects. J Cerebr Blood Flow Metab. (1987) 7:720–8. 10.1038/jcbfm.1987.126
    1. Chiu IM, Von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. (2012) 15:1063–7. 10.1038/nn.3144
    1. Edvinsson JCA, Warfvinge K, Krause DN, Blixt FW, Sheykhzade M, Edvinsson L, et al. . C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system. J Headache Pain. (2019) 20:1–10. 10.1186/s10194-019-1055-3
    1. Sun RQ, Lawand NB, Lin Q, Willis WD. Role of calcitonin gene-related peptide in the sensitization of dorsal horn neurons to mechanical stimulation after intradermal injection of capsaicin. J Neurophysiol. (2004) 92:320–6. 10.1152/jn.00086.2004
    1. Messlinger K, Fischer MJ, Lennerz JK. Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med. (2011) 60:82–9. 10.2302/kjm.60.82
    1. Yasphal K, Wright DM, Henry JL. Substance P reduces tail-flick latency: implications for chronic pain syndromes. Pain. (1982) 14:155–67. 10.1016/0304-3959(82)90096-3
    1. Gibbins IL, Wattchow D, Coventry B. Two immunohistochemically identified populations of calcitonin gene-related peptide (CGRP)-immunoreactive axons in human skin. Brain Res. (1987) 414:143–8. 10.1016/0006-8993(87)91335-7
    1. Bigal ME, Ashina S, Burstein R, Reed ML, Buse D, Serrano D, et al. . Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology. (2008) 70:1525–33. 10.1212/01.wnl.0000310645.31020.b1
    1. Aurora SK. Spectrum of illness: understanding biological patterns and relationships in chronic migraine. Neurology. (2009) 72:S8–13. 10.1212/WNL.0b013e31819749fd
    1. Mathew NT. Pathophysiology of chronic migraine and mode of action of preventive medications. Headache. (2011) 51:84–92. 10.1111/j.1526-4610.2011.01955.x
    1. May A, Schulte LH. Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol. (2016) 12:455–64. 10.1038/nrneurol.2016.93
    1. Schwedt TJ, Dodick DW. Advanced neuroimaging of migraine. Lancet Neurol. (2009) 8:560–8. 10.1016/S1474-4422(09)70107-3
    1. Andreou AP, Edvinsson L. Mechanisms of migraine as a chronic evolutive condition. J Headache Pain. (2019) 20:1–17. 10.1186/s10194-019-1066-0
    1. Neeb L, Bastian K, Villringer K, Israel H, Reuter U, Fiebach JB. Structural gray matter alterations in chronic migraine: implications for a progressive disease? Headache. (2017) 57:400–16. 10.1111/head.13012
    1. Chou T-M, Chen S-P. Animal models of chronic migraine. Curr Pain Headache Rep. (2018) 22:1–8. 10.1007/s11916-018-0693-5
    1. Davis KD, Dostrovsky JO. Responses of feline trigeminal spinal tract nucleus neurons to stimulation of the middle meningeal artery and sagittal sinus. J Neurophysiol. (1988) 59:648–66. 10.1152/jn.1988.59.2.648
    1. Strassman AM, Mineta Y, Vos BP. Distribution of fos-like immunoreactivity in the medullary and upper cervical dorsal horn produced by stimulation of dural blood vessels in the rat. J Neurosci. (1994) 14:3725–35. 10.1523/JNEUROSCI.14-06-03725.1994
    1. Keay KA, Bandler R. Distinct central representations of inescapable and escapable pain: observations and speculation. Exp Physiol. (2002) 87:275–9. 10.1113/eph8702355
    1. Fields HL, Basbaum AI. Brainstem control of spinal pain-transmission neurons. Ann Rev Physiol. (1978) 40:217–48. 10.1146/annurev.ph.40.030178.001245
    1. Berk ML, Finkelstein JA. Efferent connections of the lateral hypothalamic area of the rat: an autoradiographic investigation. Brain Res Bull. (1982) 8:511–26. 10.1016/0361-9230(82)90009-0
    1. Holstege G. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol. (1987) 260:98–126. 10.1002/cne.902600109
    1. Fields HL, Malick A, Burstein R. Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J Neurophysiol. (1995) 74:1742–59. 10.1152/jn.1995.74.4.1742
    1. Heinricher MM, Fields HL. Central nervous system mechanisms of pain modulation. Wall Melzack's Textbook Pain. (2013) 6:129–42.
