Bile acids in glucose metabolism in health and disease

Hagit Shapiro, Aleksandra A Kolodziejczyk, Daniel Halstuch, Eran Elinav, Hagit Shapiro, Aleksandra A Kolodziejczyk, Daniel Halstuch, Eran Elinav

Abstract

Bile acids (BAs) are cholesterol-derived metabolites that facilitate the intestinal absorption and transport of dietary lipids. Recently, BAs also emerged as pivotal signaling molecules controlling glucose, lipid, and energy metabolism by binding to the nuclear hormone farnesoid X receptor (FXR) and Takeda G protein receptor 5 (TGR5) in multiple organs, leading to regulation of intestinal incretin secretion, hepatic gluconeogenesis, glycogen synthesis, energy expenditure, inflammation, and gut microbiome configuration. Alterations in BA metabolism and signaling are associated with obesity and type 2 diabetes mellitus (T2DM), whereas treatment of T2DM patients with BA sequestrants, or bariatric surgery in morbidly obese patients, results in a significant improvement in glycemic response that is associated with changes in the BA profile and signaling. Herein, we review the roles of BAs in glucose metabolism in health and disease; highlight the limitations, unknowns, and challenges in understanding the impact of BAs on the glycemic response; and discuss how this knowledge may be harnessed to develop innovative therapeutic approaches for the treatment of hyperglycemia and diabetes.

© 2018 Shapiro et al.

Figures

Figure 1.
Figure 1.
Regulation of BA synthesis by repression of Cyp7a1 is mediated by FXR signaling. BA-FXR signaling in the liver activates SHP, which negatively controls Cyp7A1 expression. Intestinal BA-FXR signaling induces FGF15/19 expression. Release of intestinal FGF15/19 followed by binding of FGF15/19 to hepatic FGFR4/βKlotho leads to repression of hepatic Cyp7A1 and Cyp8B1.
Figure 2.
Figure 2.
BA signaling controls the systemic glycemic response. In the liver BA-FXR signaling inhibits gluconeogenesis and promotes glycogen synthesis by negative regulation of PEPCK, G6Pase, and ChREBP. In intestinal L cells, BA-TGR5 signaling leads to GLP-1 expression and secretion, whereas BA-FXR signaling inhibits GLP-1 production. The gut microbiome controls BA diversity, whereas BA composition mediates gut microbiome configuration. In the brain, BA-TGR5 signaling mediates satiety. In skeletal muscles and brown adipose tissue, BA-TGR5 sensing promotes T4 conversion to T3, leading to increased energy expenditure. In the pancreas, both BA-TGR5 and BA-FXR signaling in β cells induces insulin production. Glucose-stimulated insulin release is additionally promoted by BA-TGR5 signaling in α cells, which causes conversion of proglucagon to GLP-1 and GLP-1 release. TGR5-BA in immune cells results in inhibition of NLRP3-inflammasome and attenuated inflammation. CCL, chemokine (C-C motif) ligand; Dio2, type 2 iodothyronine deiodinase; LIP, liver inhibitory protein; T4, thyroxine; T3, tri-iodothyronine.
Figure 3.
Figure 3.
BAs and diabetes mellitus. Impaired BA signaling in the context of an altered glycemic response contributes to progression toward T2DM through multiple mechanisms.

References

    1. Ahlberg J., Angelin B., Björkhem I., and Einarsson K.. 1977. Individual bile acids in portal venous and systemic blood serum of fasting man. Gastroenterology. 73:1377–1382.
    1. Ahmad N.N., Pfalzer A., and Kaplan L.M.. 2013. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int. J. Obes. 37:1553–1559. 10.1038/ijo.2013.38
    1. Anderson K.E., Kok E., and Javitt N.B.. 1972. Bile acid synthesis in man: metabolism of 7α-hydroxycholesterol-14C and 26-hydroxycholesterol-3H. J. Clin. Invest. 51:112–117. 10.1172/JCI106780
    1. Angelin B., Björkhem I., Einarsson K., and Ewerth S.. 1982. Hepatic uptake of bile acids in man. Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J. Clin. Invest. 70:724–731. 10.1172/JCI110668
    1. Balasubramaniyan N., Ananthanarayanan M., and Suchy F.J.. 2012. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G937–G947. 10.1152/ajpgi.00441.2011
    1. Balderas C., Rupérez F.J., Ibañez E., Señorans J., Guerrero-Fernández J., Casado I.G., Gracia-Bouthelier R., García A., and Barbas C.. 2013. Plasma and urine metabolic fingerprinting of type 1 diabetic children. Electrophoresis. 34:2882–2890.
    1. Bathena S.P., Thakare R., Gautam N., Mukherjee S., Olivera M., Meza J., and Alnouti Y.. 2015. Urinary bile acids as biomarkers for liver diseases I. Stability of the baseline profile in healthy subjects. Toxicol. Sci. 143:296–307. 10.1093/toxsci/kfu227
    1. Benoit B., Meugnier E., Castelli M., Chanon S., Vieille-Marchiset A., Durand C., Bendridi N., Pesenti S., Monternier P.A., Durieux A.C., et al. . 2017. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat. Med. 23:990–996.
