One year structural and functional glaucoma progression after trabeculectomy

Jacqueline Chua, Aistė Kadziauskienė, Damon Wong, Rimvydas Ašoklis, Eugenijus Lesinskas, Nguyen Duc Quang, Rachel Chong, Bingyao Tan, Michaël J A Girard, Jean Martial Mari, Jonathan G Crowston, Tin Aung, Leopold Schmetterer, Jacqueline Chua, Aistė Kadziauskienė, Damon Wong, Rimvydas Ašoklis, Eugenijus Lesinskas, Nguyen Duc Quang, Rachel Chong, Bingyao Tan, Michaël J A Girard, Jean Martial Mari, Jonathan G Crowston, Tin Aung, Leopold Schmetterer

Abstract

We evaluated the changes in visual field mean deviation (VF MD) and retinal nerve fibre layer (RNFL) thickness in glaucoma patients undergoing trabeculectomy. One hundred patients were examined with VF and spectral-domain optical coherence tomography (OCT) before trabeculectomy and 4 follow-up visits over one year. Linear mixed models were used to investigate factors associated with VF and RNFL. VF improved during the first 3 months of follow-up (2.55 ± 1.06 dB/year) and worsened at later visits (-1.14 ± 0.29 dB/year). RNFL thickness reduced by -4.21 ± 0.25 µm/year from 1st month of follow-up. Eyes with an absence of initial VF improvement (β = 0.64; 0.30-0.98), RNFL thinning (β = 0.15; 0.08-0.23), increasing intraocular pressure (IOP; β = -0.11; -0.18 to -0.03) and severe glaucoma (β = -10.82; -13.61 to -8.02) were associated with VF deterioration. Eyes with VF deterioration (β = 0.19; 0.08-0.29), increasing IOP (β = -0.09; -0.17 to -0.01), and moderate (β = -6.33; -12.17 to -0.49) or severe glaucoma (β = -19.58; -24.63 to -14.52) were associated with RNFL thinning. Changes in RNFL structure and function occur over a 1-year follow-up period after trabeculectomy. Early VF improvement is more likely to occur in patients with mild/moderate glaucoma, whereas those with severe glaucoma show greater decline over one year. Our findings indicate that progression is observable using OCT, even in late-stage glaucoma.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Identification of eligible glaucoma patients who underwent trabeculectomy. Of the 124 patients enrolled, 100 were included in the analysis. Of which, majority were examined at 7 visits whereas 10 missed one follow-up visit. Visual field tests were performed for 5 visits (visit 1, 4–7) and OCT/IOP were performed at all 7 visits.
Figure 2
Figure 2
Changes in (A) intraocular pressure, (2) visual field mean deviation and (3) retinal nerve fibre layer thickness after trabeculectomy. *Data shown at each time point are expressed as mean and P values were obtained using comparison with the previous follow-up using linear mixed model.
Figure 3
Figure 3
Scatterplot of the change in visual field mean deviation (VF MD) from baseline to 3rd month follow-up versus the change in VF MD from 1 year after surgery compared with before, stratified by glaucoma severity. Eyes having mild glaucoma were indicated with dark filled circle, those having moderate glaucoma in green hollow diamond and severe glaucoma in black hollow triangle. The VF before trabeculectomy and the VF postoperatively (3 months after surgery) were used for the calculation of VF worsening (r = 0.32; P = 0.005).

