Bite Force Transducers and Measurement Devices

Yingzhi Gu, Yuxing Bai, Xianju Xie, Yingzhi Gu, Yuxing Bai, Xianju Xie

Abstract

In dental research, bite force has become an important curative effect evaluation index for tooth restoration, periodontal treatment, and orthodontic treatment. Bite force is an important parameter to evaluate the efficacy of the masticatory system. Physicians obtain the therapeutic basis for occlusal adjustment by measuring the bite force and the dynamic changes in occlusal contact at different stages of treatment and objectively evaluate the therapeutic effect. At present, many devices are used to record the bite force. Most of these devices use force transducers to detect bite force, such as strain gauge transducers, piezoresistive transducers, piezoelectric transducers, optical fiber transducers, and pressure-sensitive films. This article summarizes the various equipment used to record bite force, related materials and the characteristics of this equipment. It provides a reference for physicians to make choices during the clinical process and at the same time provides a basis for the development of new occlusal force measurement materials.

Keywords: bite force; bite force device; force measurement; force transducer; masticatory system.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Gu, Bai and Xie.

Figures

FIGURE 1
FIGURE 1
Commonly used piezoresistive sensors for bite force measurement. (A) An illustrative figure of the FSR 151 (Interlink Electronics Inc., Camarillo, CA, United States) sensor. (B) An illustrative figure showing the construction of the FSR151 sensor, consisting of two thermoplastic plastic sheets. Two conductive electrodes crossing each other are embedded on the bottom sheet, and semiconductive polyetherimide ink is coated on the top sheet. (C) An illustrative figure of the Flexiforce (Tekscan, South Boston, MA, United States) sensor.
FIGURE 2
FIGURE 2
Illustrative figure of the T Scan system (Tekscan, Inc., South Boston, MA, United States) sensor and Dental Prescale system film. (A) A T-scan sensor is shaped to fit the dental arch. There are control buttons on the handpiece, which is convenient for doctors to operate. (B) A dental prescale system film is shaped to fit the dental arch. (C) The dental prescale system film is comprised of two polyethylene terephthalate films and many microcapsules containing color-forming materials between them. When the bite force is applied, the microcapsules collapse, and the color former contained in the capsule leaks out to react with the developer and form a red color.