    1. Bernstein H., Bernstein C., Payne C.M., and Dvorak K.. 2009. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroenterol. 15:3329–3340. 10.3748/wjg.15.3329
    1. Berrabah W., Aumercier P., Gheeraert C., Dehondt H., Bouchaert E., Alexandre J., Ploton M., Mazuy C., Caron S., Tailleux A., et al. . 2014. Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology. 59:2022–2033. 10.1002/hep.26710
    1. Bhutta H.Y., Rajpal N., White W., Freudenberg J.M., Liu Y., Way J., Rajpal D., Cooper D.C., Young A., Tavakkoli A., and Chen L.. 2015. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. PLoS One. 10:e0122273 10.1371/journal.pone.0122273
    1. Blahová T., Peterková L., Leníček M., Vlachová M., Zemánková K., Adámková V., Vítek L., and Kovář J.. 2016. The effect of colesevelam treatment on bile acid and lipid metabolism and glycemic control in healthy men. Physiol. Res. 65:995–1003.
    1. Briere D.A., Ruan X., Cheng C.C., Siesky A.M., Fitch T.E., Dominguez C., Sanfeliciano S.G., Montero C., Suen C.S., Xu Y., et al. . 2015. Novel Small Molecule Agonist of TGR5 Possesses Anti-Diabetic Effects but Causes Gallbladder Filling in Mice. PLoS One. 10:e0136873 10.1371/journal.pone.0136873
    1. Broeders E.P., Nascimento E.B., Havekes B., Brans B., Roumans K.H., Tailleux A., Schaart G., Kouach M., Charton J., Deprez B., et al. . 2015. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metab. 22:418–426. 10.1016/j.cmet.2015.07.002
    1. Cariou B., van Harmelen K., Duran-Sandoval D., van Dijk T.H., Grefhorst A., Abdelkarim M., Caron S., Torpier G., Fruchart J.C., Gonzalez F.J., et al. . 2006. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J. Biol. Chem. 281:11039–11049. 10.1074/jbc.M510258200
    1. Chen L., Yao X., Young A., McNulty J., Anderson D., Liu Y., Nystrom C., Croom D., Ross S., Collins J., et al. . 2012. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am. J. Physiol. Endocrinol. Metab. 302:E68–E76. 10.1152/ajpendo.00323.2011
    1. Cheng S., Zou M., Liu Q., Kuang J., Shen J., Pu S., Chen L., Li H., Wu T., Li R., et al. . 2017. Activation of Constitutive Androstane Receptor Prevents Cholesterol Gallstone Formation. Am. J. Pathol. 187:808–818. 10.1016/j.ajpath.2016.12.013
    1. Courcoulas A.P., Goodpaster B.H., Eagleton J.K., Belle S.H., Kalarchian M.A., Lang W., Toledo F.G., and Jakicic J.M.. 2014. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 149:707–715. 10.1001/jamasurg.2014.467
    1. de Aguiar Vallim T.Q., Tarling E.J., and Edwards P.A.. 2013. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17:657–669. 10.1016/j.cmet.2013.03.013
    1. De Giorgi S., Campos V., Egli L., Toepel U., Carrel G., Cariou B., Rainteau D., Schneiter P., Tappy L., and Giusti V.. 2015. Long-term effects of Roux-en-Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabetic subjects: A cross-sectional pilot study. Clin. Nutr. 34:911–917. 10.1016/j.clnu.2014.09.018
    1. Degirolamo C., Rainaldi S., Bovenga F., Murzilli S., and Moschetta A.. 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Reports. 7:12–18. 10.1016/j.celrep.2014.02.032
    1. Devlin A.S., and Fischbach M.A.. 2015. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11:685–690. 10.1038/nchembio.1864
    1. Ding L., Sousa K.M., Jin L., Dong B., Kim B.W., Ramirez R., Xiao Z., Gu Y., Yang Q., Wang J., et al. . 2016. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatology. 64:760–773. 10.1002/hep.28689
    1. Duez H., van der Veen J.N., Duhem C., Pourcet B., Touvier T., Fontaine C., Derudas B., Baugé E., Havinga R., Bloks V.W., et al. . 2008. Regulation of bile acid synthesis by the nuclear receptor Rev-erbalpha. Gastroenterology. 135:689–698. 10.1053/j.gastro.2008.05.035
    1. Duran-Sandoval D., Cariou B., Percevault F., Hennuyer N., Grefhorst A., van Dijk T.H., Gonzalez F.J., Fruchart J.C., Kuipers F., and Staels B.. 2005. The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. J. Biol. Chem. 280:29971–29979. 10.1074/jbc.M501931200
    1. Dutia R., Embrey M., O’Brien C.S., Haeusler R.A., Agénor K.K., Homel P., McGinty J., Vincent R.P., Alaghband-Zadeh J., Staels B., et al. . 2015. Temporal changes in bile acid levels and 12α-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. Int. J. Obes. 39:806–813. 10.1038/ijo.2015.1
    1. Dutta T., Kudva Y.C., Persson X.M., Schenck L.A., Ford G.C., Singh R.J., Carter R., and Nair K.S.. 2016. Impact of Long-Term Poor and Good Glycemic Control on Metabolomics Alterations in Type 1 Diabetic People. J. Clin. Endocrinol. Metab. 101:1023–1033. 10.1210/jc.2015-2640
    1. Eyssen H., De Pauw G., Stragier J., and Verhulst A.. 1983. Cooperative formation of omega-muricholic acid by intestinal microorganisms. Appl. Environ. Microbiol. 45:141–147.
