Robotic-Assisted Spine Surgery: History, Efficacy, Cost, And Future Trends

Marissa D'Souza, Julian Gendreau, Austin Feng, Lily H Kim, Allen L Ho, Anand Veeravagu, Marissa D'Souza, Julian Gendreau, Austin Feng, Lily H Kim, Allen L Ho, Anand Veeravagu

Abstract

Robot-assisted spine surgery has recently emerged as a viable tool to enable less invasive and higher precision surgery. The first-ever spine robot, the SpineAssist (Mazor Robotics Ltd., Caesarea, Israel), gained FDA approval in 2004. With its ability to provide real-time intraoperative navigation and rigid stereotaxy, robotic-assisted surgery has the potential to increase accuracy while decreasing radiation exposure, complication rates, operative time, and recovery time. Currently, robotic assistance is mainly restricted to spinal fusion and instrumentation procedures, but recent studies have demonstrated its use in increasingly complex procedures such as spinal tumor resections and ablations, vertebroplasties, and deformity correction. However, robots do require high initial costs and training, and thus, require justification for their incorporation into common practice. In this review, we discuss the history of spinal robots along as well as currently available systems. We then examine the literature to evaluate accuracy, operative time, complications, radiation exposure, and costs - comparing robotic-assisted to traditional fluoroscopy-assisted freehand approaches. Finally, we consider future applications for robots in spine surgery.

Keywords: Mazor X®; ROSA®; SpineaAssist®; computer assisted navigation; renaissance; robot-assisted surgery; robotic navigation; robotic spine surgery.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2019 D’Souza et al.

Figures

Figure 1
Figure 1
Following the pre-operative CT, the SpineAssist robotic platform is attached to the spine for final image registration.
Figure 2
Figure 2
SpineAssist workflow of preoperative planning, frame mounting, robot attachment, screw placement and disassembly.
Figure 3
Figure 3
The da Vinci Surgical System® (Intuitive Surgical, Sunnyvale, California) robot. Image courtesy of Intuitive Surgical Inc. da Vinci Si System with single-site instrumentation. Surgeon console, surgeon, da Vinci® Si patient cart with Single-Site™ instruments. Available from: https://www.intuitivesurgical.com/company/media/images/singlesite.php. Accessed September 22, 2019. Copyright © 2019 Intuitive Surgical, Inc.

References

    1. OpenPR. Global Surgical Robots for the Spine Industry Trend, Growth, Shares, Strategy and Forecasts 2016 to 2022; 2017. Available from: . Accessed October 25, 2019.
    1. Yu L, Chen X, Margalit A, Peng H, Qiu G, Qian W. Robot-assisted vs freehand pedicle screw fixation in spine surgery – a systematic review and a meta-analysis of comparative studies. Int J Med Robot Comput Assist Surg. 2018;14:e1892. doi:10.1002/rcs.1892
    1. Devito DP, Kaplan L, Dietl R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with spineassist surgical robot: retrospective study. Spine (Phila Pa 1976). 2010;35:2109–2115. doi:10.1016/j.jaridenv.2015.11.005
    1. Shoham M, Lieberman IH, Benzel EC, et al. Robotic assisted spinal surgery–from concept to clinical practice. Comput Aided Surg. 2007;12(2):105–115. doi:10.3109/10929080701243981
    1. Cahill KS, Wang MY. Evaluating the accuracy of robotic assistance in spine surgery. Neurosurgery. 2012;71:N20–N21. doi:10.1227/01.neu.0000417535.07871.36
    1. Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013;22:661–666. doi:10.1007/s00586-012-2499-1
    1. Podolsky DJ, Martin AR, Whyne CM, Massicotte EM, Hardisty MR, Ginsberg HJ. Exploring the role of 3-dimensional simulation in surgical training: feedback from a pilot study. J Spinal Disord Tech. 2010;23:e70–e74. doi:10.1097/BSD.0b013e3181d345cb
    1. Jutte PC, Castelein RM. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. Eur Spine J. 2002;11:594–598. doi:10.1007/s00586-002-0469-8
    1. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: A meta-analysis. Spine (Phila Pa 1976). 2007;32:E111–E120. doi:10.1097/01.brs.0000254048.79024.8b