    1. Knight YE, Goadsby PJ. The periaqueductal grey matter modulates trigeminovascular input: a role in migraine? Neuroscience. (2001) 106:793–800. 10.1016/S0306-4522(01)00303-7
    1. Qin Z, He XW, Zhang J, Xu S, Li GF, Su J, et al. . Structural changes of cerebellum and brainstem in migraine without aura. J Headache Pain. (2019) 20:1–9. 10.1186/s10194-019-1045-5
    1. Raskin NH, Hosobuchi Y, Lamb S. Headache may arise from perturbation of brain. Headache. (1987) 27:416–20. 10.1111/j.1526-4610.1987.hed2708416.x
    1. Weiller C, May A, Limmroth V, Jüptner M, Kaube H, Schayck RV, et al. . Brain stem activation in spontaneous human migraine attacks. Nat Med. (1995) 1:658–60. 10.1038/nm0795-658
    1. Aurora SK, Barrodale PM, Tipton RL, Khodavirdi A. Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache. (2007) 47:996–1003. 10.1111/j.1526-4610.2007.00853.x
    1. Marciszewski KK, Meylakh N, Di Pietro F, Mills EP, Macefield VG, Macey PM, et al. . Changes in brainstem pain modulation circuitry function over the migraine cycle. J Neurosci. (2018) 38:10479–88. 10.1523/JNEUROSCI.1088-18.2018
    1. Schwedt TJ, Schlaggar BL, Mar S, Nolan T, Coalson RS, Nardos B, et al. . Atypical resting-state functional connectivity of affective pain regions in chronic migraine. Headache. (2013) 53:737–51. 10.1111/head.12081
    1. Lee MJ, Park BY, Cho S, Kim ST, Park H, Chung CS. Increased connectivity of pain matrix in chronic migraine: a resting-state functional MRI study. J Headache Pain. (2019) 20:1–10. 10.1186/s10194-019-0986-z
    1. Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann Neurol. (2011) 70:838–45. 10.1002/ana.22537
    1. Lerebours F, Boulanouar K, Barège M, Denuelle M, Bonneville F, Payoux P, et al. . Functional connectivity of hypothalamus in chronic migraine with medication overuse. Cephalalgia. (2019) 39:892–9. 10.1177/0333102419833087
    1. Schulte LH, Allers A, May A. Hypothalamus as a mediator of chronic migraine: evidence from high-resolution fMRI. Neurology. (2017) 88:2011–6. 10.1212/WNL.0000000000003963
    1. Schulte LH, Allers A, May A. Visual stimulation leads to activation of the nociceptive trigeminal nucleus in chronic migraine. Neurology. (2018) 90:e1973–8. 10.1212/WNL.0000000000005622
    1. Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. (2014) 137:232–41. 10.1093/brain/awt320
    1. Meylakh N, Marciszewski KK, Di Pietro F, Macefield VG, Macey PM, Henderson LA. Altered regional cerebral blood flow and hypothalamic connectivity immediately prior to a migraine headache. Cephalalgia. (2020) 40:448–60. 10.1177/0333102420911623
    1. Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R. Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol. (2001) 432:307–28. 10.1002/cne.1105
    1. Behbehani MM, Park MR, Clement ME. Interactions between the lateral hypothalamus and the periaqueductal gray. J Neurosci. (1988) 8:2780–7. 10.1523/JNEUROSCI.08-08-02780.1988
    1. Schulte LH, Menz MM, Haaker J, May A. The migraineur's brain networks: continuous resting state fMRI over 30 days. Cephalalgia. (2020) 40:1614–21. 10.1177/0333102420951465
    1. Parri HR, Crunelli V. Pacemaker calcium oscillations in thalamic astrocytes in situ. Neuroreport. (2001) 12:3897–900. 10.1097/00001756-200112210-00008
    1. Halassa MM, Fellin T, Haydon PG. The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med. (2007) 13:54–63. 10.1016/j.molmed.2006.12.005
    1. Peres MF, Sanchez Del Rio M, Seabra ML, Tufik S, Abucham J, Cipolla-Neto J, et al. . Hypothalamic involvement in chronic migraine. J Neurol Neurosurg Psychiatry. (2001) 71:747–51. 10.1136/jnnp.71.6.747
