Botulinum Toxin Use for Modulating Neuroimmune Cutaneous Activity in Psoriasis

Marius Nicolae Popescu, Cristina Beiu, Mădălina Gabriela Iliescu, Mara Mădălina Mihai, Liliana Gabriela Popa, Ana Maria Alexandra Stănescu, Mihai Berteanu, Marius Nicolae Popescu, Cristina Beiu, Mădălina Gabriela Iliescu, Mara Mădălina Mihai, Liliana Gabriela Popa, Ana Maria Alexandra Stănescu, Mihai Berteanu

Abstract

Psoriasis is a complex immune-mediated inflammatory disorder that generates enormous interest within the scientific communities worldwide, with new therapeutic targets being constantly identified and tested. Despite the numerous topical and systemic medications available for the treatment of psoriasis, alternative therapies are still needed for the optimal management of some patients who present with localized, resistant lesions. Novel insights into the contribution of cutaneous neurogenic inflammation in the pathogenesis of psoriasis have yielded exciting new potential roles of nerve-targeting treatments, namely botulinum toxin type A (BoNT-A), for the management of this disease. This paper aims to review the existing literature on knowledge regarding the potential role of BoNT-A in psoriasis treatment, with a focus on its ability to interfere with the immunopathogenetic aspects of psoriatic disease. Furthermore, in our paper, we are also including the first report of psoriatic lesions remission following local BoNT-A injections that were administered for treating upper limb spasticity, in a patient that concomitantly suffered from psoriasis and post-stroke spasticity.

Keywords: botulinum toxin; neurogenic inflammation; neuroimmune system; neuropeptides; psoriasis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Psoriasis plaques on the extensor surfaces of the elbow and forearm before (A) and 1 month after (B) a single injection session with 1000 U of abobotulinumtoxinA for treating upper-limb spasticity.