    1. Kotani Y, Abumi K, Ito M, Minami A. Improved accuracy of computer-assisted cervical pedicle screw insertion. J Neurosurg Spine. 2003;99:257–263. doi:10.3171/spi.2003.99.3.0257
    1. Rajasekaran S, Vidyadhara S, Ramesh P, Shetty AP. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine (Phila Pa 1976). 2007;32:E56–E64. doi:10.1097/01.brs.0000252094.64857.ab
    1. Tian N-F, Huang Q-S, Zhou P, et al. Pedicle screw insertion accuracy with different assisted methods: A systematic review and meta-analysis of comparative studies. Eur Spine J. 2011;20:846–859. doi:10.1007/s00586-010-1577-5
    1. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20:860–868. doi:10.1007/s00586-011-1729-2
    1. Le X, Tian W, Shi Z, et al. Robot-assisted versus fluoroscopy-assisted cortical bone trajectory screw instrumentation in lumbar spinal surgery: a matched-cohort comparison. World Neurosurg. 2018;120:e745–e751. doi:10.1016/j.wneu.2018.08.157
    1. Wang JQ, Wang Y, Feng Y, et al. Percutaneous sacroiliac screw placement: A prospective randomized comparison of robot-assisted navigation procedures with a conventional technique. Chin Med J (Engl). 2017. doi:10.4103/0366-6999.217080
    1. Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery. 2013;72:A12–A18. doi:10.1227/NEU.0b013e318270d02c
    1. Lanfranco AR, Castellanos AE, Desai JP, Meyers WC. Robotic Surgery: A Current Perspective. Ann Surg. 2004;239:14–21. doi:10.1097/01.sla.0000103020.19595.7d
    1. Ueda H, Suzuki R, Nakazawa A, et al. Toward autonomous collision avoidance for robotic neurosurgery in deep and narrow spaces in the brain. Procedia CIRP. 2017;65:110–114. doi:10.1016/j.procir.2017.04.027
    1. Chenin L, Peltier J, Lefranc M. Minimally invasive transforaminal lumbar interbody fusion with the ROSATM Spine robot and intraoperative flat-panel CT guidance. Acta Neurochir (Wien). 2016;158:1125–1128. doi:10.1007/s00701-016-2799-z
    1. Kim VB, Chapman WHH, Albrecht RJ, et al. Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using da Vinci. Surg Laparosc Endosc Percutaneous Tech. 2002;12:33–40. doi:10.1097/00019509-200202000-00006
    1. Fuchs K. Minimally Invasive Surgery. Endoscopy. 2002;34:154–159. doi:10.1055/s-2002-19857
    1. Allendorf JDF, Bessler M, Whelan RL, et al. Postoperative immune function varies inversely with the degree of surgical trauma in a murine model. Surg Endosc. 1997. doi:10.1007/s004649900383
    1. Lee JC, Jang HD, Shin BJ. Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine (Phila Pa 1976). 2012;37:1548–1557. doi:10.1097/BRS.0b013e318252d44b
    1. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35:153–160. doi:10.1109/10.1354
    1. Davies B. A review of robotics in surgery. Proc Inst Mech Eng Part H J Eng Med. 2000;214:129–140. doi:10.1243/0954411001535309
    1. Singh J, Podolsky ER, Castellanos AE, Stein DE. Optimizing single port surgery: A case report and review of technique in colon resection. Int J Med Robot Comput Assist Surg. 2011;7:127–130. doi:10.1002/rcs.378
    1. Kaouk J, Valero R, Sawczyn G, Garisto J. Extra-peritoneal single port robotic radical prostatectomy: initial experience and description of technique. BJU Int. 2019. doi:10.1111/bju.14885
    1. Gomes MTV, Machado AMN, Podgaec S, Barison GAS. Initial experience with single-port robotic hysterectomy. Einstein (Sao Paulo). 2017;15:476–480. doi:10.1590/S1679-45082017AO4134
    1. Dobbs RW, Halgrimson WR, Talamini S, Vigneswaran HT, Wilson JO, Crivellaro S. Single-port robotic surgery: the next generation of minimally invasive urology. World J Urol. 2019;(0123456789). doi:10.1007/s00345-019-02898-1
    1. Grochola LF, Soll C, Zehnder A, Wyss R, Herzog P, Breitenstein S. Robot-assisted versus laparoscopic single-incision cholecystectomy: results of a randomized controlled trial. Surg Endosc. 2019;33(5):1482–1490. doi:10.1007/s00464-018-6430-7
    1. Theodore N, Ahmed A, Karim B. The History of Robotics in Spine Surgery. Spine (Phila Pa 1976). 2018;43(7):23. doi:10.1097/BRS.0000000000002553