    1. Coppola G, Schoenen J. Cortical excitability in chronic migraine. Curr Pain Headache Rep. (2012) 16:93–100. 10.1007/s11916-011-0231-1
    1. Androulakis XM, Krebs K, Peterlin BL, Zhang T, Maleki N, Sen S, et al. . Modulation of intrinsic resting-state fMRI networks in women with chronic migraine. Neurology. (2017) 89:163–9. 10.1212/WNL.0000000000004089
    1. Coppola G, Di Renzo A, Petolicchio B, Tinelli E, Di Lorenzo C, Parisi V, et al. . Aberrant interactions of cortical networks in chronic migraine: a resting-state fMRI study. Neurology. (2019) 92:e2550–8. 10.1212/WNL.0000000000007577
    1. Chen WT, Wang SJ, Fuh JL, Lin CP, Ko YC, Lin YY. Persistent ictal-like visual cortical excitability in chronic migraine. Pain. (2011) 152:254–8. 10.1016/j.pain.2010.08.047
    1. Aurora SK, Barrodale P, Chronicle EP, Mulleners WM. Cortical inhibition is reduced in chronic and episodic migraine and demonstrates a spectrum of illness. Headache. (2005) 45:546–52. 10.1111/j.1526-4610.2005.05108.x
    1. Bilgiç B, Kocaman G, Arslan AB, Noyan H, Sherifov R, Alkan A, et al. . Volumetric differences suggest involvement of cerebellum and brainstem in chronic migraine. Cephalalgia. (2016) 36:301–8. 10.1177/0333102415588328
    1. Yu Y, Zhao H, Dai L, Su Y, Wang X, Chen C, et al. . Headache frequency associates with brain microstructure changes in patients with migraine without aura. Brain Imag Behav. (2021) 15:60–7. 10.1007/s11682-019-00232-2
    1. Chen Z, Chen X, Liu M, Ma L, Yu S. Volume of hypothalamus as a diagnostic biomarker of chronic migraine. Front Neurol. (2019) 10:1–11. 10.3389/fneur.2019.00606
    1. Domínguez C, López A, Ramos-Cabrer P, Vieites-Prado A, Pérez-Mato M, Villalba C, et al. . Iron deposition in periaqueductal gray matter as a potential biomarker for chronic migraine. Neurology. (2019) 92:e1076–85. 10.1212/WNL.0000000000007047
    1. Torres-Ferrús M, Ursitti F, Alpuente A, Brunello F, Chiappino D, De Vries T, et al. . From transformation to chronification of migraine: pathophysiological and clinical aspects. J Headache Pain. (2020) 21:1–12. 10.1186/s10194-020-01111-8
    1. Planchuelo-Gómez Á, García-Azorín D, Guerrero ÁL, Aja-Fernández S, Rodríguez M, De Luis-García R. White matter changes in chronic and episodic migraine: a diffusion tensor imaging study. J Headache Pain. (2020) 21:1–15. 10.1186/s10194-019-1071-3
    1. Marciszewski KK, Meylakh N, Di Pietro F, Macefield VG, Macey PM, Henderson LA. Fluctuating regional brainstem diffusion imaging measures of microstructure across the migraine cycle. eNeuro. (2019) 6:1–11. 10.1523/ENEURO.0005-19.2019
    1. Storer RJ, Supronsinchai W, Srikiatkhachorn A. Animal models of chronic migraine. Curr Pain Headache Rep. (2015) 19:1–9. 10.1007/s11916-014-0467-7
    1. Afridi SK, Matharu MS, Lee L, Kaube H, Friston KJ, Frackowiak RSJ, et al. . A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. (2005) 128:932–9. 10.1093/brain/awh416
    1. Olesen J. The role of nitric oxide (NO) in migraine, tension-type headache and cluster headache. Pharmacol Ther. (2008) 120:157–71. 10.1016/j.pharmthera.2008.08.003
    1. Pradhan AA, Smith ML, Mcguire B, Tarash I, Evans CJ, Charles A. Characterization of a novel model of chronic migraine. Pain. (2014) 155:269–74. 10.1016/j.pain.2013.10.004
    1. Moye LS, Pradhan AA. Animal model of chronic migraine-associated pain. Curr Protoc Neurosci. (2017) 80:1–14. 10.1002/cpns.33
    1. Tardiolo G, Bramanti P, Mazzon E. Migraine: experimental models and novel therapeutic approaches. Int J Mol Sci. (2019) 20:1–20. 10.3390/ijms20122932
