Reduced neural sensitivity to rapid individual face discrimination in autism spectrum disorder

Sofie Vettori, Milena Dzhelyova, Stephanie Van der Donck, Corentin Jacques, Jean Steyaert, Bruno Rossion, Bart Boets, Sofie Vettori, Milena Dzhelyova, Stephanie Van der Donck, Corentin Jacques, Jean Steyaert, Bruno Rossion, Bart Boets

Abstract

Background: Individuals with autism spectrum disorder (ASD) are characterized by impairments in social communication and interaction. Although difficulties at processing social signals from the face in ASD have been observed and emphasized for many years, there is a lot of inconsistency across both behavioral and neural studies.

Methods: We recorded scalp electroencephalography (EEG) in 23 8-to-12 year old boys with ASD and 23 matched typically developing boys using a fast periodic visual stimulation (FPVS) paradigm, providing objective (i.e., frequency-tagged), fast (i.e., few minutes) and highly sensitive measures of rapid face categorization, without requiring any explicit face processing task. We tested both the sensitivity to rapidly (i.e., at a glance) categorize faces among other objects and to individuate unfamiliar faces.

Outcomes: While general neural synchronization to the visual stimulation and neural responses indexing generic face categorization were undistinguishable between children with ASD and typically developing controls, neural responses indexing individual face discrimination over the occipito-temporal cortex were substantially reduced in the individuals with ASD. This difference vanished when faces were presented upside-down, due to the lack of significant face inversion effect in ASD.

Interpretation: These data provide original evidence for a selective high-level impairment in individual face discrimination in ASD in an implicit task. The objective and rapid assessment of this function opens new perspectives for ASD diagnosis in clinical settings.

Keywords: Autism; EEG; Face processing.

Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Fast periodic visual stimulation (FPVS) paradigms used in 2 separate experiments to test generic face categorization and individual face discrimination.
Fig. 2
Fig. 2
Spectral representation and scalp distribution of EEG signal during FPVS.
  1. A.

    Similar generic face categorization response in ASD and TD. SNR spectrum over the averaged electrodes of left and right occipito-temporal (OT) ROI (indicated with open circles on the topographical maps). ASD (green) and TD boys (blue) show similar face-selective responses, reflected by equal amplitudes at the face presentation frequency (1.2 Hz) and harmonics (2.4 Hz, 3.6 Hz, …). The response is quantified by summing the baseline-corrected amplitudes over all significant harmonics and is visualized in scalp topographies and bar graphs. Scalp topographies show that the distribution of the face-selective response is also qualitatively similar in both groups. Bar graphs (mean ± SEM) show that the amplitudes of responses in LOT and ROT are similar for both groups.

  2. B.

    Reduced individual face discrimination response to upright faces in ASD. SNR spectra, scalp topographies and bar graphs of left and right OT are shown for the conditions with upright and inverted faces. *: p < 0.05; **: p < 0.01.

Fig. 3
Fig. 3
Violin plot of the ten-dimensional data of the relevant harmonics of the individual face discrimination response, projected along the LDA projection vector. The LDA was fitted to the full dataset and illustrates the separability of the groups. The horizontal line represents the decision boundary of the LDA classifier.