    1. Fang S., Suh J.M., Reilly S.M., Yu E., Osborn O., Lackey D., Yoshihara E., Perino A., Jacinto S., Lukasheva Y., et al. . 2015. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21:159–165. 10.1038/nm.3760
    1. Ferrannini E., Camastra S., Astiarraga B., Nannipieri M., Castro-Perez J., Xie D., Wang L., Chakravarthy M., and Haeusler R.A.. 2015. Increased Bile Acid Synthesis and Deconjugation After Biliopancreatic Diversion. Diabetes. 64:3377–3385. 10.2337/db15-0214
    1. Fonseca V.A., Handelsman Y., and Staels B.. 2010. Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes Obes. Metab. 12:384–392. 10.1111/j.1463-1326.2009.01181.x
    1. Forman B.M., Goode E., Chen J., Oro A.E., Bradley D.J., Perlmann T., Noonan D.J., Burka L.T., McMorris T., Lamph W.W., et al. . 1995. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 81:687–693. 10.1016/0092-8674(95)90530-8
    1. Fu L., John L.M., Adams S.H., Yu X.X., Tomlinson E., Renz M., Williams P.M., Soriano R., Corpuz R., Moffat B., et al. . 2004. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 145:2594–2603. 10.1210/en.2003-1671
    1. Gälman C., Angelin B., and Rudling M.. 2005. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology. 129:1445–1453. 10.1053/j.gastro.2005.09.009
    1. Gälman C., Angelin B., and Rudling M.. 2011. Pronounced variation in bile acid synthesis in humans is related to gender, hypertriglyceridaemia and circulating levels of fibroblast growth factor 19. J. Intern. Med. 270:580–588. 10.1111/j.1365-2796.2011.02466.x
    1. Gilliland S.E., and Speck M.L.. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33:15–18.
    1. Gineste R., Sirvent A., Paumelle R., Helleboid S., Aquilina A., Darteil R., Hum D.W., Fruchart J.C., and Staels B.. 2008. Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol. Endocrinol. 22:2433–2447. 10.1210/me.2008-0092
    1. Glicksman C., Pournaras D.J., Wright M., Roberts R., Mahon D., Welbourn R., Sherwood R., Alaghband-Zadeh J., and le Roux C.W.. 2010. Postprandial plasma bile acid responses in normal weight and obese subjects. Ann. Clin. Biochem. 47:482–484. 10.1258/acb.2010.010040
    1. Goncalves D., Barataud A., De Vadder F., Vinera J., Zitoun C., Duchampt A., and Mithieux G.. 2015. Bile Routing Modification Reproduces Key Features of Gastric Bypass in Rat. Ann. Surg. 262:1006–1015. 10.1097/SLA.0000000000001121
    1. Goodwin B., Jones S.A., Price R.R., Watson M.A., McKee D.D., Moore L.B., Galardi C., Wilson J.G., Lewis M.C., Roth M.E., et al. . 2000. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell. 6:517–526. 10.1016/S1097-2765(00)00051-4
    1. Guo C., Qi H., Yu Y., Zhang Q., Su J., Yu D., Huang W., Chen W.D., and Wang Y.D.. 2015. The G-Protein-Coupled Bile Acid Receptor Gpbar1 (TGR5) Inhibits Gastric Inflammation Through Antagonizing NF-κB Signaling Pathway. Front. Pharmacol. 6:287 10.3389/fphar.2015.00287
    1. Guo C., Xie S., Chi Z., Zhang J., Liu Y., Zhang L., Zheng M., Zhang X., Xia D., Ke Y., et al. . 2016. Bile Acids Control Inflammation and Metabolic Disorder through Inhibition of NLRP3 Inflammasome. Immunity. 45:802–816. 10.1016/j.immuni.2016.09.008
    1. Haeusler R.A., Pratt-Hyatt M., Welch C.L., Klaassen C.D., and Accili D.. 2012. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab. 15:65–74. 10.1016/j.cmet.2011.11.010
    1. Haeusler R.A., Astiarraga B., Camastra S., Accili D., and Ferrannini E.. 2013. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes. 62:4184–4191. 10.2337/db13-0639
    1. Haeusler R.A., Camastra S., Nannipieri M., Astiarraga B., Castro-Perez J., Xie D., Wang L., Chakravarthy M., and Ferrannini E.. 2016. Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity. J. Clin. Endocrinol. Metab. 101:1935–1944. 10.1210/jc.2015-2583
    1. Han S., Zhang R., Jain R., Shi H., Zhang L., Zhou G., Sangwung P., Tugal D., Atkins G.B., Prosdocimo D.A., et al. . 2015. Circadian control of bile acid synthesis by a KLF15-Fgf15 axis. Nat. Commun. 6:7231 10.1038/ncomms8231
    1. Hansen M., Sonne D.P., Mikkelsen K.H., Gluud L.L., Vilsbøll T., and Knop F.K.. 2017. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: A systematic review with meta-analysis of randomized controlled trials. J. Diabetes Complications. 31:918–927. 10.1016/j.jdiacomp.2017.01.011
    1. Hashiguchi T., Arakawa S., Takahashi S., Gonzalez F.J., Sueyoshi T., and Negishi M.. 2016. Phosphorylation of Farnesoid X Receptor at Serine 154 Links Ligand Activation With Degradation. Mol. Endocrinol. 30:1070–1080. 10.1210/me.2016-1105
    1. Henao-Mejia J., Elinav E., Jin C., Hao L., Mehal W.Z., Strowig T., Thaiss C.A., Kau A.L., Eisenbarth S.C., Jurczak M.J., et al. . 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 482:179–185.