    1. Dogangil G, Davies BL, Rodriguez Y, Baena F. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng Part H J Eng Med. 2010;224:653–679. doi:10.1243/09544119JEIM591
    1. Shweikeh F, Amadio JP, Arnell M, et al. Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus. 2014;36:E10. doi:10.3171/2014.1.FOCUS13526
    1. Barzilay Y, Liebergall M, Fridlander A, Knoller N. Miniature robotic guidance for spine surgery — introduction of a novel system and analysis of challenges encountered during the clinical development phase at two spine centres. Int J Med Robot Comput Assist Surg. 2006;2(2):146–153. doi:10.1002/rcs.90
    1. Sukovich W, Brink-Danan S, Hardenbrook M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist? Int J Med Robot Comput Assist Surg. 2006;2:114–122. doi:10.1002/rcs.86
    1. Schroerlucke SR, Wang MY, Cannestra AF, et al. Complication Rate in Robotic-Guided vs Fluoro-Guided Minimally Invasive Spinal Fusion Surgery: report from MIS Refresh Prospective Comparative Study. Spine J. 2017. doi:10.1016/j.spinee.2017.08.177
    1. Business Wire. First Prospective Study of Robotic-Guided Spine Surgery Reveals Five-Fold Reduction in Surgical Complications with Mazor CoreTM Technology; 2017. Available from: . Accessed October 25, 2019.
    1. Hicks JM, Singla A, Shen FH, Arlet V. Complications of pedicle screw fixation in scoliosis surgery: A systematic review. Spine (Phila Pa 1976). 2010;35:E465–E470. doi:10.1097/BRS.0b013e3181d1021a
    1. Overley SC, Cho SK, Mehta AI, Arnold PM. Navigation and robotics in spinal surgery: where are we now?. Clin Neurosurg. 2017;80:S86–S99. doi:10.1093/neuros/nyw077
    1. Kazemi N, Crew L, Tredway T. The future of spine surgery: new horizons in the treatment of spinal disorders. Surg Neurol Int. 2013. doi:10.1074/jbc.M111.244400
    1. Kim HJ, Kang KT, Park SC, et al. Biomechanical advantages of robot-assisted pedicle screw fixation in posterior lumbar interbody fusion compared with freehand technique in a prospective randomized controlled trial—perspective for patient-specific finite element analysis. Spine J. 2017. doi:10.1016/j.spinee.2016.11.010
    1. Ravi B, Zahrai A, Rampersaud R. Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws. Spine (Phila Pa 1976). 2011;36(1):84–91. doi:10.1097/BRS.0b013e3181cbfd09
    1. Mastrangelo G, Fedeli U, Fadda E, Giovanazzi A, Scoizzato L, Saia B. Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (Chic Ill). 2005;55:498–500. doi:10.1093/occmed/kqi048
    1. Hamilton DK, Smith JS, Sansur CA, et al. Rates of new neurological deficit associated with spine surgery based on 108,419 procedures: A report of the scoliosis research society morbidity and mortality committee. Spine (Phila Pa 1976). 2011;36:1218–1228. doi:10.1097/BRS.0b013e3181ec5fd9
    1. Wang MY, Goto T, Tessitore E, Veeravagu A. Introduction. Robotics in neurosurgery. Neurosurg Focus. 2017;42(5):E1. doi:10.3171/2017.2.FOCUS1783
    1. Faria C, Erlhagen W, Rito M, De Momi E, Ferrigno G, Bicho E. Review of robotic technology for stereotactic neurosurgery. IEEE Rev Biomed Eng. 2015;8:125–137. doi:10.1109/RBME.2015.2428305
    1. Vardy E, Robinson JE, Li C, et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron. 2015;86(4):936–946. doi:10.1016/j.neuron.2015.03.065
    1. Bertelsen A, Melo J, Sánchez E, Borro D. A review of surgical robots for spinal interventions. Int J Med Robot Comput Assist Surg. 2013;9:407–422. doi:10.1002/rcs.1469
    1. Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom. 2003;19:893–901. doi:10.1109/TRA.2003.817075
    1. Tjardes T, Shafizadeh S, Rixen D, et al. Image-guided spine surgery: state of the art and future directions. Eur Spine J. 2010;19:25–45. doi:10.1007/s00586-009-1091-9
    1. Nathoo N, Çavuşoǧlu MC, Vogelbaum MA, Barnett GH. In touch with robotics: neurosurgery for the future. Neurosurgery. 2005;56:421–433. doi:10.1227/
    1. Dreval ON, Rynkov IP, Kasparova KA, Bruskin A, Aleksandrovskii V, Bernstein VZIL. Results of using spine assist mazor in surgical treatment of spine disorders. Zhurnal Vopr Neirokhirugii Im N N Burdenko. 2014.