References

    1. Adrian E.D., Matthews B.H.C. The interpretation of potential waves in the cortex. J. Physiol. 1934;81(4):440–471.
    1. American Psychiatric Association . American Psychiatric Pub; 2013. Diagnostic and statistical manual of mental disorders (DSM-5)
    1. Amihai I., Deouell L.Y., Bentin S. Neural adaptation is related to face repetition irrespective of identity: a reappraisal of the N170 effect. Exp. Brain Res. 2011;209(2):193–204.
    1. Barton J.J.S., Hefter R.L., Cherkasova M.V., Manoach D.S. Investigations of face expertise in the social developmental disorders. Neurology. 2007;69(9):860–870.
    1. Behrmann Marlene, Avidan G., Leonard G.L., Kimchi R., Luna B., Humphreys K., Minshew N. Configural processing in autism and its relationship to face processing. Neuropsychologia. 2006;44(1):110–129.
    1. Behrmann M., Thomas C., Humphreys K. Seeing it differently: visual processing in autism. Trends Cogn. Sci. 2006;10(6):258–264.
    1. Bell A.J., Sejnowski T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995;7(6):1129–1159.
    1. Benning S.D., Kovac M., Campbell A., Miller S., Hanna E.K., Damiano C.R.…Dichter G.S. Late positive potential ERP responses to social and nonsocial stimuli in youth with Autism spectrum disorder. J. Autism Dev. Disord. 2016;46(9):3068–3077.
    1. Bentin S., Allison T., Puce A., Perez E., McCarthy G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 1996;8(6):551–565.
    1. Benton A.L., Sivan A.B., Hamsher K.D.S., Varney N.R., Spreen O. Contribution to Neuropsychological Assessment. Oxford University Press; New York: 1983. Facial recognition: stimulus and multiple choice pictures.
    1. Bowles D.C., McKone E., Dawel A., Duchaine B., Palermo R., Schmalzl L.…Yovel G. Diagnosing prosopagnosia: Effects of ageing, sex, and participant–stimulus ethnic match on the Cambridge Face Memory Test and Cambridge Face Perception Test. Cognitive Neuropsychology. 2009;26(5):423–455.
    1. Busigny T., Rossion B. Acquired prosopagnosia abolishes the face inversion effect. Cortex. 2010;46(8):965–981.
    1. Caharel S., D'Arripe O., Ramon M., Jacques C., Rossion B. Early adaptation to repeated unfamiliar faces across viewpoint changes in the right hemisphere: evidence from the N170 ERP component. Neuropsychologia. 2009;47(3):639–643.
    1. Caharel S., Leleu A., Bernard C., Viggiano M.-P., Lalonde R., Rebaï M. Early holistic face-like processing of Arcimboldo paintings in the right occipito-temporal cortex: evidence from the N170 ERP component. Int. J. Psychophysiol. 2013;90(2):157–164.
    1. Campatelli G., Federico R.R., Apicella F., Sicca F., Muratori F. Face processing in children with ASD: Literature review. Res. Autism Spectr. Disord. 2013;7(3):444–454.
    1. Chawarska K., Macari S., Shic F. Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders. Biol. Psychiatry. 2013;74(3):195–203.
    1. Chita-Tegmark M. Social attention in ASD: A review and meta-analysis of eye-tracking studies. Res. Dev. Disabil. 2016;48:79–93.
    1. Churches O., Nicholls M., Thiessen M., Kohler M., Keage H. Emoticons in mind: an event-related potential study. Soc. Neurosci. 2014;9(2):196–202.
    1. Constantino J.N., Gruber C.P. Western Psychological Services Torrance; CA: 2012. Social Responsiveness Scale (SRS)
    1. Crouzet S.M., Thorpe S.J. Low-level cues and ultra-fast face detection. Front. Psychol. 2011;2(342)
    1. Crouzet S.M., Kirchner H., Thorpe S.J. Fast saccades toward faces: face detection in just 100 ms. J. Vis. 2010;10(4):16.1–17.
    1. Dawson G., Carver L., Meltzoff A.N., Panagiotides H., McPartland J., Webb S.J. Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Dev. 2002;73(3):700–717.
    1. Dawson G., Webb S.J., McPartland J. Understanding the Nature of Face Processing Impairment in Autism: Insights From Behavioral and Electrophysiological Studies. Dev. Neuropsychol. 2005;27(3):403–424.