    1. Ho J.E., Larson M.G., Vasan R.S., Ghorbani A., Cheng S., Rhee E.P., Florez J.C., Clish C.B., Gerszten R.E., and Wang T.J.. 2013. Metabolite profiles during oral glucose challenge. Diabetes. 62:2689–2698. 10.2337/db12-0754
    1. Hodge R.J., and Nunez D.J.. 2016. Therapeutic potential of Takeda-G-protein-receptor-5 (TGR5) agonists. Hope or hype? Diabetes Obes. Metab. 18:439–443. 10.1111/dom.12636
    1. Högenauer K., Arista L., Schmiedeberg N., Werner G., Jaksche H., Bouhelal R., Nguyen D.G., Bhat B.G., Raad L., Rauld C., and Carballido J.M.. 2014. G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. J. Med. Chem. 57:10343–10354. 10.1021/jm501052c
    1. Inagaki T., Choi M., Moschetta A., Peng L., Cummins C.L., McDonald J.G., Luo G., Jones S.A., Goodwin B., Richardson J.A., et al. . 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2:217–225. 10.1016/j.cmet.2005.09.001
    1. Ishibashi S., Schwarz M., Frykman P.K., Herz J., and Russell D.W.. 1996. Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J. Biol. Chem. 271:18017–18023. 10.1074/jbc.271.30.18017
    1. Islam K.B., Fukiya S., Hagio M., Fujii N., Ishizuka S., Ooka T., Ogura Y., Hayashi T., and Yokota A.. 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 141:1773–1781. 10.1053/j.gastro.2011.07.046
    1. Jiang C., Xie C., Li F., Zhang L., Nichols R.G., Krausz K.W., Cai J., Qi Y., Fang Z.Z., Takahashi S., et al. . 2015a Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J. Clin. Invest. 125:386–402. 10.1172/JCI76738
    1. Jiang C., Xie C., Lv Y., Li J., Krausz K.W., Shi J., Brocker C.N., Desai D., Amin S.G., Bisson W.H., et al. . 2015b Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6:10166 10.1038/ncomms10166
    1. Jones B.V., Begley M., Hill C., Gahan C.G., and Marchesi J.R.. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 105:13580–13585. 10.1073/pnas.0804437105
    1. Jørgensen N.B., Dirksen C., Bojsen-Møller K.N., Kristiansen V.B., Wulff B.S., Rainteau D., Humbert L., Rehfeld J.F., Holst J.J., Madsbad S., and Clausen T.R.. 2015. Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. J. Clin. Endocrinol. Metab. 100:E396–E406. 10.1210/jc.2014-1658
    1. Kakiyama G., Pandak W.M., Gillevet P.M., Hylemon P.B., Heuman D.M., Daita K., Takei H., Muto A., Nittono H., Ridlon J.M., et al. . 2013. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58:949–955. 10.1016/j.jhep.2013.01.003
    1. Katsuma S., Hirasawa A., and Tsujimoto G.. 2005. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329:386–390. 10.1016/j.bbrc.2005.01.139
    1. Kawamata Y., Fujii R., Hosoya M., Harada M., Yoshida H., Miwa M., Fukusumi S., Habata Y., Itoh T., Shintani Y., et al. . 2003. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278:9435–9440. 10.1074/jbc.M209706200
    1. Kellogg T.F., and Wostmann B.S.. 1969. Fecal neutral steroids and bile acids from germfree rats. J. Lipid Res. 10:495–503.