    1. Melo-Carrillo A, Lopez-Avila A. A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia. (2013) 33:1096–105. 10.1177/0333102413486320
    1. De Felice M, Ossipov MH, Wang R, Lai J, Chichorro J, Meng I, et al. . Triptan-induced latent sensitization: a possible basis for medication overuse headache. Ann Neurol. (2010) 67:325–37. 10.1002/ana.21897
    1. Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain. (2019) 20:1–15. 10.1186/s10194-019-1043-7
    1. Bigal ME, Lipton RB, Holland PR, Goadsby PJ. Obesity, migraine, and chronic migraine: possible mechanisms of interaction. Neurology. (2007) 68:1851–61. 10.1212/01.wnl.0000262045.11646.b1
    1. Young NP, Philpot LM, Vierkant RA, Rosedahl JK, Upadhyaya SG, Harris A, et al. . Episodic and chronic migraine in primary care. Headache. (2019) 59:1042–51. 10.1111/head.13543
    1. Diener HC, Dodick DW, Goadsby PJ, Lipton RB, Olesen J, Silberstein SD. Chronic migraine–classification, characteristics and treatment. Nat Rev Neurol. (2012) 8:162–71. 10.1038/nrneurol.2012.13
    1. Cho S-J, Song T-J, Chu MK. Treatment update of chronic migraine. Curr Pain Headache Rep. (2017) 21:1–10. 10.1007/s11916-017-0628-6
    1. Lipton RB, Chu MK. Conceptualizing the relationship between chronic migraine and episodic migraine. Exp Rev Neurother. (2009) 9:1451–4. 10.1586/ern.09.93
    1. Buse DC, Serrano D, Reed ML, Kori SH, Cunanan CM, Adams AM, et al. . Adding additional acute medications to a triptan regimen for migraine and observed changes in headache-related disability: results from the American Migraine Prevalence and Prevention (AMPP) Study. Headache. (2015) 55:825–39. 10.1111/head.12556
    1. Brandes JL, Kudrow D, Stark SR, O'carroll CP, Adelman JU, O'donnell FJ, et al. . Sumatriptan-naproxen for acute treatment of migraine: a randomized trial. J Am Med Assoc. (2007) 297:1443–54. 10.1001/jama.297.13.1443
    1. Sun-Edelstein C, Rapoport AM. Update on the pharmacological treatment of chronic migraine. Curr Pain Headache Rep. (2016) 20:1–8. 10.1007/s11916-015-0533-9
    1. Mathew NT, Jaffri SFA. A double-blind comparison of onabotulinumtoxina (BOTOX) and topiramate (TOPAMAX) for the prophylactic treatment of chronic migraine: a pilot study. Headache. (2009) 49:1466–78. 10.1111/j.1526-4610.2009.01566.x
    1. Dodick DW, Turkel CC, Degryse RE, Aurora SK, Silberstein SD, Lipton RB, et al. . Onabotulinumtoxin A for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT Clinical Program. Headache. (2010) 50:921–36. 10.1111/j.1526-4610.2010.01678.x
    1. Raffaelli B, Reuter U. The biology of monoclonal antibodies: focus on calcitonin gene-related peptide for prophylactic migraine therapy. Neurotherapeutics. (2018) 15:324–35. 10.1007/s13311-018-0622-7
    1. Lipton RB, Goadsby PJ, Smith J, Schaeffler BA, Biondi DM, Hirman J, et al. . Efficacy and safety of eptinezumab in patients with chronic migraine: PROMISE-2. Neurology. (2020) 94:e1365–77. 10.1212/WNL.0000000000009169
    1. Aurora SK, Dodick DW, Turkel CC, Degryse RE, Silberstein SD, Lipton RB, et al. . OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia. (2010) 30:793–803. 10.1177/0333102410364676
    1. Diener HC, Dodick DW, Aurora SK, Turkel CC, DeGryse RE, Lipton RB, et al. . OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia. (2010) 30:804–14. 10.1177/0333102410364677
    1. Silberstein SD, Blumenfeld AM, Cady RK, Turner IM, Lipton RB, Diener HC, et al. . OnabotulinumtoxinA for treatment of chronic migraine: PREEMPT 24-week pooled subgroup analysis of patients who had acute headache medication overuse at baseline. J Neurol Sci. (2013) 331:48–56. 10.1016/j.jns.2013.05.003