    1. De Heering A., Rossion B., Maurer D. Developmental changes in face recognition during childhood: Evidence from upright and inverted faces. Cogn. Dev. 2012;27(1):17–27.
    1. De la Marche W., Noens I., Kuppens S., Spilt J.L., Boets B., Steyaert J. Measuring quantitative autism traits in families: informant effect or intergenerational transmission? Euro. Child Adolesc. Psychiatr. 2015;24(4):385–395.
    1. Duchaine B., Nakayama K. The Cambridge Face Memory Test: results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants. Neuropsychologia. 2006;44(4):576–585.
    1. Dwyer P., Xu B., Tanaka J.W. Investigating the perception of face identity in adults on the autism spectrum using behavioural and electrophysiological measures. Vis. Res. 2018
    1. Dzhelyova M., Rossion B. Supra-additive contribution of shape and surface information to individual face discrimination as revealed by fast periodic visual stimulation. J. Vis. 2014;14(14):15.
    1. Dzhelyova M., Rossion B. The effect of parametric stimulus size variation on individual face discrimination indexed by fast periodic visual stimulation. BMC Neurosci. 2014;15:87.
    1. Dzhelyova M., Jacques C., Rossion B. At a single glance: Fast periodic visual stimulation uncovers the spatio-temporal dynamics of brief facial expression changes in the human brain. Cereb. Cortex. 2017;27(8):4106–4123.
    1. Evers K., Van Belle G., Steyaert J., Noens I., Wagemans J. Gaze-contingent display changes as new window on analytical and holistic face perception in children With Autism spectrum disorder. Child Dev. 2018;89(2):430–445.
    1. Falck-Ytter T. Face inversion effects in autism: a combined looking time and pupillometric study. Autism Res. 2008;1(5):297–306.
    1. Feuerriegel D., Churches O., Hofmann J., Keage H.A.D. The N170 and face perception in psychiatric and neurological disorders: A systematic review. Clin. Neurophysiol. 2015;126(6):1141–1158.
    1. Galper R.E. Recognition of faces in photographic negative. Psychon. Sci. 1970;19(4):207–208.
    1. Guillon Q., Hadjikhani N., Baduel S., Rogé B. Visual social attention in autism spectrum disorder: Insights from eye tracking studies. Neurosci. Biobehav. Rev. 2014;42:279–297.
    1. Gunji A., Goto T., Kita Y., Sakuma R., Kokubo N., Koike T.…Inagaki M. Facial identity recognition in children with autism spectrum disorders revealed by P300 analysis: a preliminary study. Brain Dev. 2013;35(4):293–298.
    1. Hedley D., Brewer N., Young R. The effect of inversion on face recognition in adults with autism spectrum disorder. J. Autism Dev. Disord. 2015;45(5):1368–1379.
    1. de Heering A., Rossion B. Rapid categorization of natural face images in the infant right hemisphere. eLife. 2015;4
    1. Heisz J.J., Watter S., Shedden J.M. Progressive N170 habituation to unattended repeated faces. Vis. Res. 2006;46(1–2):47–56.
    1. Hershler O., Hochstein S. At first sight: a high-level pop out effect for faces. Vis. Res. 2005;45(13):1707–1724.
    1. Hershler O., Golan T., Bentin S., Hochstein S. The wide window of face detection. J. Vis. 2010;10(10):21.
    1. Hobson R.P., Ouston J., Lee A. What's in a face? The case of autism. Br. J. Psychol. 1988;79(4):441–453.
    1. Jacques C., D'Arripe O., Rossion B. The time course of the inversion effect during individual face discrimination. J. Vis. 2007;7(8):3.
    1. Jacques C., Retter T.L., Rossion B. A single glance at natural face images generate larger and qualitatively different category-selective spatio-temporal signatures than other ecologically-relevant categories in the human brain. NeuroImage. 2016;137:21–33.
    1. Jemel B., Mottron L., Dawson M. Impaired Face Processing in Autism: Fact or Artifact? J. Autism Dev. Disord. 2006;36(1):91–106.