    1. Kemper J.K., Xiao Z., Ponugoti B., Miao J., Fang S., Kanamaluru D., Tsang S., Wu S.Y., Chiang C.M., and Veenstra T.D.. 2009. FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab. 10:392–404. 10.1016/j.cmet.2009.09.009
    1. Kim D.H., Xiao Z., Kwon S., Sun X., Ryerson D., Tkac D., Ma P., Wu S.Y., Chiang C.M., Zhou E., et al. . 2015. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J. 34:184–199. 10.15252/embj.201489527
    1. Kim I., Morimura K., Shah Y., Yang Q., Ward J.M., and Gonzalez F.J.. 2007. Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice. Carcinogenesis. 28:940–946. 10.1093/carcin/bgl249
    1. Kim K.H., Choi S., Zhou Y., Kim E.Y., Lee J.M., Saha P.K., Anakk S., and Moore D.D.. 2017. Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology. 66:498–509. 10.1002/hep.29199
    1. Kir S., Beddow S.A., Samuel V.T., Miller P., Previs S.F., Suino-Powell K., Xu H.E., Shulman G.I., Kliewer S.A., and Mangelsdorf D.J.. 2011. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 331:1621–1624. 10.1126/science.1198363
    1. Kirwan W.O., Smith A.N., Mitchell W.D., Falconer J.D., and Eastwood M.A.. 1975. Bile acids and colonic motility in the rabbit and the human. Gut. 16:894–902. 10.1136/gut.16.11.894
    1. Kobayashi M., Ikegami H., Fujisawa T., Nojima K., Kawabata Y., Noso S., Babaya N., Itoi-Babaya M., Yamaji K., Hiromine Y., et al. . 2007. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes. 56:239–247. 10.2337/db06-0353
    1. Kohli R., Setchell K.D., Kirby M., Myronovych A., Ryan K.K., Ibrahim S.H., Berger J., Smith K., Toure M., Woods S.C., and Seeley R.J.. 2013. A surgical model in male obese rats uncovers protective effects of bile acids post-bariatric surgery. Endocrinology. 154:2341–2351. 10.1210/en.2012-2069
    1. Kong B., Zhu Y., Li G., Williams J.A., Buckley K., Tawfik O., Luyendyk J.P., and Guo G.L.. 2016. Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 310:G295–G302. 10.1152/ajpgi.00134.2015
    1. Kuipers F., Stroeve J.H., Caron S., and Staels B.. 2007. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control. Curr. Opin. Lipidol. 18:289–297. 10.1097/MOL.0b013e3281338d08
    1. Kumar D.P., Rajagopal S., Mahavadi S., Mirshahi F., Grider J.R., Murthy K.S., and Sanyal A.J.. 2012. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells. Biochem. Biophys. Res. Commun. 427:600–605. 10.1016/j.bbrc.2012.09.104
    1. Kumar D.P., Asgharpour A., Mirshahi F., Park S.H., Liu S., Imai Y., Nadler J.L., Grider J.R., Murthy K.S., and Sanyal A.J.. 2016. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis. J. Biol. Chem. 291:6626–6640. 10.1074/jbc.M115.699504
    1. Lasalle M., Hoguet V., Hennuyer N., Leroux F., Piveteau C., Belloy L., Lestavel S., Vallez E., Dorchies E., Duplan I., et al. . 2017. Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. J. Med. Chem. 60:4185–4211. 10.1021/acs.jmedchem.6b01873
    1. Lee J.M., Wagner M., Xiao R., Kim K.H., Feng D., Lazar M.A., and Moore D.D.. 2014. Nutrient-sensing nuclear receptors coordinate autophagy. Nature. 516:112–115.
    1. Lefebvre P., Cariou B., Lien F., Kuipers F., and Staels B.. 2009. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89:147–191. 10.1152/physrev.00010.2008
    1. Le Martelot G., Claudel T., Gatfield D., Schaad O., Kornmann B., Lo Sasso G., Moschetta A., and Schibler U.. 2009. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 7:e1000181 10.1371/journal.pbio.1000181
    1. Li T., and Chiang J.Y.. 2014. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 66:948–983. 10.1124/pr.113.008201
    1. Li F., Jiang C., Krausz K.W., Li Y., Albert I., Hao H., Fabre K.M., Mitchell J.B., Patterson A.D., and Gonzalez F.J.. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4:2384 10.1038/ncomms3384
    1. Li T., Owsley E., Matozel M., Hsu P., Novak C.M., and Chiang J.Y.. 2010. Transgenic expression of cholesterol 7alpha-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology. 52:678–690. 10.1002/hep.23721
    1. Li T., Francl J.M., Boehme S., Ochoa A., Zhang Y., Klaassen C.D., Erickson S.K., and Chiang J.Y.. 2012. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J. Biol. Chem. 287:1861–1873. 10.1074/jbc.M111.305789
    1. Lien F., Berthier A., Bouchaert E., Gheeraert C., Alexandre J., Porez G., Prawitt J., Dehondt H., Ploton M., Colin S., et al. . 2014. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. J. Clin. Invest. 124:1037–1051. 10.1172/JCI68815
    1. Liu H., Pathak P., Boehme S., and Chiang J.Y.. 2016. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis. J. Lipid Res. 57:1831–1844. 10.1194/jlr.M069807
    1. Lutz T.A., and Bueter M.. 2014. The physiology underlying Roux-en-Y gastric bypass: a status report. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307:R1275–R1291. 10.1152/ajpregu.00185.2014
    1. Ma K., Saha P.K., Chan L., and Moore D.D.. 2006. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest. 116:1102–1109. 10.1172/JCI25604