References

    1. Taneda K., Tominaga M., Negi O., Tengara S., Kamo A., Ogawa H., Takamori K. Evaluation of epidermal nerve density and opioid receptor levels in psoriatic itch. Br. J. Dermatol. 2011;165:277–284. doi: 10.1111/j.1365-2133.2011.10347.x.
    1. Kubanov A.A., Katunina O.R., Chikin V.V. Expression of Neuropeptides, Neurotrophins, and Neurotransmitters in the Skin of Patients with Atopic Dermatitis and Psoriasis. Bull. Exp. Biol. Med. 2015;159:318–322. doi: 10.1007/s10517-015-2951-4.
    1. Joseph T., Kurian J., Warwick D.J., Friedmann P.S. Unilateral remission of psoriasis following traumatic nerve palsy. Br. J. Dermatol. 2005;152:185–186. doi: 10.1111/j.1365-2133.2005.06330.x.
    1. Raychaudhuri S.P., Farber E.M. Are sensory nerves essential for the development of psoriatic lesions? J. Am. Acad. Dermatol. 1993;28:488–489. doi: 10.1016/S0190-9622(08)81760-4.
    1. Dewing S.B. Remission of psoriasis associated with cutaneous nerve section. Arch. Dermatol. 1971;104:220–221. doi: 10.1001/archderm.1971.04000200108024.
    1. Farber E.M., Lanigan S.W., Boer J. The role of cutaneous sensory nerves in the maintenance of psoriasis. Int. J. Dermatol. 1990;29:418–420. doi: 10.1111/j.1365-4362.1990.tb03825.x.
    1. Qin B., Sun C., Chen L., Wang S., Yang J., Xie Z., Shen Z. The nerve injuries attenuate the persistence of psoriatic lesions. J. Dermatol. Sci. 2021;102:85–93. doi: 10.1016/j.jdermsci.2021.02.006.
    1. Zhang Y., Zhang H., Jiang B., Yan S., Lu J. A promising therapeutic target for psoriasis: Neuropeptides in human skin. Int. Immunopharmacol. 2020;87:106755. doi: 10.1016/j.intimp.2020.106755.
    1. Chen S.Q., Chen X.Y., Cui Y.Z., Yan B.X., Zhou Y., Wang Z.Y., Xu F., Huang Y.Z., Zheng Y.X., Man X.Y. Cutaneous nerve fibers participate in the progression of psoriasis by linking epidermal keratinocytes and immunocytes. Cell Mol. Life Sci. 2022;79:267. doi: 10.1007/s00018-022-04299-x.
    1. Scala J., Vojvodic A., Vojvodic P., Vlaskovic-Jovicevic T., Peric-Hajzler Z., Matovic D., Dimitrijevic S., Vojvodic J., Sijan G., Stepic N., et al. Botulin Toxin Use in Rosacea and Facial Flushing Treatment. Open Access Maced. J. Med. Sci. 2019;7:2985–2987. doi: 10.3889/oamjms.2019.784.
    1. Khattab F.M. Evaluation of Botulinum Toxin A as an Optional Treatment for Atopic Dermatitis. J. Clin. Aesthet. Dermatol. 2020;13:32–35.
    1. Harries M.J., Wong S., Farrant P. Frontal Fibrosing Alopecia and Increased Scalp Sweating: Is Neurogenic Inflammation the Common Link? Ski. Appendage Disord. 2016;1:179–184. doi: 10.1159/000444758.
    1. Melo D.F., Ramos P.M., Antelo D.A.P., Machado C.J., Barcaui C.B. Is there a rationale for the use of botulinum toxin in the treatment of Androgenetic Alopecia? J. Cosmet. Dermatol. 2021;20:2093–2095. doi: 10.1111/jocd.14177.
    1. Cutrer F.M., Sandroni P., Wendelschafer-Crabb G. Botulinum toxin treatment of cephalalgia alopecia increases substance P and calcitonin gene-related peptide-containing cutaneous nerves in scalp. Cephalalgia. 2010;30:1000–1006. doi: 10.1111/j.1468-2982.2009.01987.x.
    1. Kim Y.S., Hong E.S., Kim H.S. Botulinum Toxin in the Field of Dermatology: Novel Indications. Toxins. 2017;9:403. doi: 10.3390/toxins9120403.
    1. Campanati A., Martina E., Giuliodori K., Consales V., Bobyr I., Offidani A. Botulinum Toxin Off-Label Use in Dermatology: A Review. Ski. Appendage Disord. 2017;3:39–56. doi: 10.1159/000452341.
    1. Martina E., Diotallevi F., Radi G., Campanati A., Offidani A. Therapeutic Use of Botulinum Neurotoxins in Dermatology: Systematic Review. Toxins. 2021;13:120. doi: 10.3390/toxins13020120.
    1. Aubdool A.A., Brain S.D. Neurovascular aspects of skin neurogenic inflammation. J. Investig. Dermatol. Symp. Proc. 2011;15:33–39. doi: 10.1038/jidsymp.2011.8.
    1. Siebenhaar F., Sharov A.A., Peters E.M., Sharova T.Y., Syska W., Mardaryev A.N., Freyschmidt-Paul P., Sundberg J.P., Maurer M., Botchkarev V.A. Substance P as an immunomodulatory neuropeptide in a mouse model for autoimmune hair loss (alopecia areata) J. Investig. Dermatol. 2007;127:1489–1497. doi: 10.1038/sj.jid.5700704.
    1. Kothapalli A., Caccetta T. Botulinum toxin type A for the first-line treatment of Hailey-Hailey disease. Australas. J. Dermatol. 2019;60:73–74. doi: 10.1111/ajd.12852.