    1. Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part I - Technical development and a test case result. Neurosurgery. 2006;59:641–650. doi:10.1227/01.NEU.0000229055.00829.5B
    1. Togawa D, Kayanja MM, Reinhardt MK, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part 2 - Evaluation of system accuracy. Neurosurgery. 2007. doi:10.1227/01.NEU.0000249257.16912.AA
    1. Ringel F, Stüer C, Reinke A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: A prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012;37:E496–E501. doi:10.1097/BRS.0b013e31824b7767
    1. Fiani B, Quadri SA, Farooqui M, et al. Impact of robot-assisted spine surgery on health care quality and neurosurgical economics: a systemic review. Neurosurg Rev. 2018. doi:10.1007/s10143-018-0971-z
    1. Suliman A, Wollstein R, Bernfeld B, Bruskin A. Robotic-assisted device in posterior spinal fusion for a high risk thoraculombar fracture in ankylosing spondylitis. Asian Spine J. 2014;8:64. doi:10.4184/asj.2014.8.1.64
    1. Kim H-J, Lee SH, Chang B-S, et al. Monitoring the quality of robot-assisted pedicle screw fixation in the lumbar spine by using a cumulative summation test. Spine (Phila Pa 1976). 2015;40:87–94. doi:10.1097/BRS.0000000000000680
    1. Joseph JR, Smith BW, Liu X, Park P. Current applications of robotics in spine surgery: a systematic review of the literature. Neurosurg Focus. 2017;42:E2. doi:10.3171/2017.2.FOCUS16544
    1. Khan A, Meyers JE, Siasios I, Pollina J. Next-generation robotic spine surgery: first report on feasibility, safety, and learning curve. Oper Neurosurg. 2018. doi:10.1093/ons/opy280
    1. Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016;25:947–955. doi:10.1007/s00586-015-3758-8
    1. Lefranc M, Peltier J. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices. 2016;13:899–906. doi:10.1080/17434440.2016.1236680
    1. Nuzzi R, Brusasco L. State of the art of robotic surgery related to vision: brain and eye applications of newly available devices. Eye Brain. 2018;Volume 10:13–24. doi:10.2147/EB.S148644
    1. Intuitive Surgical Inc. da Vinci Si System with single-site instrumentation. Available from: Accessed September30, 2019.
    1. Beutler WJ, Peppelman WC, Dimarco LA. The da vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine (Phila Pa 1976). 2013;38:356–363. doi:10.1097/BRS.0b013e31826b3d72
    1. Moskowitz RM, Young JL, Box GN, Paré LS, Clayman RV. Retroperitoneal transdiaphragmatic robotic-assisted laparoscopic resection of a left thoracolumbar neurofibroma. JSLS. 2009;13(1):64–68.