References

    1. Abdolmaleki H., Agarwala S. (2020). PVDF-BaTiO3 nanocomposite inkjet inks with enhanced β-phase crystallinity for printed electronics. Polymers (Basel) 12:2430. 10.3390/polym12102430
    1. Alam M. K., Alfawzan A. A. (2020). Maximum voluntary molar bite force in subjects with malocclusion: multifactor analysis. J. Int. Med. Res. 48:300060520962943.
    1. Al-Omiri M. K., Sghaireen M. G., Alhijawi M. M., Alzoubi I. A., Lynch C. D., Lynch E. (2014). Maximum bite force following unilateral implant-supported prosthetic treatment: within-subject comparison to opposite dentate side. J. Oral Rehabil. 41 624–629. 10.1111/joor.12174
    1. Assery M. K., Albusaily H. S., Pani S. C., Aldossary M. S. (2020). Bite force and occlusal patterns in the mixed dentition of children with down syndrome. J. Prosthodont. 29 472–478. 10.1111/jopr.13186
    1. Athavale O. N., Paskaranandavadivel N., Angeli T. R., Avci R., Cheng L. K. (2020). Design of pressure sensor arrays to assess electrode contact pressure during in vivo recordings in the gut. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020 4204–4207.
    1. Bakke M. (2006). Bite force and occlusion. Semin. Orthod. 12 120–126. 10.1053/j.sodo.2006.01.005
    1. Bavia P. F., Vilanova L. S. R., Garcia R. C. M. R. (2016). Craniofacial morphology affects bite force in patients with painful temporomandibular disorders. Braz. Dent. J. 27 619–624. 10.1590/0103-6440201600708
    1. Bing L., Mito T., Yoda N., Sato E., Shigemitsu R., Han J. M., et al. (2020). Effect of peri-implant bone resorption on mechanical stress in the implant body: in vivo measured load-based finite element analysis. J. Oral Rehabil. 47 1566–1573. 10.1111/joor.13097
    1. Braun S., Hnat W. P., Freudenthaler J. W., Marcotte M. R., Honigle K., Johnson B. E. (1996). A study of maximum bite force during growth and development. Angle Orthod. 66 261–264.
    1. Chen M., Luo W., Xu Z., Zhang X., Xie B., Wang G., et al. (2019). An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays. Nat. Commun. 10:4024.
    1. Choi Y. J., Lim H., Chung C. J., Park K. H., Kim K. H. (2014). Two-year follow-up of changes in bite force and occlusal contact area after intraoral vertical ramus osteotomy with and without Le Fort I osteotomy. Int. J. Oral Maxillofac. Surg. 43 742–747. 10.1016/j.ijom.2014.02.005
    1. Clemente M., Mendes J., Moreira A., Ferreira A. P., Amarante J. M. A. (2018). Prosthodontic treatment plan for a saxophone player: a conceptual approach. Dent. J. (Basel) 6:33. 10.3390/dj6030033
    1. Collins P. (2015). Force Measurement. Mechanical Engineering Handbook. Hoboken, NJ: Wiley. 1–35.
    1. da Silva R. J., Issa J. P., Semprini M., da Silva C. H., de Vasconcelos P. B., Celino C. A., et al. (2011). Clinical feasibility of mandibular implant overdenture retainers submitted to immediate load. Gerodontology 28 227–232. 10.1111/j.1741-2358.2010.00374.x
    1. Dergin S. G. (2018). JVA, Mastication and Digital Occlusal Analysis in Diagnosis and Treatment of Temporomandibular Disorders. Rijeka: IntechOpen.
    1. Ernberg M., Hedenberg-Magnusson B., Alstergren P., Kopp S. (1996). Short-term effect of glucocorticoid injection into the superficial masseter muscle of patients with chronic myalgia: a comparison between fibromyalgia and localized myalgia. J. Orofac. Pain 11 249–257.
    1. Fastier-Wooller J., Phan H. P., Dinh T., Nguyen T. K., Cameron A., Öchsner A., et al. (2016). Novel low-cost sensor for human bite force measurement. Sensors (Basel) 16:1244. 10.3390/s16081244
    1. Fernandes C. P., Glantz P.-O. J., Svensson S. A., Bergmark A. (2003). A novel sensor for bite force determinations. Dent. Mater. 19 118–126. 10.1016/s0109-5641(02)00020-9