    1. Makishima M., Okamoto A.Y., Repa J.J., Tu H., Learned R.M., Luk A., Hull M.V., Lustig K.D., Mangelsdorf D.J., and Shan B.. 1999. Identification of a nuclear receptor for bile acids. Science. 284:1362–1365. 10.1126/science.284.5418.1362
    1. Makishima M., Lu T.T., Xie W., Whitfield G.K., Domoto H., Evans R.M., Haussler M.R., and Mangelsdorf D.J.. 2002. Vitamin D receptor as an intestinal bile acid sensor. Science. 296:1313–1316. 10.1126/science.1070477
    1. McGavigan A.K., Garibay D., Henseler Z.M., Chen J., Bettaieb A., Haj F.G., Ley R.E., Chouinard M.L., and Cummings B.P.. 2017. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut. 66:226–234. 10.1136/gutjnl-2015-309871
    1. Morton G.J., Matsen M.E., Bracy D.P., Meek T.H., Nguyen H.T., Stefanovski D., Bergman R.N., Wasserman D.H., and Schwartz M.W.. 2013. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Invest. 123:4799–4808. 10.1172/JCI70710
    1. Mudaliar S., Henry R.R., Sanyal A.J., Morrow L., Marschall H.U., Kipnes M., Adorini L., Sciacca C.I., Clopton P., Castelloe E., et al. . 2013. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology. 145:574–582. 10.1053/j.gastro.2013.05.042
    1. Nagahashi M., Yuza K., Hirose Y., Nakajima M., Ramanathan R., Hait N.C., Hylemon P.B., Zhou H., Takabe K., and Wakai T.. 2016. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J. Lipid Res. 57:1636–1643. 10.1194/jlr.R069286
    1. Neuschwander-Tetri B.A., Loomba R., Sanyal A.J., Lavine J.E., Van Natta M.L., Abdelmalek M.F., Chalasani N., Dasarathy S., Diehl A.M., Hameed B., et al. NASH Clinical Research Network . 2015. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 385:956–965. 10.1016/S0140-6736(14)61933-4
    1. Parks D.J., Blanchard S.G., Bledsoe R.K., Chandra G., Consler T.G., Kliewer S.A., Stimmel J.B., Willson T.M., Zavacki A.M., Moore D.D., and Lehmann J.M.. 1999. Bile acids: natural ligands for an orphan nuclear receptor. Science. 284:1365–1368. 10.1126/science.284.5418.1365
    1. Parséus A., Sommer N., Sommer F., Caesar R., Molinaro A., Ståhlman M., Greiner T.U., Perkins R., and Bäckhed F.. 2017. Microbiota-induced obesity requires farnesoid X receptor. Gut. 66:429–437. 10.1136/gutjnl-2015-310283
    1. Patti M.E., Houten S.M., Bianco A.C., Bernier R., Larsen P.R., Holst J.J., Badman M.K., Maratos-Flier E., Mun E.C., Pihlajamaki J., et al. . 2009. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 17:1671–1677. 10.1038/oby.2009.102
    1. Pellicciari R., Gioiello A., Macchiarulo A., Thomas C., Rosatelli E., Natalini B., Sardella R., Pruzanski M., Roda A., Pastorini E., et al. . 2009. Discovery of 6alpha-ethyl-23(S)-methylcholic acid (S-EMCA, INT-777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity. J. Med. Chem. 52:7958–7961. 10.1021/jm901390p
    1. Perino A., Pols T.W., Nomura M., Stein S., Pellicciari R., and Schoonjans K.. 2014. TGR5 reduces macrophage migration through mTOR-induced C/EBPβ differential translation. J. Clin. Invest. 124:5424–5436. 10.1172/JCI76289
    1. Picard A., Soyer J., Berney X., Tarussio D., Quenneville S., Jan M., Grouzmann E., Burdet F., Ibberson M., and Thorens B.. 2016. A Genetic Screen Identifies Hypothalamic Fgf15 as a Regulator of Glucagon Secretion. Cell Reports. 17:1795–1806. 10.1016/j.celrep.2016.10.041
    1. Pols T.W., Nomura M., Harach T., Lo Sasso G., Oosterveer M.H., Thomas C., Rizzo G., Gioiello A., Adorini L., Pellicciari R., et al. . 2011. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14:747–757. 10.1016/j.cmet.2011.11.006
    1. Potthoff M.J., Boney-Montoya J., Choi M., He T., Sunny N.E., Satapati S., Suino-Powell K., Xu H.E., Gerard R.D., Finck B.N., et al. . 2011. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab. 13:729–738. 10.1016/j.cmet.2011.03.019
    1. Potthoff M.J., Potts A., He T., Duarte J.A., Taussig R., Mangelsdorf D.J., Kliewer S.A., and Burgess S.C.. 2013. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am. J. Physiol. Gastrointest. Liver Physiol. 304:G371–G380. 10.1152/ajpgi.00400.2012
    1. Prawitt J., Abdelkarim M., Stroeve J.H., Popescu I., Duez H., Velagapudi V.R., Dumont J., Bouchaert E., van Dijk T.H., Lucas A., et al. . 2011. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes. 60:1861–1871. 10.2337/db11-0030
    1. Rao A., Kosters A., Mells J.E., Zhang W., Setchell K.D., Amanso A.M., Wynn G.M., Xu T., Keller B.T., Yin H., et al. . 2016. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci. Transl. Med. 8:357ra122 10.1126/scitranslmed.aaf4823
    1. Rathinam V.A., and Fitzgerald K.A.. 2016. Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell. 165:792–800. 10.1016/j.cell.2016.03.046
    1. Renga B., Mencarelli A., Vavassori P., Brancaleone V., and Fiorucci S.. 2010. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim. Biophys. Acta. 1802:363–372. 10.1016/j.bbadis.2010.01.002