    1. Yang MS, Yoon DH, Kim KN, et al. Robot-assisted anterior lumbar interbody fusion in a swine model in vivo test of the da vinci surgical-assisted spinal surgery system. Spine (Phila Pa 1976). 2011;36:E139–E143. doi:10.1097/BRS.0b013e3181d40ba3
    1. Satava RM. Surgical robotics: the early chronicles: A personal historical perspective. Surg Laparosc Endosc Percutaneous Tech. 2002. doi:10.1097/00019509-200202000-00002
    1. Lee JYK, Bhowmick DA, Eun DD, Welch WC. Minimally invasive, robot-assisted, anterior lumbar interbody fusion: A technical note. J Neurol Surg Part A Cent Eur Neurosurg. 2013;74:258–261. doi:10.1055/s-0032-1330121
    1. Perez-Cruet MJ, Welsh RJ, Hussain NS, Begun EM, Lin J, Park P. Use of the da Vinci minimally invasive robotic system for resection of a complicated paraspinal schwannoma with thoracic extension: case report. Neurosurgery. 2012. doi:10.1227/NEU.0b013e31826112d8
    1. Inamasu J, Guiot BH. Laparoscopic anterior lumbar interbody fusion: A review of outcome studies. Minim Invasive Neurosurg. 2005;48:340–347. doi:10.1055/s-2005-915634
    1. Liu JC, Ondra SL, Angelos P, Ganju A, Landers ML. Is laparoscopic anterior lumbar interbody fusion a useful minimally invasive procedure? Neurosurgery. 2002. doi:10.1227/01.NEU.0000031067.30674.7C
    1. Chung SK, Lee SH, Lim SR, et al. Comparative study of laparoscopic L5-S1 fusion versus open mini-ALIF, with a minimum 2-year follow-up. Eur Spine J. 2003;12:613–617. doi:10.1007/s00586-003-0526-y
    1. Kaiser MG, Haid RW, Subach BR, et al. Comparison of the mini-open versus laparoscopic approach for anterior lumbar interbody fusion: A retrospective review. Neurosurgery. 2002;51:97–105. doi:10.1097/00006123-200207000-00015
    1. Zygourakis CC, Ahmed AK, Kalb S, et al. Technique: open lumbar decompression and fusion with the Excelsius GPS robot. Neurosurg Focus. 2018;45:V6. doi:10.3171/2018.7.FocusVid.18123
    1. Hu X, Lieberman IH. What is the learning curve for robotic-assisted pedicle screw placement in spine surgery? Clin Orthop Relat Res. 2014;472:1839–1844. doi:10.1007/s11999-013-3291-1
    1. Bai Y-S, Zhang Y, Chen Z-Q, et al. Learning curve of computer-assisted navigation system in spine surgery. Chin Med J (Engl). 2010;123(21):2989–2994.
    1. Kim HJ, Jung WI, Chang BS, Lee CK, Kang KT, Yeom JS. A prospective, randomized, controlled trial of robot-assisted vs freehand pedicle screw fixation in spine surgery. Int J Med Robot Comput Assist Surg. 2017;13:e1779. doi:10.1002/rcs.1779
    1. Kaul S, Shah NL, Menon M. Learning curve using robotic surgery. Curr Urol Rep. 2006;7:125–129. doi:10.1007/s11934-006-0071-4
    1. Keric N, Doenitz C, Haj A, et al. Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. Neurosurg Focus. 2017;42:E11. doi:10.3171/2017.2.FOCUS16552
    1. Schatlo B, Molliqaj G, Cuvinciuc V, Kotowski M, Schaller K, Tessitore E. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine. 2014;20:636–643. doi:10.3171/2014.3.SPINE13714
    1. Gras F, Marintschev I, Wilharm A, Klos K, Mückley T, Hofmann GO. 2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries - A case series. BMC Musculoskelet Disord. 2010;11. doi:10.1186/1471-2474-11-153
    1. Solomiichuk V, Fleischhammer J, Molliqaj G, et al. Robotic versus fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched-cohort comparison. Neurosurg Focus. 2017;42:E13. doi:10.3171/2017.3.FOCUS1710
    1. Kaoudi A, Capel C, Chenin L, Peltier J, Lefranc M. Robot-assisted radiofrequency ablation of a sacral S1-S2 aggressive hemangioma. World Neurosurg. 2018;116:226–229. doi:10.1016/j.wneu.2018.05.060