    1. Aoki KR. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type A. Neurotoxicology. (2005) 26:785–93. 10.1016/j.neuro.2005.01.017
    1. Burstein R, Zhang X, Levy D, Aoki KR, Brin MF. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and other pains. Cephalalgia. (2014) 34:853–69. 10.1177/0333102414527648
    1. Diener HC, Bussone G, Oene JV, Lahaye M, Schwalen S, Goadsby PJ. Topiramate reduces headache days in chronic migraine: a randomized, double-blind, placebo-controlled study. Cephalalgia. (2007) 27:814–23. 10.1111/j.1468-2982.2007.01326.x
    1. Silberstein SD, Lipton RB, Dodick DW, Freitag FG, Ramadan N, Mathew N, et al. . Efficacy and safety of topiramate for the treatment of chronic migraine: a randomized, double-blind, placebo-controlled trial. Headache. (2007) 47:170–80. 10.1111/j.1526-4610.2006.00684.x
    1. Akerman S, Goadsby PJ. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport. (2005) 16:1383–7. 10.1097/01.wnr.0000175250.33159.a9
    1. Silberstein SD, Dodick DW, Bigal ME, Yeung PP, Goadsby PJ, Blankenbiller T, et al. . Fremanezumab for the preventive treatment of chronic migraine. New Engl J Med. (2017) 377:2113–22. 10.1056/NEJMoa1709038
    1. Detke HC, Goadsby PJ, Wang S, Friedman DI, Selzler KJ, Aurora SK. Galcanezumab in chronic migraine: the randomized, double-blind, placebo-controlled REGAIN study. Neurology. (2018) 91:e2211–21. 10.1212/WNL.0000000000006640
    1. Dodick DW, Lipton RB, Silberstein S, Goadsby PJ, Biondi D, Hirman J, et al. . Eptinezumab for prevention of chronic migraine: a randomized phase 2b clinical trial. Cephalalgia. (2019) 39:1075–85. 10.1177/0333102419858355
    1. Tepper S, Ashina M, Reuter U, Brandes JL, DoleŽil D, Silberstein S, et al. . Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. (2017) 16:425–34. 10.1016/S1474-4422(17)30083-2
    1. Bigal ME, Walter S, Rapoport AM. Therapeutic antibodies against CGRP or its receptor. Br J Clin Pharmacol. (2015) 79:886–95. 10.1111/bcp.12591
    1. Detke H, Pozo-Rosich P, Reuter U, Dolezil D, Li LQ, Wang S, et al. . One-year treatment with galcanezumab in patients with chronic migraine: results from the open-label phase of the REGAIN Study (P2.10-010). Neurology. (2019) 92:P2.10-010.
    1. Goadsby PJ, Monteith T, Yeung PP, Cohen J, Yang R. Long-term efficacy and safety of fremanezumab in migraine: results of a 1-year study (S38. 004). Neurology. (2019) 92:S38.004.
    1. Israel H, Neeb L, Reuter U. CGRP monoclonal antibodies for the preventative treatment of migraine. Curr Pain Headache Rep. (2018) 22:1–6. 10.1007/s11916-018-0686-4
    1. Villar-Martínez MD, Moreno-Ajona D, Goadsby PJ. Eptinezumab for the preventive treatment of migraine. Pain Manag. (2021) 11:113–21. 10.2217/pmt-2020-0075
    1. Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol. (2015) 80:193–9. 10.1111/bcp.12618
    1. Silberstein S, Diamond M, Hindiyeh NA, Biondi DM, Cady R, Hirman J, et al. . Eptinezumab for the prevention of chronic migraine: efficacy and safety through 24 weeks of treatment in the phase 3 PROMISE-2 (Prevention of migraine via intravenous ALD403 safety and efficacy-2) study. J Headache Pain. (2020) 21:1–12. 10.1186/s10194-020-01186-3
    1. Cohen F, Armand C, Lipton RB, Vollbracht S. Efficacy and tolerability of calcitonin gene-related peptide targeted monoclonal antibody medications as add-on therapy to OnabotulinumtoxinA in patients with chronic migraine. Pain Med. (2021). 10.1093/pm/pnab093. [Epub ahead of print].