    1. Charlton O.A., Stewart T.J., Rosen R.H. Treatment of Hailey-Hailey disease with botulinum toxin. Australas. J. Dermatol. 2018;59:229–231. doi: 10.1111/ajd.12726.
    1. Santiago-et-Sanchez-Mateos J.L., Bea S., Fernandez M., Perez B., Harto A., Jaen P. Botulinum toxin type A for the preventive treatment of intertrigo in a patient with Darier’s disease and inguinal hyperhidrosis. Dermatol. Surg. 2008;34:1733–1737. doi: 10.1111/j.1524-4725.2008.34361.x.
    1. Shi W., Schultz S., Strouse A., Gater D.R. Successful treatment of stage III hidradenitis suppurativa with botulinum toxin A. BMJ Case Rep. 2019;12:e226064. doi: 10.1136/bcr-2018-226064.
    1. Campanati A., Martina E., Giuliodori K., Bobyr I., Consales V., Offidani A. Two cases of Hidradenitis suppurativa and botulinum toxin type a therapy: A novel approach for a pathology that is still difficult to manage. Dermatol. Ther. 2019;32:e12841. doi: 10.1111/dth.12841.
    1. Saraceno R., Kleyn C.E., Terenghi G., Griffiths C.E. The role of neuropeptides in psoriasis. Br. J. Dermatol. 2006;155:876–882. doi: 10.1111/j.1365-2133.2006.07518.x.
    1. Amalia S.N., Uchiyama A., Baral H., Inoue Y., Yamazaki S., Fujiwara C., Sekiguchi A., Yokoyama Y., Ogino S., Torii R., et al. Suppression of neuropeptide by botulinum toxin improves imiquimod-induced psoriasis-like dermatitis via the regulation of neuroimmune system. J. Dermatol. Sci. 2021;101:58–68. doi: 10.1016/j.jdermsci.2020.11.003.
    1. Smolyannikova V.A., Kubanova A.A., Karamova A.E., Nefedova M.A., Chikin V.V. Role of the skin expression of neuropeptides, neurotrophins and their receptors in the pathogenesis of dermatoses. Arkhiv Patol. 2015;77:33–39. doi: 10.17116/patol201577433-39.
    1. Guo R., Li F.F., Chen M.L., Ya M.Z., He H.L., Li D. The role of CGRP and CALCA T-692C single-nucleotide polymorphism in psoriasis vulgaris. Die Pharm. 2015;70:88–93.
    1. Zhang X., He Y. The Role of Nociceptive Neurons in the Pathogenesis of Psoriasis. Front. Immunol. 2020;11:1984. doi: 10.3389/fimmu.2020.01984.
    1. Barros P.O., Ferreira T.B., Vieira M.M., Almeida C.R., Araujo-Lima C.F., Silva-Filho R.G., Hygino J., Andrade R.M., Andrade A.F., Bento C.A. Substance P enhances Th17 phenotype in individuals with generalized anxiety disorder: An event resistant to glucocorticoid inhibition. J. Clin. Immunol. 2011;31:51–59. doi: 10.1007/s10875-010-9466-6.
    1. Bera M.M., Lu B., Martin T.R., Cui S., Rhein L.M., Gerard C., Gerard N.P. Th17 cytokines are critical for respiratory syncytial virus-associated airway hyperreponsiveness through regulation by complement C3a and tachykinins. J. Immunol. 2011;187:4245–4255. doi: 10.4049/jimmunol.1101789.
    1. Cunin P., Caillon A., Corvaisier M., Garo E., Scotet M., Blanchard S., Delneste Y., Jeannin P. The tachykinins substance P and hemokinin-1 favor the generation of human memory Th17 cells by inducing IL-1beta, IL-23, and TNF-like 1A expression by monocytes. J. Immunol. 2011;186:4175–4182. doi: 10.4049/jimmunol.1002535.
    1. Morelli A.E., Sumpter T.L., Rojas-Canales D.M., Bandyopadhyay M., Chen Z., Tkacheva O., Shufesky W.J., Wallace C.T., Watkins S.C., Berger A., et al. Neurokinin-1 Receptor Signaling Is Required for Efficient Ca(2+) Flux in T-Cell-Receptor-Activated T Cells. Cell Rep. 2020;30:3448–3465. doi: 10.1016/j.celrep.2020.02.054.
    1. Mikami N., Watanabe K., Hashimoto N., Miyagi Y., Sueda K., Fukada S., Yamamoto H., Tsujikawa K. Calcitonin gene-related peptide enhances experimental autoimmune encephalomyelitis by promoting Th17-cell functions. Int. Immunol. 2012;24:681–691. doi: 10.1093/intimm/dxs075.
    1. Ding W., Stohl L.L., Xu L., Zhou X.K., Manni M., Wagner J.A., Granstein R.D. Calcitonin Gene-Related Peptide-Exposed Endothelial Cells Bias Antigen Presentation to CD4+ T Cells toward a Th17 Response. J. Immunol. 2016;196:2181–2194. doi: 10.4049/jimmunol.1500303.
    1. Schantz E.J., Johnson E.A. Botulinum toxin: The story of its development for the treatment of human disease. Perspect. Biol. Med. 1997;40:317–327. doi: 10.1353/pbm.1997.0032.
    1. Aoki K.R., Guyer B. Botulinum toxin type A and other botulinum toxin serotypes: A comparative review of biochemical and pharmacological actions. Eur. J. Neurol. 2001;8:21–29. doi: 10.1046/j.1468-1331.2001.00035.x.
