Entorhinal Cortex Volume Is Associated With Dual-Task Gait Cost Among Older Adults With MCI: Results From the Gait and Brain Study

Ryota Sakurai, Robert Bartha, Manuel Montero-Odasso, Ryota Sakurai, Robert Bartha, Manuel Montero-Odasso

Abstract

Background: Low dual-task gait performance (the slowing of gait speed while performing a demanding cognitive task) is associated with low cognitive performance and an increased risk of progression to dementia in older adults with mild cognitive impairment. However, the reason for this remains unclear. This study aimed to examine the relationship between dual-task cost and regional brain volume, focusing on the hippocampus, parahippocampal gyrus, entorhinal cortex, and motor and lateral frontal cortices in older adults with mild cognitive impairment.

Methods: Forty older adults with mild cognitive impairment from the "Gait and Brain Study" were included in this study. Gait velocity was measured during single-task (ie, walking alone) and dual-task (ie, counting backwards, subtracting serial sevens, and naming animals, in addition to walking) conditions, using an electronic walkway. Regional brain volumes were derived by automated segmentation, using 3T magnetic resonance imaging.

Results: Partial rank correlation analyses demonstrated that a smaller volume of the left entorhinal cortex was associated with higher dual-task costs in counting backwards and subtracting serial sevens conditions. Subsequent logistic regression analyses demonstrated that a smaller volume of the left entorhinal cortex was independently associated with higher dual-task cost (slowing down >20% when performing cognitive task) in these two conditions. There were no other significant associations.

Conclusions: Our results show that lower dual-task gait performance is associated with volume reduction in the entorhinal cortex. Cognitive and motor dysfunction in older adults with mild cognitive impairment may reflect a shared pathogenic mechanism, and dual-task-related gait changes might be a surrogate motor marker for Alzheimer's disease pathology.

Keywords: Dual task; Entorhinal cortex; Gait; Hippocampus.

© The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America.

Figures

Figure 1.
Figure 1.
Coronal T1-weighted magnetic resonance imaging after skull stripping in one participant showing example masks of the segmented hippocampus (yellow), parahippocampal gyrus (light blue), and entorhinal cortex (pink). Full color version is available within the online issue.
Figure 2.
Figure 2.
Scatter graphs of association between dual-task cost in counting backwards and subtracting serial sevens conditions and volume in the left entorhinal cortex.