    1. Jonas J., Jacques C., Liu-Shuang J., Brissart H., Colnat-Coulbois S., Maillard L., Rossion B. A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proc. Natl. Acad. Sci. U. S. A. 2016;113(28):E4088–E4097.
    1. Kang E., Keifer C.M., Levy E.J., Foss-Feig J.H., McPartland J.C., Lerner M.D. Atypicality of the N170 event-related potential in autism spectrum disorder: A meta-analysis biological psychiatry. Cogn. Neurosci. Neuroimag. 2018;3(8):657–666.
    1. Kapur S., Phillips A.G., Insel T.R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry. 2012;17(12):1174–1179.
    1. Kort W., Schittekatte M., Dekker P.H., Verhaeghe P., Compaan E.L., Bosmans M., Vermeir G. Psychologen HTPNIv; Amsterdam: 2005. WISC-III NL wechsler intelligence scale for children. Derde Editie NL. Handleiding en Verantwoording.
    1. Langdell T. Recognition of faces: an approach to the study of autism. J. Child Psychol. Psychiatr. Allied Disciplines. 1978;19(3):255–268.
    1. Liu-Shuang J., Norcia A.M., Rossion B. An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia. 2014;52:57–72.
    1. Liu-Shuang J., Torfs K., Rossion B. An objective electrophysiological marker of face individualisation impairment in acquired prosopagnosia with fast periodic visual stimulation. Neuropsychologia. 2016;83:100–113.
    1. Lochy A., de Heering A., Rossion B. The non-linear development of the right hemispheric specialization for human face perception. Neuropsychologia. 2017
    1. Loth E., Spooren W., Ham L.M., Isaac M.B., Auriche-Benichou C., Banaschewski T.…Murphy D.G.M. Identification and validation of biomarkers for autism spectrum disorders. Nat. Rev. Drug Discov. 2016;15(1):70.
    1. Makeig S., Bell A.J., Jung T.-P., Sejnowski T.J. Advances in Neural Information Processing Systems. 1996. Independent component analysis of electroencephalographic data; pp. 145–151. Retrieved from.
    1. McCleery J.P., Akshoomoff N., Dobkins K.R., Carver L.J. Atypical Face Versus Object Processing and Hemispheric Asymmetries in 10-Month-Old Infants at Risk for Autism. Biol. Psychiatry. 2009;66(10):950–957.
    1. McPartland J.C. Developing Clinically Practicable Biomarkers for Autism Spectrum Disorder. J. Autism Dev. Disord. 2017;47(9):2935–2937.
    1. Meadows J.C. The anatomical basis of prosopagnosia. J. Neurol. Neurosurg. Psychiatry. 1974;37(5):489–501.
    1. Megreya A.M., Burton A.M. Recognising faces seen alone or with others: When two heads are worse than one. Applied Cognitive Psychology. 2006;20(7):957–972.
    1. Monteiro R., Simões M., Andrade J., Castelo Branco M. Processing of Facial Expressions in Autism: a Systematic Review of EEG/ERP Evidence. Rev. J. Autism Dev. Disorders. 2017;4(4):255–276.
    1. Morgan S.T., Hansen J.C., Hillyard S.A. Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc. Natl. Acad. Sci. U. S. A. 1996;93(10):4770–4774.
    1. Müller M.M., Andersen S., Trujillo N.J., Valdés-Sosa P., Malinowski P., Hillyard S.A. Feature-selective attention enhances color signals in early visual areas of the human brain. Proc. Natl. Acad. Sci. U. S. A. 2006;103(38):14250–14254.
    1. Naumann S., Senftleben U., Santhosh M., McPartland J., Webb S.J. Neurophysiological correlates of holistic face processing in adolescents with and without autism spectrum disorder. J. Neurodev. Disord. 2018;10(1):27.
    1. Neuhaus E., Kresse A., Faja S., Bernier R.A., Webb S.J. Face processing among twins with and without autism: social correlates and twin concordance. Soc. Cogn. Affect. Neurosci. 2016;11(1):44–54.
    1. Noirhomme Q., Lesenfants D., Gomez F., Soddu A., Schrouff J., Garraux G.…Laureys S. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. NeuroImage: Clinical. 2014;4:687–694.