    1. Ryan K.K., Kohli R., Gutierrez-Aguilar R., Gaitonde S.G., Woods S.C., and Seeley R.J.. 2013. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology. 154:9–15. 10.1210/en.2012-1891
    1. Ryan K.K., Tremaroli V., Clemmensen C., Kovatcheva-Datchary P., Myronovych A., Karns R., Wilson-Pérez H.E., Sandoval D.A., Kohli R., Bäckhed F., and Seeley R.J.. 2014. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 509:183–188. 10.1038/nature13135
    1. Sachdev S., Wang Q., Billington C., Connett J., Ahmed L., Inabnet W., Chua S., Ikramuddin S., and Korner J.. 2016. FGF 19 and Bile Acids Increase Following Roux-en-Y Gastric Bypass but Not After Medical Management in Patients with Type 2 Diabetes. Obes. Surg. 26:957–965. 10.1007/s11695-015-1834-0
    1. Sawey E.T., Chanrion M., Cai C., Wu G., Zhang J., Zender L., Zhao A., Busuttil R.W., Yee H., Stein L., et al. . 2011. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell. 19:347–358. 10.1016/j.ccr.2011.01.040
    1. Sayin S.I., Wahlström A., Felin J., Jäntti S., Marschall H.U., Bamberg K., Angelin B., Hyötyläinen T., Orešič M., and Bäckhed F.. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17:225–235. 10.1016/j.cmet.2013.01.003
    1. Schauer P.R., Bhatt D.L., Kirwan J.P., Wolski K., Aminian A., Brethauer S.A., Navaneethan S.D., Singh R.P., Pothier C.E., Nissen S.E., and Kashyap S.R.. STAMPEDE Investigators . 2017. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. N. Engl. J. Med. 376:641–651. 10.1056/NEJMoa1600869
    1. Schittenhelm B., Wagner R., Kähny V., Peter A., Krippeit-Drews P., Düfer M., and Drews G.. 2015. Role of FXR in β-cells of lean and obese mice. Endocrinology. 156:1263–1271. 10.1210/en.2014-1751
    1. Schwarz M., Lund E.G., Setchell K.D., Kayden H.J., Zerwekh J.E., Björkhem I., Herz J., and Russell D.W.. 1996. Disruption of cholesterol 7alpha-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7alpha-hydroxylase. J. Biol. Chem. 271:18024–18031. 10.1074/jbc.271.30.18024
    1. Seok S., Fu T., Choi S.E., Li Y., Zhu R., Kumar S., Sun X., Yoon G., Kang Y., Zhong W., et al. . 2014. Transcriptional regulation of autophagy by an FXR-CREB axis. Nature. 516:108–111.
    1. Seol W., Choi H.S., and Moore D.D.. 1995. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9:72–85.
    1. Shaham O., Wei R., Wang T.J., Ricciardi C., Lewis G.D., Vasan R.S., Carr S.A., Thadhani R., Gerszten R.E., and Mootha V.K.. 2008. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol. Syst. Biol. 4:214 10.1038/msb.2008.50
    1. Sheikh Abdul Kadir S.H., Miragoli M., Abu-Hayyeh S., Moshkov A.V., Xie Q., Keitel V., Nikolaev V.O., Williamson C., and Gorelik J.. 2010. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes. PLoS One. 5:e9689 10.1371/journal.pone.0009689
    1. Staudinger J.L., Goodwin B., Jones S.A., Hawkins-Brown D., MacKenzie K.I., LaTour A., Liu Y., Klaassen C.D., Brown K.K., Reinhard J., et al. . 2001. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. USA. 98:3369–3374. 10.1073/pnas.051551698
    1. Steinert R.E., Peterli R., Keller S., Meyer-Gerspach A.C., Drewe J., Peters T., and Beglinger C.. 2013. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity (Silver Spring). 21:E660–E668. 10.1002/oby.20522
    1. Su J., Zhang Q., Qi H., Wu L., Li Y., Yu D., Huang W., Chen W.D., and Wang Y.D.. 2017. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) protects against renal inflammation and renal cancer cell proliferation and migration through antagonizing NF-κB and STAT3 signaling pathways. Oncotarget. 8:54378–54387.
    1. Swann J.R., Want E.J., Geier F.M., Spagou K., Wilson I.D., Sidaway J.E., Nicholson J.K., and Holmes E.. 2011. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl. Acad. Sci. USA. 108(Suppl 1):4523–4530. 10.1073/pnas.1006734107
    1. Thomas C., Gioiello A., Noriega L., Strehle A., Oury J., Rizzo G., Macchiarulo A., Yamamoto H., Mataki C., Pruzanski M., et al. . 2009. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10:167–177. 10.1016/j.cmet.2009.08.001
    1. Trabelsi M.S., Daoudi M., Prawitt J., Ducastel S., Touche V., Sayin S.I., Perino A., Brighton C.A., Sebti Y., Kluza J., et al. . 2015. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat. Commun. 6:7629 10.1038/ncomms8629
    1. Vandanmagsar B., Youm Y.H., Ravussin A., Galgani J.E., Stadler K., Mynatt R.L., Ravussin E., Stephens J.M., and Dixit V.D.. 2011. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17:179–188. 10.1038/nm.2279
    1. van Dijk T.H., Grefhorst A., Oosterveer M.H., Bloks V.W., Staels B., Reijngoud D.J., and Kuipers F.. 2009. An increased flux through the glucose 6-phosphate pool in enterocytes delays glucose absorption in Fxr-/- mice. J. Biol. Chem. 284:10315–10323. 10.1074/jbc.M807317200
    1. Vlahcevic Z.R., Miller J.R., Farrar J.T., and Swell L.. 1971. Kinetics and pool size of primary bile acids in man. Gastroenterology. 61:85–90.