    1. Freeman P. W., Lemen C. A. (2008). Measuring bite force in small mammals with a piezo-resistive sensor. J. Mammal. 89 513–517. 10.1644/07-mamm-a-101r.1
    1. Fujimoto K., Suito H., Nagao K., Ichikawa T. (2020). Does masticatory ability contribute to nutritional status in older individuals? Int. J. Environ. Res. Public Health 17:7373. 10.3390/ijerph17207373
    1. Garcia M. A., Rios D., Honório H. M., Trindade-Suedam I. K. (2016). Bite force of children with repaired unilateral and bilateral cleft lip and palate. Arch. Oral Biol. 68 83–87. 10.1016/j.archoralbio.2016.03.019
    1. Gibbs C. H., Mahan P. E., Mauderli A., Lundeen H. C., Walsh E. K. (1986). Limits of human bite strength. J. Prosthet. Dent. 56 226–229. 10.1016/0022-3913(86)90480-4
    1. Gökçen-Röhlig B., Kipirdi S., Baca E., Keskin H., Sato S. (2013). Evaluation of orofacial function in temporomandibular disorder patients after low-level laser therapy. Acta Odontol. Scand. 71 1112–1117. 10.3109/00016357.2012.749517
    1. Gonçalves T. M., de Vasconcelos L. M., da Silva W. J., Del Bel Cury A. A., Garcia R. C. (2011). Influence of female hormonal fluctuation on maximum occlusal force. Braz. Dent. J. 22 497–501. 10.1590/s0103-64402011000600010
    1. González A. M., García Á, Benavente-Peces C., Pardo L. (2016). Revisiting the characterization of the losses in piezoelectric materials from impedance spectroscopy at resonance. Materials (Basel) 9:72. 10.3390/ma9020072
    1. Hasan I., Madarlis C., Keilig L., Dirk C., Weber A., Bourauel C., et al. (2016). Changes in biting forces with implant-supported overdenture in the lower jaw: a comparison between conventional and mini implants in a pilot study. Ann. Anat. 208 116–122. 10.1016/j.aanat.2016.06.011
    1. Heuser F., Bourauel C., Stark H., Dörsam I. (2020). Clinical investigations of the comparability of different methods used to display occlusal contact points. Int. J. Comput. Dent. 23 245–255.
    1. Ibraheem E., El-sisy A. (2020). Comparing maximum bite force for diabetic patients wearing two different types of removable partial dentures: a randomized cross-over study. Int. J. Adv. Res. 8 198–204. 10.21474/ijar01/10767
    1. Iwasaki M., Yoshihara A., Sato N., Sato M., Minagawa K., Shimada M., et al. (2018). A 5-year longitudinal study of association of maximum bite force with development of frailty in community-dwelling older adults. J. Oral Rehabil. 45 17–24. 10.1111/joor.12578
    1. Jansen van Vuuren L., Jansen van Vuuren W. A., Broadbent J. M., Duncan W. J., Waddell J. N. (2020). Development of a bite force transducer for measuring maximum voluntary bite forces between individual opposing tooth surfaces. J. Mech. Behav. Biomed. Mater. 109:103846. 10.1016/j.jmbbm.2020.103846
    1. Kim J. H., Han J. H., Park C. W., Min N. K. (2020). Enhancement of withstand voltage in silicon strain gauges using a thin alkali-free glass. Sensors (Basel) 20:3024. 10.3390/s20113024
    1. Kogawa E. M., Calderon P. S., Lauris J. R. P., Araujo C. R. P., Conti P. C. R. (2006). Evaluation of maximal bite force in temporomandibular disorders patients. J. Oral Rehabil. 33 559–565. 10.1111/j.1365-2842.2006.01619.x
    1. Koos B., Godt A., Schille C., Göz G. (2010). Precision of an instrumentation-based method of analyzing occlusion and its resulting distribution of forces in the dental arch. J. Orofac. Orthop. 71 403–410. 10.1007/s00056-010-1023-7
    1. Kruse T., Heller R., Wirth B., Glöggler J., Wurster C. D., Ludolph A. C., et al. (2020a). Maximum bite force in patients with spinal muscular atrophy during the first year of nusinersen therapy – a pilot study. Acta Myol. 39 83–89.