    1. Chen S. Clinical uses of botulinum neurotoxins: Current indications, limitations and future developments. Toxins. 2012;4:913–939. doi: 10.3390/toxins4100913.
    1. Ababneh O.H., Cetinkaya A., Kulwin D.R. Long-term efficacy and safety of botulinum toxin A injections to treat blepharospasm and hemifacial spasm. Clin. Exp. Ophthalmol. 2014;42:254–261. doi: 10.1111/ceo.12165.
    1. Rowe F.J., Noonan C.P. Botulinum toxin for the treatment of strabismus. Cochrane Database Syst. Rev. 2017;3:CD006499. doi: 10.1002/14651858.CD006499.pub4.
    1. Popescu M.N., Petca R.C., Beiu C., Dumitrascu M.C., Petca A., Mehedintu C., Farcasanu P.D., Sandru F. Efficiency of Different Preparations of Botulinum Toxin Type A, Xeomin and Dysport, in the Management of Spastic Upper Limb After Stroke. Rev. Chim. 2019;70:3490–3494. doi: 10.37358/RC.19.10.7582.
    1. Barbu M.G., Thompson D.C., Popescu M.N., Beiu C., Mihai M.M., Enachescu C.I. A Romanian survey on the impact of SARS-CoV-2 pandemic on dystonia patients. Rom. J. Leg. Med. 2020;28:208–211.
    1. Kattimani V., Tiwari R.V.C., Gufran K., Wasan B., Shilpa P.H., Khader A.A. Botulinum Toxin Application in Facial Esthetics and Recent Treatment Indications (2013–2018) J. Int. Soc. Prev. Community Dent. 2019;9:99–105. doi: 10.4103/jispcd.JISPCD_430_18.
    1. de Almeida A.R., Montagner S. Botulinum toxin for axillary hyperhidrosis. Dermatol. Clin. 2014;32:495–504. doi: 10.1016/j.det.2014.06.013.
    1. Campanati A., Giuliodori K., Martina E., Giuliano A., Ganzetti G., Offidani A. Onabotulinumtoxin type A (Botox®) versus Incobotulinumtoxin type A (Xeomin®) in the treatment of focal idiopathic palmar hyperhidrosis: Results of a comparative double-blind clinical trial. J. Neural Transm. 2014;121:21–26. doi: 10.1007/s00702-013-1074-1.
    1. Meng J., Wang J., Lawrence G., Dolly J.O. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J. Cell Sci. 2007;120:2864–2874. doi: 10.1242/jcs.012211.
    1. Carmichael N.M.E., Dostrovsky J.O., Charlton M.P. Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin. Pain. 2010;149:316–324. doi: 10.1016/j.pain.2010.02.024.
    1. Ward N.L., Kavlick K.D., Diaconu D., Dawes S.M., Michaels K.A., Gilbert E. Botulinum neurotoxin A decreases infiltrating cutaneous lymphocytes and improves acanthosis in the KC-Tie2 mouse model. J. Investig. Dermatol. 2012;132:1927–1930. doi: 10.1038/jid.2012.60.
    1. Ostrowski S.M., Belkadi A., Loyd C.M., Diaconu D., Ward N.L. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J. Investig. Dermatol. 2011;131:1530–1538. doi: 10.1038/jid.2011.60.
    1. Zanchi M., Favot F., Bizzarini M., Piai M., Donini M., Sedona P. Botulinum toxin type-A for the treatment of inverse psoriasis. J. Eur. Acad. Dermatol. Venereol. 2008;22:431–436. doi: 10.1111/j.1468-3083.2007.02457.x.
    1. Saber M., Brassard D., Benohanian A. Inverse psoriasis and hyperhidrosis of the axillae responding to botulinum toxin type A. Arch. Dermatol. 2011;147:629–630. doi: 10.1001/archdermatol.2011.111.
    1. Gilbert E., Ward N.L. Efficacy of botulinum neurotoxin type A for treating recalcitrant plaque psoriasis. J. Drugs Dermatol. 2014;13:1407–1408.
    1. Aschenbeck K.A., Hordinsky M.K., Kennedy W.R., Wendelschafer-Crabb G., Ericson M.E., Kavand S., Bertin A., Dykstra D.D., Panoutsopoulou I.G. Neuromodulatory treatment of recalcitrant plaque psoriasis with onabotulinumtoxinA. J. Am. Acad. Dermatol. 2018;79:1156–1159. doi: 10.1016/j.jaad.2018.07.058.
    1. Gonzalez C., Franco M., Londono A., Valenzuela F. Breaking paradigms in the treatment of psoriasis: Use of botulinum toxin for the treatment of plaque psoriasis. Dermatol. Ther. 2020;33:e14319. doi: 10.1111/dth.14319.
    1. Todberg T., Zachariae C., Bregnhoj A., Hedelund L., Bonefeld K.K., Nielsen K., Iversen L., Skov L. The effect of botulinum neurotoxin A in patients with plaque psoriasis—An exploratory trial. J. Eur. Acad. Dermatol. Venereol. 2018;32:e81–e82. doi: 10.1111/jdv.14536.
    1. Botsali A., Erbil H. Management of nail psoriasis with a single injection of abobotulinum toxin. J. Cosmet. Dermatol. 2021;20:1418–1420. doi: 10.1111/jocd.13633.

Source: PubMed

3
订阅