    1. Nomi J.S., Uddin L.Q. Face processing in autism spectrum disorders: From brain regions to brain networks. Neuropsychologia. 2015;71:201–216.
    1. Norcia A.M., Appelbaum L.G., Ales J.M., Cottereau B.R., Rossion B. The steady-state visual evoked potential in vision research: A review. J. Vis. 2015;15(6):4.
    1. O'Connor K., Hamm J.P., Kirk I.J. Neurophysiological responses to face, facial regions and objects in adults with Asperger's syndrome: an ERP investigation. Int. J. Psychophysiol. 2007;63(3):283–293.
    1. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O.…Duchesnay É. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011;12(Oct):2825–2830.
    1. Pierce K., Marinero S., Hazin R., McKenna B., Barnes C.C., Malige A. Eye-tracking Reveals Abnormal Visual Preference for Geometric Images as an Early Biomarker of an ASD Subtype Associated with Increased Symptom Severity. Biol. Psychiatry. 2016;79(8):657–666.
    1. Reed C.L., Beall P.M., Stone V.E., Kopelioff L., Pulham D.J., Hepburn S.L. Brief Report: perception of body posture—what individuals with Autism spectrum disorder might be missing. J. Autism Dev. Disord. 2007;37(8):1576–1584.
    1. Regan D. Some characteristics of average steady-state and transient responses evoked by modulated light. Electroencephalogr. Clin. Neurophysiol. 1966;20(3):238–248.
    1. Regan D. Evoked potential studies of visual perception. Can. J. Psychol. 1981;35(2):77–112.
    1. Regan D. Elsevier; Amsterdam, The Netherlands: 1989. Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine.
    1. Retter T.L., Rossion B. Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia. 2016;91:9–28.
    1. Rose F.E., Lincoln A.J., Lai Z., Ene M., Searcy Y.M., Bellugi U. Orientation and affective expression effects on face recognition in Williams syndrome and autism. J. Autism Dev. Disord. 2007;37(3):513–522.
    1. Rosset D.B., Rondan C., Fonseca D.D., Santos A., Assouline B., Deruelle C. Typical emotion processing for cartoon but not for real faces in children with autistic spectrum disorders. J. Autism Dev. Disord. 2008;38(5):919–925.
    1. Rossion B. Picture-plane inversion leads to qualitative changes of face perception. Acta Psychol. 2008;128(2):274–289.
    1. Rossion B. The composite face illusion: A whole window into our understanding of holistic face perception. Vis. Cogn. 2013;21(2):139–253.
    1. Rossion B. Understanding face perception by means of human electrophysiology. Trends Cogn. Sci. 2014;18(6):310–318.
    1. Rossion B. Understanding face perception by means of prosopagnosia and neuroimaging. Front. Biosci. (Elite Edition) 2014;6:258–307.
    1. Rossion B. Humans Are Visual Experts at Unfamiliar Face Recognition. Trends Cogn. Sci. 2018;22(6):471–472.
    1. Rossion B., Boremanse A. Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. J. Vis. 2011;11(2):16. (010.1167/11.2.16)
    1. Rossion B., Jacques C. The Oxford Handbook of Event-Related Potential Components. 2011. The N170: understanding the time course of face perception in the human brain.
    1. Rossion B., Michel C. Normative accuracy and response time data for the computerized benton facial recognition test (BFRT-c) Behav. Res. Methods. 2018
    1. Rossion B., Gauthier I., Tarr M.J., Despland P., Bruyer R., Linotte S., Crommelinck M. The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face-specific processes in the human brain. Neuroreport. 2000;11(1):69–74.
    1. Rossion B., Dricot L., Goebel R., Busigny T. Holistic face categorization in higher order visual areas of the normal and prosopagnosic brain: toward a non-hierarchical view of face perception. Front. Hum. Neurosci. 2011;4(225)
    1. Rossion B., Prieto E.A., Boremanse A., Kuefner D., Van Belle G. A steady-state visual evoked potential approach to individual face perception: effect of inversion, contrast-reversal and temporal dynamics. NeuroImage. 2012;63(3):1585–1600.