    1. Saper JR, Lake AE, Cantrell DT, Winner PK, White JR. Chronic daily headache prophylaxis with tizanidine: a double-blind, placebo-controlled, multicenter outcome study. Headache. (2002) 42:470–82. 10.1046/j.1526-4610.2002.02122.x
    1. Spira PJ, Beran RG. Gabapentin in the prophylaxis of chronic daily headache: a randomized, placebo-controlled study. Neurology. (2003) 61:1753–9. 10.1212/01.WNL.0000100121.58594.11
    1. Bartolini M, Silvestrini M, Taffi R, Lanciotti C, Luconi R, Capecci M, et al. . Efficacy of topiramate and valproate in chronic migraine. Clin Neuropharmacol. (2005) 28:277–9. 10.1097/01.wnf.0000192136.46145.44
    1. Pascual-Gomez J, Alana-Garcia M, Oterino A, Leira R, Lainez-Andres J. Preventive treatment of chronic migraine with zonisamide: a study in patients who are refractory or intolerant to topiramate. Rev Neurol. (2008) 47:449–51. 10.33588/rn.4709.2008503
    1. Calandre EP, Garcia-Leiva JM, Rico-Villademoros F, Vilchez JS, Rodriguez-Lopez CM. Pregabalin in the treatment of chronic migraine: an open-label study. Clin Neuropharmacol. (2010) 33:35–9. 10.1097/WNF.0b013e3181bf1dbe
    1. Couch JR. Amitriptyline in the prophylactic treatment of migraine and chronic daily headache. Headache. (2011) 51:33–51. 10.1111/j.1526-4610.2010.01800.x
    1. Barbanti P, Grazzi L, Egeo G, Padovan AM, Liebler E, Bussone G. Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: an open-label study. J Headache Pain. (2015) 16:1–5. 10.1186/s10194-015-0542-4
    1. Kalita J, Laskar S, Bhoi SK, Misra UK. Efficacy of single versus three sessions of high rate repetitive transcranial magnetic stimulation in chronic migraine and tension-type headache. J Neurol. (2016) 263:2238–46. 10.1007/s00415-016-8257-2
    1. Di Fiore P, Bussone G, Galli A, Didier H, Peccarisi C, D'amico D, et al. . Transcutaneous supraorbital neurostimulation for the prevention of chronic migraine: a prospective, open-label preliminary trial. Neurol Sci. (2017) 38:201–6. 10.1007/s10072-017-2916-7
    1. Leone M, Franzini A, Broggi G, Bussone G. Hypothalamic deep brain stimulation for intractable chronic cluster headache: a 3-year follow-up. Neurol Sci. (2003) 24:S143–5. 10.1007/s100720300063
    1. Mauskop A. Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia. (2005) 25:82–6. 10.1111/j.1468-2982.2005.00611.x
    1. Saper JR, Dodick DW, Silberstein SD, Mccarville S, Sun M, Goadsby PJ. Occipital nerve stimulation for the treatment of intractable chronic migraine headache: ONSTIM feasibility study. Cephalalgia. (2011) 31:271–85. 10.1177/0333102410381142
    1. Cady R, Saper J, Dexter K, Manley HR. A double-blind, placebo-controlled study of repetitive transnasal sphenopalatine ganglion blockade with T x360® as acute treatment for chronic migraine. Headache. (2015) 55:101–16. 10.1111/head.12458
    1. Vargas MI, Martelli P, Xin L, Ipek O, Grouiller F, Pittau F, et al. . Clinical neuroimaging using 7 T MRI: challenges and prospects. J Neuroimaging. (2018) 28:5–13. 10.1111/jon.12481
    1. Verma G, Balchandani P. Ultrahigh field MR neuroimaging. Top Magn Resonan Imag. (2019) 28:137–44. 10.1097/RMR.0000000000000210
    1. Balchandani P, Naidich TP. Ultra-High-Field MR Neuroimaging. Am J Neuroradiol. (2015) 36:1204–15. 10.3174/ajnr.A4180

Source: PubMed

3
订阅