Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic

Donna L Mendrick, Anna Mae Diehl, Lisa S Topor, Rodney R Dietert, Yvonne Will, Michele A La Merrill, Sebastien Bouret, Vijayalaskshmi Varma, Kenneth L Hastings, Thaddeus T Schug, Susan G Emeigh Hart, Florence G Burleson, Donna L Mendrick, Anna Mae Diehl, Lisa S Topor, Rodney R Dietert, Yvonne Will, Michele A La Merrill, Sebastien Bouret, Vijayalaskshmi Varma, Kenneth L Hastings, Thaddeus T Schug, Susan G Emeigh Hart, Florence G Burleson

Abstract

Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic, a Society of Toxicology Contemporary Concepts in Toxicology (CCT) workshop was held on March 11, 2017. The meeting was convened to raise awareness of metabolic syndrome and its associated diseases and serve as a melting pot with scientists of multiple disciplines (eg, toxicologists, clinicians, regulators) so as to spur research and understanding of this condition. The criteria for metabolic syndrome include obesity, dyslipidemia (low high-density lipoprotein and/or elevated triglycerides), elevated blood pressure, and alterations in glucose metabolism. It can lead to a greater potential of type 2 diabetes, lipid disorders, cardiovascular disease, hepatic steatosis, and other circulatory disorders. Although there are no approved drugs specifically for this syndrome, many drugs target diseases associated with this syndrome thus potentially increasing the likelihood of drug-drug interactions. There is currently significant research focusing on understanding the key pathways that control metabolism, which would be likely targets of risk factors (eg, exposure to xenobiotics, genetics) and lifestyle factors (eg, microbiome, nutrition, and exercise) that contribute to metabolic syndrome. Understanding these pathways could also lead to the development of pharmaceutical interventions. As individuals with metabolic syndrome have signs similar to that of toxic responses (eg, oxidative stress and inflammation) and organ dysfunction, these alterations should be taken into account in drug development. With the increasing frequency of metabolic syndrome in the general population, the idea of a "normal" individual may need to be redefined. This paper reports on the substance and outcomes of this workshop.

Figures

Figure 1.
Figure 1.
Metabolic syndrome with its associated risk factors and diseases at the intersection with drug toxicity (TG, triglycerides; HDL-c, high-density lipoprotein cholesterol; PCOS, polycystic ovary syndrome; NASH, nonalcoholic steatohepatitis). Metabolic Syndrome: Toxicology’s Next Patient, Communiqué Winter 2017, Released on February 16, 2017, ©2017 Society of Toxicology. All rights reserved.