    1. Kruse T., Lehmann H. C., Braumann B., Fink G. R., Wunderlich G. (2020b). The maximum bite force for treatment evaluation in severely affected adult SMA patients-protocol for a longitudinal study. Front. Neurol. 11:139. 10.3389/fneur.2020.00139
    1. Kurosawa M., Taniguchi K., Momose H., Sakaguchi M., Kamijo M., Nishikawa A. (2019). Simultaneous measurement of ear canal movement, electromyography of the masseter muscle and occlusal force for earphone-type occlusal force estimation device development. Sensors (Basel) 19:3441. 10.3390/s19153441
    1. Lantada A. D., Bris C. G., Morgado P. L., Maudes J. S. (2012). Novel system for bite-force sensing and monitoring based on magnetic near field communication. Sensors (Basel) 12 11544–11558. 10.3390/s120911544
    1. Lin K. R., Chang C. H., Liu T. H., Lin S. W., Lin C. H. (2011). Experimental and numerical estimations into the force distribution on an occlusal surface utilizing a flexible force sensor array. J. Biomech. 44 1879–1884. 10.1016/j.jbiomech.2011.04.032
    1. Liu Y., Zheng H., Zhao L., Liu S., Yao K., Li D., et al. (2020). Electronic skin from high-throughput fabrication of intrinsically stretchable lead zirconate titanate elastomer. Research (Wash DC.) 2020:1085417.
    1. Moghadam E. T., Yazdanian M., Tahmasebi E., Tebyanian H., Ranjbar R., Yazdanian A., et al. (2020). Current herbal medicine as an alternative treatment in dentistry: in vitro, in vivo and clinical studies. Eur. J. Pharmacol. 21:173665. 10.1016/j.ejphar.2020.173665
    1. Nandasiri G. K., Shahidi A. M., Dias T. (2020). Study of three interface pressure measurement systems used in the treatment of venous disease. Sensors (Basel) 20:5777. 10.3390/s20205777
    1. Oh H. J., Kim D. K., Choi Y. C., Lim S. J., Jeong J. B., Ko J. H., et al. (2020). Fabrication of piezoelectric poly(L-lactic acid)/BaTiO3 fibre by the melt-spinning process. Sci. Rep. 10:16339.
    1. Ortuğ G. (2002). A new device for measuring mastication force (Gnathodynamometer). Ann. Anat. 184 393–396. 10.1016/s0940-9602(02)80063-2
    1. Oueis H. (2009). Factors affecting masticatory performance of Japanese children. Int. J. Paediatr. Dent. 19 201–205. 10.1111/j.1365-263x.2008.00965.x
    1. Pais Clemente M., Mendes J., Cerqueira J., Moreira A., Vasconcelos M., Pinhão Ferreira A., et al. (2019). Integrating piezoresistive sensors on the embouchure analysis of the lower lip in single reed instrumentalists: implementation of the lip pressure appliance (LPA). Clin. Exp. Dent. Res. 5 491–496. 10.1002/cre2.214
    1. Peng X., Hu L., Liu W., Fu X. (2020). Model-based analysis and regulating approach of air-coupled transducers with spurious resonance. Sensors (Basel) 20:6184. 10.3390/s20216184
    1. Pepato A. O., Palinkas M., Regalo S. C., de Medeiros E. H., de Vasconcelos P. B., Sverzut C. E., et al. (2014). Effect of surgical treatment of mandibular fracture: electromyographic analysis, bite force, and mandibular mobility. J. Craniofac. Surg. 25 1714–1720. 10.1097/scs.0000000000000968
    1. Pereira L. J., Gaviao M. B. D., Bonjardim L. R., Castelo P. M., Van Der Bilt A. (2007a). Muscle thickness, bite force, and cranio-facial dimensions in adolescents with signs and symptoms of temporomandibular dysfunction. Eur. J. Orthod. 29 72–78. 10.1093/ejo/cjl055
    1. Pereira L. J., Pastore M. G., Bonjardim L. R., Castelo P. M., Gavião M. B. (2007b). Molar bite force and its correlation with signs of temporomandibular dysfunction in mixed and permanent dentition. J. Oral Rehabil. 34 759–766. 10.1111/j.1365-2842.2006.01697.x
    1. Rosier P. F. W. M. (2020). Good urodynamic practice: pressure signal quality immediately after catheter insertion for cystometry with a water-filled pressure transducer system and its relevance for the ICS zero procedure. Neurourol. Urodyn. 40 319–325. 10.1002/nau.24561