References

    1. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256:183–194. doi:10.1111/j.1365-2796.2004.01388.x
    1. Camicioli R, Howieson D, Oken B, Sexton G, Kaye J. Motor slowing precedes cognitive impairment in the oldest old. Neurology. 1998;50:1496–1498. doi:10.1212/WNL.50.5.1496
    1. Verghese J, Annweiler C, Ayers E et al. . Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology. 2014;83:718–726. doi:10.1212/WNL.0000000000000717
    1. Hausdorff JM, Yogev G, Springer S, Simon ES, Giladi N. Walking is more like catching than tapping: gait in the elderly as a complex cognitive task. Exp Brain Res. 2005;164:541–548. doi:10.1007/s00221-005-2280-3
    1. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60:2127–2136. doi:10.1111/j.1532-5415.2012.04209.x
    1. Montero-Odasso M, Bergman H, Phillips NA, Wong CH, Sourial N, Chertkow H. Dual-tasking and gait in people with mild cognitive impairment. The effect of working memory. BMC Geriatr. 2009;9:41. doi:10.1186/1471-2318-9-41
    1. Montero-Odasso M, Muir SW, Speechley M. Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Arch Phys Med Rehabil. 2012;93:293–299. doi:10.1016/j.apmr.2011.08.026
    1. Beauchet O, Launay CP, Sekhon H et al. . Association of increased gait variability while dual tasking and cognitive decline: results from a prospective longitudinal cohort pilot study. GeroScience. 2017. [Epub ahead of print]. doi:10.1007/s11357-017-9992-8
    1. Doi T, Shimada H, Makizako H et al. . Cognitive function and gait speed under normal and dual-task walking among older adults with mild cognitive impairment. BMC Neurol. 2014;14:67. doi:10.1186/1471-2377-14-67
    1. Montero-Odasso M, Oteng-Amoako A, Speechley M et al. . The motor signature of mild cognitive impairment: results from the gait and brain study. J Gerontol A Biol Sci Med Sci. 2014;69:1415–1421. doi:10.1093/gerona/glu155
    1. Hausdorff JM, Buchman AS. What links gait speed and MCI with dementia? A fresh look at the association between motor and cognitive function. J Gerontol A Biol Sci Med Sci. 2013;68:409–411. doi:10.1093/gerona/glt002
    1. Montero-Odasso MM, Sarquis-Adamson Y, Speechley M et al. . Association of dual-task gait with incident dementia in mild cognitive impairment: results from the gait and brain study. JAMA Neurol. 2017;74:857–865. doi:10.1001/jamaneurol.2017.0643
    1. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science. 1984;225:1168–1170. doi:10.1126/science.6474172
    1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–259. doi:10.1007/BF00308809
    1. Dickerson BC, Goncharova I, Sullivan MP et al. . MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging. 2001;22:747–754. doi:10.1016/S0197-4580(01)00271-8
    1. Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer’s disease in normal aging. Ann Neurol. 2006;59:673–681. doi:10.1002/ana.20799
    1. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011;32:1733–1741. doi:10.1016/j.neurobiolaging.2009.11.008
    1. Rosano C, Aizenstein H, Brach J, Longenberger A, Studenski S, Newman AB. Special article: gait measures indicate underlying focal gray matter atrophy in the brain of older adults. J Gerontol A Biol Sci Med Sci. 2008;63:1380–1388. doi:10.1093/gerona/63.12.1380
    1. Rosano C, Aizenstein HJ, Studenski S, Newman AB. A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2007;62:1048–1055.doi:10.1093/gerona/62.9.1048
    1. Sakurai R, Fujiwara Y, Yasunaga M et al. . Regional cerebral glucose metabolism and gait speed in healthy community-dwelling older women. J Gerontol A Biol Sci Med Sci. 2014;69:1519–1527. doi:10.1093/gerona/glu093
    1. Sakurai R, Ishii K, Yasunaga M et al. . The neural substrate of gait and executive function relationship in elderly women: a PET study. Geriatr Gerontol Int. 2017;17:1873–1880. doi:10.1111/ggi.12982
    1. Rosso AL, Verghese J, Metti AL et al. . Slowing gait and risk for cognitive impairment: the hippocampus as a shared neural substrate. Neurology. 2017;89:336–342. doi:10.1212/WNL.0000000000004153
    1. Wennberg AMV, Lesnick TG, Schwarz CG et al. . Longitudinal association between brain amyloid beta and gait in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci. 2017. [Epub ahead of print]. doi:10.1093/gerona/glx240
    1. Mirelman A, Maidan I, Bernad-Elazari H et al. . Increased frontal brain activation during walking while dual tasking: an fNIRS study in healthy young adults. J Neuroeng Rehabil. 2014;11:85. doi:10.1186/ 1743-0003-11-85
    1. Holtzer R, Mahoney JR, Izzetoglu M, Izzetoglu K, Onaral B, Verghese J. fNIRS study of walking and walking while talking in young and old individuals. J Gerontol A Biol Sci Med Sci. 2011;66:879–887. doi:10.1093/gerona/glr068
    1. Annweiler C, Beauchet O, Bartha R et al. . Motor cortex and gait in mild cognitive impairment: a magnetic resonance spectroscopy and volumetric imaging study. Brain. 2013;136:859–871. doi:10.1093/brain/aws373
    1. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med. 2011;364:2227–2234. doi:10.1056/NEJMcp0910237
    1. Winblad B, Palmer K, Kivipelto M et al. . Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on mild cognitive impairment. J Intern Med. 2004;256:240–246. doi:10.1111/j.1365-2796.2004.01380.x
    1. Montero-Odasso M, Casas A, Hansen KT et al. . Quantitative gait analysis under dual-task in older people with mild cognitive impairment: a reliability study. J Neuroeng Rehabil. 2009;6:35. doi:10.1186/1743-0003-6-35
    1. Gautam P, Cherbuin N, Sachdev PS, Wen W, Anstey KJ. Relationships between cognitive function and frontal grey matter volumes and thickness in middle aged and early old-aged adults: the PATH through life study. Neuroimage. 2011;55:845–855. doi:10.1016/j.neuroimage.2011.01.015
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198.doi:10.1016/0022-3956(75)90026-6
    1. Nasreddine ZS, Phillips NA, Bédirian V et al. . The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi:10.1111/j.1532-5415.2005.53221.x
    1. Spreen O, Strauss E.. A Compendium of Neuropsychological Tests: Administration, Norms and Commentary. New York, NY: Oxford University Press; 1998:533–547.
    1. Schmidt M. Rey Auditory Verbal Learning Test: A Handbook. Los Angeles, CA: Western Psychological Association; 1996.
    1. Studenski S. Bradypedia: is gait speed ready for clinical use?J Nutr Health Aging. 2009;13:878–880. doi:10.1007/s12603-009-0245-0
    1. Killiany RJ, Hyman BT, Gomez-Isla T et al. . MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology. 2002;58:1188–1196. doi:10.1212/WNL.58.8.1188
    1. deToledo-Morrell L, Stoub TR, Bulgakova M et al. . MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging. 2004;25:1197–1203. doi:10.1016/j.neurobiolaging.2003.12.007
    1. Pennanen C, Kivipelto M, Tuomainen S et al. . Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging. 2004;25:303–310. doi:10.1016/S0197-4580(03)00084-8
    1. Stoub TR, Bulgakova M, Leurgans S et al. . MRI predictors of risk of incident Alzheimer disease: a longitudinal study. Neurology. 2005;64:1520–1524. doi:10.1212/01.WNL.0000160089.43264.1A
    1. McDonald CR, Gharapetian L, McEvoy LK et al. ; Alzheimer’s Disease Neuroimaging Initiative Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment. Neurobiol Aging. 2012;33:242–253. doi:10.1016/j.neurobiolaging.2010.03.015
    1. Eustache F, Desgranges B, Giffard B, de la Sayette V, Baron JC. Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport. 2001;12:683–685. doi:10.1097/00001756-200103260-00013
    1. Doi T, Blumen HM, Verghese J et al. . Gray matter volume and dual-task gait performance in mild cognitive impairment. Brain Imaging Behav. 2017;11:887–898. doi:10.1007/s11682-016-9562-1
    1. Annweiler C, Beauchet O, Bartha R, Montero-Odasso M. Slow gait in MCI is associated with ventricular enlargement: results from the Gait and Brain Study. J Neural Transm. 2013;120:1083–1092. doi:10.1007/s00702-012-0926-4
    1. Annweiler C, Montero-Odasso M, Bartha R, Drozd J, Hachinski V, Beauchet O. Association between gait variability and brain ventricle attributes: a brain mapping study. Exp Gerontol. 2014;57:256–263. doi:10.1016/j.exger.2014.06.015

Source: PubMed

3
订阅