    1. Wahlström A., Sayin S.I., Marschall H.U., and Bäckhed F.. 2016. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 24:41–50. 10.1016/j.cmet.2016.05.005
    1. Wahlström A., Kovatcheva-Datchary P., Ståhlman M., Khan M.T., Bäckhed F., and Marschall H.U.. 2017. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. J. Lipid Res. 58:412–419. 10.1194/jlr.M072819
    1. Wang H., Chen J., Hollister K., Sowers L.C., and Forman B.M.. 1999. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 3:543–553. 10.1016/S1097-2765(00)80348-2
    1. Wang Y.D., Chen W.D., Yu D., Forman B.M., and Huang W.. 2011. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor κ light-chain enhancer of activated B cells (NF-κB) in mice. Hepatology. 54:1421–1432. 10.1002/hep.24525
    1. Watanabe M., Houten S.M., Wang L., Moschetta A., Mangelsdorf D.J., Heyman R.A., Moore D.D., and Auwerx J.. 2004. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113:1408–1418. 10.1172/JCI21025
    1. Watanabe M., Houten S.M., Mataki C., Christoffolete M.A., Kim B.W., Sato H., Messaddeq N., Harney J.W., Ezaki O., Kodama T., et al. . 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 439:484–489. 10.1038/nature04330
    1. Watanabe M., Horai Y., Houten S.M., Morimoto K., Sugizaki T., Arita E., Mataki C., Sato H., Tanigawara Y., Schoonjans K., et al. . 2011. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem. 286:26913–26920. 10.1074/jbc.M111.248203
    1. Wickremesekera K., Miller G., Naotunne T.D., Knowles G., and Stubbs R.S.. 2005. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes. Surg. 15:474–481. 10.1381/0960892053723402
    1. Worthmann A., John C., Rühlemann M.C., Baguhl M., Heinsen F.A., Schaltenberg N., Heine M., Schlein C., Evangelakos I., Mineo C., et al. . 2017. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat. Med. 23:839–849. 10.1038/nm.4357
    1. Wu Y., Aquino C.J., Cowan D.J., Anderson D.L., Ambroso J.L., Bishop M.J., Boros E.E., Chen L., Cunningham A., Dobbins R.L., et al. . 2013. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes. J. Med. Chem. 56:5094–5114. 10.1021/jm400459m
    1. Xie C., Jiang C., Shi J., Gao X., Sun D., Sun L., Wang T., Takahashi S., Anitha M., Krausz K.W., et al. . 2017. An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice. Diabetes. 66:613–626. 10.2337/db16-0663
    1. Yang F., Huang X., Yi T., Yen Y., Moore D.D., and Huang W.. 2007. Spontaneous development of liver tumors in the absence of the bile acid receptor farnesoid X receptor. Cancer Res. 67:863–867. 10.1158/0008-5472.CAN-06-1078
    1. Yesair D.W., and Himmelfarb P.. 1970. Hydrolysis of conjugated bile acids by cell-free extracts from aerobic bacteria. Appl. Microbiol. 19:295–300.
    1. Zhang Y., Kast-Woelbern H.R., and Edwards P.A.. 2003. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J. Biol. Chem. 278:104–110. 10.1074/jbc.M209505200
    1. Zhang Y., Lee F.Y., Barrera G., Lee H., Vales C., Gonzalez F.J., Willson T.M., and Edwards P.A.. 2006. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl. Acad. Sci. USA. 103:1006–1011. 10.1073/pnas.0506982103
    1. Zhang Y., Ge X., Heemstra L.A., Chen W.D., Xu J., Smith J.L., Ma H., Kasim N., Edwards P.A., and Novak C.M.. 2012. Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice. Mol. Endocrinol. 26:272–280. 10.1210/me.2011-1157
    1. Zhou M., Wang X., Phung V., Lindhout D.A., Mondal K., Hsu J.Y., Yang H., Humphrey M., Ding X., Arora T., et al. . 2014. Separating Tumorigenicity from Bile Acid Regulatory Activity for Endocrine Hormone FGF19. Cancer Res. 74:3306–3316. 10.1158/0008-5472.CAN-14-0208
    1. Zieve F.J., Kalin M.F., Schwartz S.L., Jones M.R., and Bailey W.L.. 2007. Results of the glucose-lowering effect of WelChol study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin. Ther. 29:74–83. 10.1016/j.clinthera.2007.01.003

Source: PubMed

3
订阅