    1. Sattayasoonthorn P., Suthakorn J., Chamnanvej S. (2019). On the feasibility of a liquid crystal polymer pressure sensor for intracranial pressure measurement. Biomed. Tech. (Berl.) 64 543–553. 10.1515/bmt-2018-0029
    1. Serra C. M., Manns A. E. (2013). Bite force measurements with hard and soft bite surfaces. J. Oral Rehabil. 40 563–568. 10.1111/joor.12068
    1. Serra M. D., Gambareli F. R., Gavião M. B. D. (2007). A 1–year intraindividual evaluation of maximum bite force in children wearing a removable partial dental prosthesis. J. Dent. Child. 74 171–176.
    1. Shiga H., Komino M., Uesugi H., Sano M., Yokoyama M., Nakajima K., et al. (2020). Comparison of two dental prescale systems used for the measurement of occlusal force. Odontology 108 676–680. 10.1007/s10266-020-00509-9
    1. Slingsby L. S., Jones A., Waterman-Pearson A. E. (2001). Use of a new finger-mounted device to compare mechanical nociceptive thresholds in cats given pethidine or no medication after castration. Res. Vet. Sci. 70 243–246. 10.1053/rvsc.2001.0467
    1. Song P., Ma Z., Ma J., Yang L., Wei J., Zhao Y., et al. (2020a). Recent progress of miniature MEMS pressure sensors. Micromachines (Basel) 11:56. 10.3390/mi11010056
    1. Song P., Si C., Zhang M., Zhao Y., He Y., Liu W., et al. (2020b). A novel piezoresistive MEMS pressure sensors based on temporary bonding technology. Sensors (Basel) 20:337. 10.3390/s20020337
    1. Soni R., Yadav H., Pathak A., Bhatnagar A., Kumar V. (2020). Comparative evaluation of biting force and chewing efficiency of all-on-four treatment concept with other treatment modalities in completely edentulous individuals. J. Indian Prosthodont. Soc. 20 312–320. 10.4103/jips.jips_464_19
    1. Takahashi M., Yamaguchi S., Fujii T., Watanabe M., Hattori Y. (2016). Contribution of each masticatory muscle to the bite force determined by MRI using a novel metal-free bite force gauge and an index of total muscle activity. J. Magn. Reson. Imaging 44 804–813. 10.1002/jmri.25223
    1. Tzakis M. G., Karlsson S., Carlsson G. E. (1992). Effects of intense chewing on some parameters of masticatory function. J. Prosthet. Dent. 67 405–409. 10.1016/0022-3913(92)90258-c
    1. Umesh S., Padma S., Asokan S., Srinivas T. (2016). Fiber bragg grating based bite force measurement. J. Biomech. 49 2877–2881. 10.1016/j.jbiomech.2016.06.036
    1. Valentim A. F., Furlan R. M., Perilo T. V., Berbert M. C., Motta A. R., de Las Casas E. B. (2014). Evaluation of the force applied by the tongue and lip on the maxillary central incisor tooth. Codas 26 235–240. 10.1590/2317-1782/201420130077
    1. Verma T. P., Kumathalli K. I., Jain V., Kumar R. (2017). Bite force recording devices – a review. J. Clin. Diagn. Res. 11 ZE01–ZE05.
    1. Vilela M., Picinato-Pirola M. N. C., Giglio L. D., Anselmo-Lima W. T., Valera F. C. P., Trawitzki L. V. V., et al. (2017). Força de mordida em crianças com mordida cruzada posterior. Audiol. Commun. Res. 22:e1723.
    1. Wang H., Wang L., Sun N., Yao Y., Hao L., Xu L., et al. (2020). Quantitative comparison of the performance of piezoresistive, piezoelectric, acceleration, and optical pulse wave sensors. Front. Physiol. 10:1563. 10.3389/fphys.2019.01563
    1. Williams W. N., Low S. B., Cooper W. R., Cornell C. E. (1987). The effect of periodontal bone loss on bite force discrimination. J. Periodontol. 58 236–239.
    1. Zhu P., Peng H., Mao L., Tian J. (2020). Piezoelectric single crystal ultrasonic transducer for endoscopic drug release in gastric mucosa. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 10.1109/TUFFC.2020.3026320 [Epub ahead of print].

Source: PubMed

3
订阅