References

    1. Anuurad E., Semrad A., Berglund L. (2009). Human immunodeficiency virus and highly active antiretroviral therapy-associated metabolic disorders and risk factors for cardiovascular disease. Metab. Syndr. Relat. Disord. 7, 401–410.
    1. Bennett B. J., de Aguiar Vallim T. Q., Wang Z., Shih D. M., Meng Y., Gregory J., Allayee H., Lee R., Graham M., Crooke R., et al. (2013). Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60.
    1. Bouret S. G. (2013). Organizational actions of metabolic hormones. Front. Neuroendocrinol. 34, 18–26.
    1. Bray M. S., Loos R. J., McCaffery J. M., Ling C., Franks P. W., Weinstock G. M., Snyder M. P., Vassy J. L., Agurs-Collins T. (2016). NIH working group report-using genomic information to guide weight management: From universal to precision treatment. Obesity (Silver Spring) 24, 14–22.
    1. Brown J. M., Hazen S. L. (2015). The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med. 66, 343–359.
    1. Brown J. M., Hazen S. L. (2017). Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. J. Biol. Chem. 292, 8560–8568.
    1. Cano-Sancho G., Salmon A. G., La Merrill M. A. (2017). Association between exposure to p,p′-DDT and its metabolite p,p′-DDE with obesity: Integrated systematic review and meta-analysis. Environ. Health Perspect. doi:10.1289/EHP527.
    1. Cespedes E. M., Gillman M. W., Kleinman K., Rifas-Shiman S. L., Redline S., Taveras E. M. (2014). Television viewing, bedroom television, and sleep duration from infancy to mid-childhood. Pediatrics 133, e1163–e1171.
    1. Cohn B. A., Wolff M. S., Cirillo P. M., Sholtz R. I. (2007). DDT and breast cancer in young women: New data on the significance of age at exposure. Environ. Health Perspect. 115, 1406–1414.
    1. Cunningham S. A., Kramer M. R., Narayan K. M. (2014). Incidence of childhood obesity in the United States. N. Engl. J. Med. 370, 1660–1661.
    1. Desai M., Jellyman J. K., Ross M. G. (2015). Epigenomics, gestational programming and risk of metabolic syndrome. Int. J. Obes. (Lond.) 39, 633–641.
    1. Eskenazi B., Chevrier J., Rosas L. G., Anderson H. A., Bornman M. S., Bouwman H., Chen A., Cohn B. A., de Jager C., Henshel D. S., et al. (2009). The Pine River statement: Human health consequences of DDT use. Environ. Health Perspect. 117, 1359–1367.
    1. Eskenazi B., Marks A. R., Bradman A., Fenster L., Johnson C., Barr D. B., Jewell N. P. (2006). In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics 118, 233–241.
    1. Evangelou E., Ntritsos G., Chondrogiorgi M., Kavvoura F. K., Hernandez A. F., Ntzani E. E., Tzoulaki I. (2016). Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environ. Int. 91, 60–68.
    1. Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S., Prifti E., Vieira-Silva S., Gudmundsdottir V., Krogh Pedersen H., et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266.
    1. Fraser A., Tilling K., Macdonald-Wallis C., Sattar N., Brion M. J., Benfield L., Ness A., Deanfield J., Hingorani A., Nelson S. M., et al. (2010). Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood. Circulation 121, 2557–2564.
    1. Fromenty B. (2013). Drug-induced liver injury in obesity. J. Hepatol. 58, 824–826.
    1. Gaillard R., Steegers E. A., Franco O. H., Hofman A., Jaddoe V. W. (2015). Maternal weight gain in different periods of pregnancy and childhood cardio-metabolic outcomes. The Generation R Study. Int. J. Obes. (Lond.) 39, 677–685.
    1. Glavas M. M., Kirigiti M. A., Xiao X. Q., Enriori P. J., Fisher S. K., Evans A. E., Grayson B. E., Cowley M. A., Smith M. S., Grove K. L. (2010). Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology 151, 1598–1610.
    1. Grundy S. M. (2008). Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 28, 629–636.
    1. Henao-Mejia J., Elinav E., Jin C., Hao L., Mehal W. Z., Strowig T., Thaiss C. A., Kau A. L., Eisenbarth S. C., Jurczak M. J., et al. (2012). Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482, 179–185.
    1. Herrera-Portugal C., Ochoa H., Franco-Sanchez G., Yanez L., Diaz-Barriga F. (2005). Environmental pathways of exposure to DDT for children living in a malarious area of Chiapas, Mexico. Environ. Res. 99, 158–163.
    1. Knowler W. C., Barrett-Connor E., Fowler S. E., Hamman R. F., Lachin J. M., Walker E. A., Nathan D. M. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403.
    1. Koeth R. A., Wang Z., Levison B. S., Buffa J. A., Org E., Sheehy B. T., Britt E. B., Fu X., Wu Y., Li L., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585.
    1. Korem T., Zeevi D., Suez J., Weinberger A., Avnit-Sagi T., Pompan-Lotan M., Matot E., Jona G., Harmelin A., Cohen N., et al. (2015). Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349, 1101–1106.
    1. Kraja A. T., Chasman D. I., North K. E., Reiner A. P., Yanek L. R., Kilpelainen T. O., Smith J. A., Dehghan A., Dupuis J., Johnson A. D., et al. (2014). Pleiotropic genes for metabolic syndrome and inflammation. Mol. Genet. Metab. 112, 317–338.
    1. Kramer M. R., Raskind I. G., Van Dyke M. E., Matthews S. A., Cook-Smith J. N. (2016). Geography of adolescent obesity in the U.S., 2007–2011. Am. J. Prev. Med. 51, 898–909.
    1. La Merrill M., Karey E., Moshier E., Lindtner C., La Frano M. R., Newman J. W., Buettner C., Alexander B. T. (2014). Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring. PLoS One 9, e103337..
    1. La Merrill M. A., Sethi S., Benard L., Moshier E., Haraldsson B., Buettner C. (2016). Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ. Health Perspect. 124, 1722–1727.
    1. Lim S., Ahn S. Y., Song I. C., Chung M. H., Jang H. C., Park K. S., Lee K.-U., Pak Y. K., Lee H. K., Malaga G. (2009). Chronic exposure to the herbicide, atrazine, causes mitochondrial dysfunction and insulin resistance. PLoS One 4, e5186..