    1. Rossion B., Torfs K., Jacques C., Liu-Shuang J. Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. J. Vis. 2015;15(1):18.
    1. Russell R., Sinha P., Biederman I., Nederhouser M. Is pigmentation important for face recognition? evidence from contrast negation. Perception. 2006;35(6):749–759.
    1. Sattler J.M. JM Sattler; 2001. Assessment of Children: Cognitive Applications.
    1. Scherf K.S., Behrmann M., Minshew N., Luna B. Atypical development of face and greeble recognition in autism. J. Child Psychol. Psychiatry. 2008;49(8):838–847.
    1. Schultz R.T. Developmental deficits in social perception in autism: the role of the amygdala and fusiform face area. Int. J. Dev. Neurosci. 2005;23(2–3):125–141.
    1. Sergent Justine. Configural processing of faces in the left and the right cerebral hemispheres. J. Exp. Psychol. Hum. Percept. Perform. 1984;10(4):554–572.
    1. Sergent J., Signoret J.L. Varieties of functional deficits in prosopagnosia. Cerebral Cortex (New York, N.Y) 1992;2(5):375–388. 1991.
    1. Sergent J., Signoret J.L. Functional and anatomical decomposition of face processing: evidence from prosopagnosia and PET study of normal subjects. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1992;335(1273):55–61. doi: 10.1098/rstb.1992.0007. discussion 61-62.
    1. Tanaka J.W., Farah M.J. Parts and wholes in face recognition. Quarter. J. Exp. Psychol. Human Exp. Psychol. 1993;46(2):225–245.
    1. Tang J., Falkmer M., Horlin C., Tan T., Vaz S., Falkmer T. Face recognition and visual search strategies in autism spectrum disorders: amending and extending a recent review by Weigelt et al. PLoS One. 2015;10(8)
    1. Tantam D., Monaghan L., Nicholson H., Stirling J. Autistic children's ability to interpret faces: a research note. J. Child Psychol. Psychiatry. 1989;30(4):623–630.
    1. Tavares P.P., Mouga S.S., Oliveira G.G., Castelo-Branco M. Preserved face inversion effects in adults with autism spectrum disorder: an event-related potential study. Neuroreport. 2016;27(8):587–592.
    1. Teunisse J.-P., de Gelder B. Face processing in adolescents with autistic disorder: the inversion and composite effects. Brain Cogn. 2003;52(3):285–294.
    1. Van Der Geest J.N., Kemner C., Verbaten M.N., Engeland H.V. Gaze behavior of children with pervasive developmental disorder toward human faces: a fixation time study. J. Child Psychol. Psychiatry. 2002;43(5):669–678.
    1. Vettori S., Jacques C., Boets B., Rossion B. Can the N170 be used as an electrophysiological biomarker indexing face processing difficulties in autism spectrum disorder? Biol. Psychiatr. 2018
    1. Webb S.J., Jones E.J.H., Merkle K., Murias M., Greenson J., Richards T.…Dawson G. Response to familiar faces, newly familiar faces, and novel faces as assessed by ERPs is intact in adults with autism spectrum disorders. Int. J. Psychophysiol. 2010;77(2):106–117.
    1. Wechsler D. 3rd ed. The Psychological Corporation; San Antonio, TX: 1991. The Wechsler intelligence scale for children.
    1. Weigelt S., Koldewyn K., Kanwisher N. Face identity recognition in autism spectrum disorders: a review of behavioral studies. Neurosci. Biobehav. Rev. 2012;36(3):1060–1084.
    1. Xu B., Liu-Shuang J., Rossion B., Tanaka J. Individual differences in face identity processing with fast periodic visual stimulation. J. Cogn. Neurosci. 2017;29(8):1368–1377.
    1. Yin R.K. Looking at upside-down faces. J. Exp. Psychol. 1969;81(1):141–145.
    1. Young Andrew W., Burton A.M. What we see in unfamiliar faces: a response to rossion. Trends Cogn. Sci. 2018;22(6):472–473.
    1. Young A.W., Hellawell D., Hay D.C. Configurational information in face perception. Perception. 1987;16(6):747–759.

Source: PubMed

3
订阅