References

    1. The Advanced Glaucoma Intervention Study (AGIS): 7 The relationship between control of intraocular pressure and visual field deterioration.The AGIS Investigators. American journal of ophthalmology. 2000;130:429–440. doi: 10.1016/S0002-9394(00)00538-9.
    1. Lichter PR, et al. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology. 2001;108:1943–1953. doi: 10.1016/S0161-6420(01)00873-9.
    1. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma Collaborative Normal-Tension Glaucoma Study Group. American journal of ophthalmology. 1998;126:498–505. doi: 10.1016/S0002-9394(98)00272-4.
    1. Heijl A, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Archives of ophthalmology. 2002;120:1268–1279. doi: 10.1001/archopht.120.10.1268.
    1. Garway-Heath DF, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385:1295–1304. doi: 10.1016/S0140-6736(14)62111-5.
    1. Wright TM, Goharian I, Gardiner SK, Sehi M, Greenfield DS. Short-term enhancement of visual field sensitivity in glaucomatous eyes following surgical intraocular pressure reduction. American journal of ophthalmology. 2015;159:378–385 e371. doi: 10.1016/j.ajo.2014.11.012.
    1. Caprioli J, et al. Trabeculectomy Can Improve Long-Term Visual Function in Glaucoma. Ophthalmology. 2016;123:117–128. doi: 10.1016/j.ophtha.2015.09.027.
    1. Musch DC, et al. Visual field improvement in the collaborative initial glaucoma treatment study. American journal of ophthalmology. 2014;158:96–104 e102. doi: 10.1016/j.ajo.2014.04.003.
    1. Spaeth GL. The effect of change in intraocular pressure on the natural history of glaucoma: lowering intraocular pressure in glaucoma can result in improvement of visual fields. Transactions of the ophthalmological societies of the United Kingdom. 1985;104(Pt 3):256–264.
    1. Katz LJ, Spaeth GL, Cantor LB, Poryzees EM, Steinmann WC. Reversible optic disk cupping and visual field improvement in adults with glaucoma. American journal of ophthalmology. 1989;107:485–492. doi: 10.1016/0002-9394(89)90492-3.
    1. Kotecha A, et al. Optic disc and visual field changes after trabeculectomy. Investigative ophthalmology & visual science. 2009;50:4693–4699. doi: 10.1167/iovs.08-3115.
    1. Parrish RK, 2nd, et al. Five-year follow-up optic disc findings of the Collaborative Initial Glaucoma Treatment Study. American journal of ophthalmology. 2009;147:717–724 e711. doi: 10.1016/j.ajo.2008.10.007.
    1. Figus M, et al. Short-term changes in the optic nerve head and visual field after trabeculectomy. Eye. 2011;25:1057–1063. doi: 10.1038/eye.2011.119.
    1. Aydin A, Wollstein G, Price LL, Fujimoto JG, Schuman JS. Optical coherence tomography assessment of retinal nerve fiber layer thickness changes after glaucoma surgery. Ophthalmology. 2003;110:1506–1511. doi: 10.1016/S0161-6420(03)00493-7.
    1. Sogano S, Tomita G, Kitazawa Y. Changes in retinal nerve fiber layer thickness after reduction of intraocular pressure in chronic open-angle glaucoma. Ophthalmology. 1993;100:1253–1258. doi: 10.1016/S0161-6420(93)31497-1.
    1. Raghu N, Pandav SS, Kaushik S, Ichhpujani P, Gupta A. Effect of trabeculectomy on RNFL thickness and optic disc parameters using optical coherence tomography. Eye (Lond) 2012;26:1131–1137. doi: 10.1038/eye.2012.115.
    1. Yamada N, Tomita G, Yamamoto T, Kitazawa Y. Changes in the nerve fiber layer thickness following a reduction of intraocular pressure after trabeculectomy. J Glaucoma. 2000;9:371–375. doi: 10.1097/00061198-200010000-00005.
    1. Membrey WL, Bunce C, Poinoosawmy DP, Fitzke FW, Hitchings RA. Glaucoma surgery with or without adjunctive antiproliferatives in normal tension glaucoma: 2 Visual field progression. The British journal of ophthalmology. 2001;85:696–701. doi: 10.1136/bjo.85.6.696.
    1. Musch DC, et al. Intraocular pressure control and long-term visual field loss in the Collaborative Initial Glaucoma Treatment Study. Ophthalmology. 2011;118:1766–1773. doi: 10.1016/j.ophtha.2011.01.047.
    1. Folgar FA, et al. Effect of successful and partly successful filtering surgery on the velocity of glaucomatous visual field progression. Journal of glaucoma. 2012;21:615–618. doi: 10.1097/IJG.0b013e31821db409.