    1. Locke A. E., Kahali B., Berndt S. I., Justice A. E., Pers T. H., Day F. R., Powell C., Vedantam S., Buchkovich M. L., Yang J., et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206.
    1. Lumeng C. N. (2013). Innate immune activation in obesity. Mol. Aspects Med. 34, 12–29.
    1. Malagon M. M., Diaz-Ruiz A., Guzman-Ruiz R., Jimenez-Gomez Y., Moreno N. R., Garcia-Navarro S., Vazquez-Martinez R., Peinado J. R. (2013). Adipobiology for novel therapeutic approaches in metabolic syndrome. Curr. Vasc. Pharmacol. 11, 954–967.
    1. Marotz C. A., Zarrinpar A. (2016). Treating obesity and metabolic syndrome with fecal microbiota transplantation. Yale J. Biol. Med. 89, 383–388.
    1. Maes H. H., Neale M. C., Eaves L. J. (1997). Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 27, 325–351.
    1. Montgomery M. K., Turner N. (2015). Mitochondrial dysfunction and insulin resistance: An update. Endocr. Connect. 4, R1–R15.
    1. Mullins E. N., Miller A. L., Cherian S. S., Lumeng J. C., Wright K. P. Jr., Kurth S., Lebourgeois M. K. (2017). Acute sleep restriction increases dietary intake in preschool-age children. J. Sleep Res. 26, 48–54.
    1. Narayan K. M., Boyle J. P., Thompson T. J., Sorensen S. W., Williamson D. F. (2003). Lifetime risk for diabetes mellitus in the United States. JAMA 290, 1884–1890.
    1. Nassir F., Ibdah J. A. (2014). Role of mitochondria in nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15, 8713–8742.
    1. Park K. S., Chan J. C., Chuang L.-M., Suzuki S., Araki E., Nanjo K., Ji L., Ng M., Nishi M., Furuta H., et al. (2008). A mitochondrial DNA variant at position 16189 is associated with type 2 diabetes mellitus in Asians. Diabetologia 51, 602–608.
    1. Park S. H., Lim J. E., Park H., Jee S. H. (2016). Body burden of persistent organic pollutants on hypertension: A meta-analysis. Environ. Sci. Pollut. Res. Int. 23, 14284–14293.
    1. Plagemann A. (2006). Perinatal nutrition and hormone-dependent programming of food intake. Horm. Res. 65, 83–89.
    1. Pravenec M., Hyakukoku M., Houstek J., Zidek V., Landa V., Mlejnek P., Miksik I., Dudova-Mothejzikova K., Pecina P., Vrbacky M., et al. (2007). Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains. Genome Res. 17, 1319–1326.
    1. Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., Liang S., Zhang W., Guan Y., Shen D., et al. (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60.
    1. Reilly J. J., Armstrong J., Dorosty A. R., Emmett P. M., Ness A., Rogers I., Steer C., Sherriff A. (2005). Early life risk factors for obesity in childhood: cohort study. BMJ 330, 1357..
    1. Ridaura V. K., Faith J. J., Rey F. E., Cheng J., Duncan A. E., Kau A. L., Griffin N. W., Lombard V., Henrissat B., Bain J. R., et al. (2013). Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214..
    1. Sell H., Habich C., Eckel J. (2012). Adaptive immunity in obesity and insulin resistance. Nat. Rev. Endocrinol. 8, 709–716.
    1. Song Y., Chou E. L., Baecker A., You N. C., Song Y., Sun Q., Liu S. (2016). Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: A systematic review and meta-analysis. J. Diabetes 8, 516–532.
    1. Strowig T., Henao-Mejia J., Elinav E., Flavell R. (2012). Inflammasomes in health and disease. Nature 481, 278–286.
    1. Stunkard A. J., Harris J. R., Pedersen N. L., McClearn G. E. (1990). Predicting obesity in young adulthood from childhood and parental obesity. N. Engl. J. Med. 322, 1483–1487.
    1. Sunny N. E., Bril F., Cusi K. (2017). Mitochondrial adaptation in nonalcoholic fatty liver disease: Novel mechanisms and treatment strategies. Trends Endocrinol. Metab. 28, 250–260.
    1. Tang-Peronard J. L., Andersen H. R., Jensen T. K., Heitmann B. L. (2011). Endocrine-disrupting chemicals and obesity development in humans: A review. Obes. Rev. 12, 622–636.
    1. Tariq H., Nayudu S., Akella S., Glandt M., Chilimuri S. (2016). Non-alcoholic fatty pancreatic disease: A review of literature. Gastroenterol. Res. 9, 87–91.
    1. Tilg H., Kaser A. (2011). Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132.
    1. Tornatore L., Thotakura A. K., Bennett J., Moretti M., Franzoso G. (2012). The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation. Trends Cell Biol. 22, 557–566.
    1. Toubal A., Treuter E., Clement K., Venteclef N. (2013). Genomic and epigenomic regulation of adipose tissue inflammation in obesity. Trends Endocrinol. Metab. 24, 625–634.
    1. Wang G., Johnson S., Gong Y., Polk S., Divall S., Radovick S., Moon M., Paige D., Hong X., Caruso D., et al. (2016). Weight gain in infancy and overweight or obesity in childhood across the gestational spectrum: A prospective birth cohort study. Sci. Rep. 6, 29867..
    1. Wang Y., Hollis-Hansen K., Ren X., Qiu Y., Qu W. (2016b). Do environmental pollutants increase obesity risk in humans? Obes. Rev. 17, 1179–1197.
    1. Warrier M., Shih D. M., Burrows A. C., Ferguson D., Gromovsky A. D., Brown A. L., Marshall S., McDaniel A., Schugar R. C., Wang Z., et al. (2015). The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 10, 326–338.
    1. Whitaker R. C., Wright J. A., Pepe M. S., Seidel K. D., Dietz W. H. (1997). Predicting obesity in young adulthood from childhood and parental obesity. N. Engl. J. Med. 337, 869–873.
    1. Wolff M. S., Anderson H. A., Britton J. A., Rothman N. (2007). Pharmacokinetic variability and modern epidemiology: The example of dichlorodiphenyltrichloroethane, body mass index, and birth cohort. Cancer Epidemiol. Biomarkers Prev. 16, 1925–1930.

Source: PubMed

3
订阅