    1. Bederman SS, Hahn P, Colin V, Kiester PD, Bhatia NN. Robotic Guidance for S2-Alar-Iliac Screws in Spinal Deformity Correction. Clin Spine Surg. 2017;30:E49–E53. doi:10.1097/BSD.0b013e3182a3572b
    1. Hu X, Lieberman IH. Robotic-guided sacro-pelvic fixation using S2 alar-iliac screws: feasibility and accuracy. Eur Spine J. 2017;26:720–725. doi:10.1007/s00586-016-4639-5
    1. Hyun S-J, Kim K-J, Jahng T-A. S2 alar iliac screw placement under robotic guidance for adult spinal deformity patients: technical note. Eur Spine J. 2017;26:2198–2203. doi:10.1007/s00586-017-5012-z
    1. Laratta JL, Shillingford JN, Lombardi JM, et al. Accuracy of S2 alar-iliac screw placement under robotic guidance. Spine Deform. 2018;6:130–136. doi:10.1016/j.jspd.2017.08.009
    1. Goz V, Weinreb JH, McCarthy I, Schwab F, Lafage V, Errico TJ. Perioperative complications and mortality after spinal fusions: analysis of trends and risk factors. Spine (Phila Pa 1976). 2013;38:1970–1976. doi:10.1097/BRS.0b013e3182a62527
    1. Barzilay Y, Schroeder JE, Hiller N, et al. Robot-assisted vertebral body augmentation: A radiation reduction tool. Spine (Phila Pa 1976). 2014;39:153–157. doi:10.1097/BRS.0000000000000100
    1. Schroerlucke SR, Good CR, Wang MY. A prospective, comparative study of robotic-guidance versus freehand in minimally invasive spinal fusion surgery: first report from MIS ReFRESH. Spine J. 2016;16:S253. doi:10.1016/j.spinee.2016.07.166
    1. Menger RP, Savardekar AR, Farokhi F, Sin A. A cost-effectiveness analysis of the integration of robotic spine technology in spine surgery. Neurospine. 2018;15(3):216–224. doi:10.14245/ns.1836082.041
    1. Garrity M. Da Vinci Surgical System vs. Renaissance Robotic Surgical System – Is Mazor Robotics the Next Intuitive Surgical?; 2018. Available from: . Accessed October 25, 2019.
    1. Young R. The March of Robots into the Spine Surgery Suite; 2012. Available from: . Accessed October 25, 2019.
    1. Mazor Robotics, Ltd. Mazor X Stealth Edition Site Pre-Installation Guide; 2018. Accessed October 25, 2019.
    1. Aruni G, Amit G, Dasgupta P. New surgical robots on the horizon and the potential role of artificial intelligence. Investig Clin Urol. 2018;59(4):221–222. doi:10.4111/icu.2018.59.4.221
    1. Kim SSY, Dohler M, Dasgupta P. The Internet of Skills: use of fifth-generation telecommunications, haptics and artificial intelligence in robotic surgery. BJU Int. 2018;122(3):356–358. doi:10.1111/bju.14388
    1. Nagendran M, Gurusamy KS, Aggarwal R, Loizidou M, Davidson BR. Virtual reality training for surgical trainees in laparoscopic surgery. Cochrane Database Syst Rev. 2013. doi:10.1002/14651858.CD006575.pub3
    1. Pelargos PE, Nagasawa DT, Lagman C, et al. Utilizing virtual and augmented reality for educational and clinical enhancements in neurosurgery. J Clin Neurosci. 2017;35:1–4. doi:10.1016/j.jocn.2016.09.002
    1. Madhavan K, Kolcun JPG, Chieng LO, Wang MY. Augmented-reality integrated robotics in neurosurgery: are we there yet? Neurosurg Focus. 2017;42(5):E3. doi:10.3171/2017.2.FOCUS177
    1. Yoon JW, Chen RE, Kim EJ, et al. Augmented reality for the surgeon: systematic review. Int J Med Robot Comput Assist Surg. 2018;14(4):e1914. doi:10.1002/rcs.1914
    1. Shademan A, Decker RS, Opfermann JD, Leonard S, Krieger A, Kim PCW. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8(337):337ra64. doi:10.1126/scitranslmed.aad9398
    1. Leonard S, Wu KL, Kim Y, Krieger A, Kim PCW. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng. 2014;61(4):1305–1317. doi:10.1109/TBME.2014.2302385

Source: PubMed

3
订阅