    1. Baril C, et al. Rates of glaucomatous visual field change after trabeculectomy. The British journal of ophthalmology. 2017;101:874–878. doi: 10.1136/bjophthalmol-2016-308948.
    1. Naito T, et al. Effect of trabeculectomy on visual field progression in Japanese progressive normal-tension glaucoma with intraocular pressure <15 mmHg. PloS one. 2017;12:e0184096. doi: 10.1371/journal.pone.0184096.
    1. Mwanza JC, et al. Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. The British journal of ophthalmology. 2015;99:732–737. doi: 10.1136/bjophthalmol-2014-305745.
    1. Mwanza JC, et al. Residual and Dynamic Range of Retinal Nerve Fiber Layer Thickness in Glaucoma: Comparison of Three OCT Platforms. Investigative ophthalmology & visual science. 2015;56:6344–6351. doi: 10.1167/iovs.15-17248.
    1. Miraftabi A, et al. Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range. Investigative ophthalmology & visual science. 2016;57:4815–4823. doi: 10.1167/iovs.16-19648.
    1. Bowd C, Zangwill LM, Weinreb RN, Medeiros FA, Belghith A. Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma. American journal of ophthalmology. 2017;175:37–44. doi: 10.1016/j.ajo.2016.11.010.
    1. Lavinsky F, et al. Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage? Ophthalmology. 2018;125:1907–1912. doi: 10.1016/j.ophtha.2018.05.020.
    1. Pavlidis M, Stupp T, Naskar R, Cengiz C, Thanos S. Retinal ganglion cells resistant to advanced glaucoma: a postmortem study of human retinas with the carbocyanine dye DiI. Investigative ophthalmology & visual science. 2003;44:5196–5205. doi: 10.1167/iovs.03-0614.
    1. Kadziauskiene A, et al. Long-Term Shape, Curvature, and Depth Changes of the Lamina Cribrosa after Trabeculectomy. Ophthalmology. 2018;125:1729–1740. doi: 10.1016/j.ophtha.2018.05.011.
    1. Krzyzanowska-Berkowska P, Melinska A, Helemejko I, Robert Iskander D. Evaluating displacement of lamina cribrosa following glaucoma surgery. Graefes Arch Clin Exp Ophthalmol. 2018;256:791–800. doi: 10.1007/s00417-018-3920-1.
    1. Krzyzanowska-Berkowska P, Czajor K, Helemejko I, Iskander DR. Relationship between the rate of change in lamina cribrosa depth and the rate of retinal nerve fiber layer thinning following glaucoma surgery. PLoS One. 2018;13:e0206040. doi: 10.1371/journal.pone.0206040.
    1. Ha A, et al. Baseline Lamina Cribrosa Curvature and Subsequent Visual Field Progression Rate in Primary Open-Angle Glaucoma. Ophthalmology. 2018;125:1898–1906. doi: 10.1016/j.ophtha.2018.05.017.
    1. Leung CK. Optical Coherence Tomography Imaging for Glaucoma - Today and Tomorrow. Asia Pac. J Ophthalmol (Phila) 2016;5:11–16. doi: 10.1097/APO.0000000000000179.
    1. Mwanza JC, Warren JL, Budenz DL. Utility of combining spectral domain optical coherence tomography structural parameters for the diagnosis of early Glaucoma: a mini-review. Eye and vision. 2018;5:9. doi: 10.1186/s40662-018-0101-6.
    1. Susanna R, Jr., Vessani RM. Staging glaucoma patient: why and how? Open Ophthalmol J. 2009;3:59–64. doi: 10.2174/1874364100903020059.
    1. Girard MJ, Strouthidis NG, Ethier CR, Mari JM. Shadow removal and contrast enhancement in optical coherence tomography images of the human optic nerve head. Investigative ophthalmology & visual science. 2011;52:7738–7748. doi: 10.1167/iovs.10-6925.
    1. Girard MJ, et al. Lamina cribrosa visibility using optical coherence tomography: comparison of devices and effects of image enhancement techniques. Investigative ophthalmology & visual science. 2015;56:865–874. doi: 10.1167/iovs.14-14903.
    1. Mari JM, Strouthidis NG, Park SC, Girard MJ. Enhancement of lamina cribrosa visibility in optical coherence tomography images using adaptive compensation. Investigative ophthalmology & visual science. 2013;54:2238–2247. doi: 10.1167/iovs.12-11327.
    1. Thakku SG, et al. A Global Shape Index to Characterize Anterior Lamina Cribrosa Morphology and Its Determinants in Healthy Indian Eyes. Investigative ophthalmology & visual science. 2015;56:3604–3614. doi: 10.1167/iovs.15-16707.

Source: PubMed

3
订阅