Endocrine Crosstalk Between Skeletal Muscle and the Brain

Julien Delezie, Christoph Handschin, Julien Delezie, Christoph Handschin

Abstract

Skeletal muscle is an essential regulator of energy homeostasis and a potent coordinator of exercise-induced adaptations in other organs including the liver, fat or the brain. Skeletal muscle-initiated crosstalk with other tissues is accomplished though the secretion of myokines, protein hormones which can exert autocrine, paracrine and long-distance endocrine effects. In addition, the enhanced release or uptake of metabolites from and into contracting muscle cells, respectively, likewise can act as a powerful mediator of tissue interactions, in particular in regard to the central nervous system. The present review will discuss the current stage of knowledge regarding how exercise and the muscle secretome improve a broad range of brain functions related to vascularization, neuroplasticity, memory, sleep and mood. Even though the molecular and cellular mechanisms underlying the communication between muscle and brain is still poorly understood, physical activity represents one of the most effective strategies to reduce the prevalence and incidence of depression, cognitive, metabolic or degenerative neuronal disorders, and thus warrants further study.

Keywords: BDNF; PGC-1α; angiogenesis; hippocampus; memory; metabolites; myokines; physical exercise.

Figures

Figure 1
Figure 1
Muscle-brain crosstalk. Physical exercise activates specific cellular pathways in muscle cells. For instance, PGC-1α activation induces the expression of FNDC5, which is cleaved to irisin and released into the circulation. PGC-1α elevation also leads to the biosynthesis of kynurenine aminotransferases (KATs) which converts liver-derived KYN to KYNA, thus preventing its toxic accumulation into the brain. The endocrine property of muscle cells is further illustrated by the release of cytokines (e.g., IL-6) or metabolites (e.g., lactate). Physical activity also promotes the production and release into the blood of various factors from non-muscle tissues such as the liver. Subsequently, muscle- and liver-derived molecules enter the brain and signal on receptors located on endothelial, glial or neuronal cells, thereby triggering the expression of VEGF and BDNF, key regulators of cerebral vascularization and plasticity.

References

    1. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W, et al. . The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet (2016) 388:1311–24. 10.1016/S0140-6736(16)30383-X
    1. Lobelo F, Stoutenberg M, Hutber A. The exercise is medicine global health initiative: a 2014 update. Br J Sports Med. (2014) 48:1627–33. 10.1136/bjsports-2013-093080
    1. Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports (2015) 25 (Suppl. 3):1–72. 10.1111/sms.12581
    1. Sallis RE. Exercise is medicine and physicians need to prescribe it! Br J Sports Med. (2009) 43:3–4. 10.1136/bjsm.2008.054825
    1. NCD Risk Factor Collaboration (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642. 10.1016/S0140-6736(17)32129-3
    1. Lobstein T, Baur L, Uauy R. Obesity in children and young people: a crisis in public health. Obesity Rev. (2004) 5:4–85. 10.1111/j.1467-789X.2004.00133.x
    1. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. . Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet (2016) 388:1302–10. 10.1016/S0140-6736(16)30370-1
    1. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature (2008) 454:463–9. 10.1038/nature07206
    1. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ (2006) 174:801–9. 10.1503/cmaj.051351
    1. Koopman R., van Loon L. J. Aging, exercise, and muscle protein metabolism. J Appl Physiol. (1985) (2009) 106:2040–8. 10.1152/japplphysiol.91551.2008
    1. Rooyackers OE, Nair KS. Hormonal regulation of human muscle protein metabolism. Annu Rev Nutr. (1997) 17:457–85. 10.1146/annurev.nutr.17.1.457
    1. Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem. (2006) 75:19–37. 10.1146/annurev.biochem.75.103004.142622
    1. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell (2014) 159:738–49. 10.1016/j.cell.2014.10.029
    1. Whitham M, Febbraio MA. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov. (2016) 15:719–29. 10.1038/nrd.2016.153
    1. Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol. (2017) 13:133–48. 10.1038/nrendo.2016.162
    1. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. (2013) 17:162–84. 10.1016/j.cmet.2012.12.012
    1. Henriksson J. Effect of exercise on amino acid concentrations in skeletal muscle and plasma. J Exp Biol. (1991) 160:149–65.
    1. Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, et al. . Metabolic signatures of exercise in human plasma. Sci Transl Med. (2010) 2:33ra37. 10.1126/scitranslmed.3001006
    1. Schurr A. Lactate: the ultimate cerebral oxidative energy substrate? J Cereb Blood Flow Metab. (2006) 26:142–52. 10.1038/sj.jcbfm.9600174
    1. van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, et al. . Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. (2009) 29:1121–9. 10.1038/jcbfm.2009.35
    1. Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab. (2015) 35:176–85. 10.1038/jcbfm.2014.206
    1. Takimoto M, Hamada T. Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. J Appl Physiol. (2014).116:1238–50. 10.1152/japplphysiol.01288.2013
    1. Newman JC, Verdin E. β-Hydroxybutyrate: a signaling metabolite. Annu Rev Nutr. (2017) 37:51–76. 10.1146/annurev-nutr-071816-064916
    1. Barros LF. Metabolic signaling by lactate in the brain. Trends Neurosci. (2013) 36:396–404. 10.1016/j.tins.2013.04.002
    1. Ruan GX, Kazlauskas A. Lactate engages receptor tyrosine kinases Axl, Tie2, and vascular endothelial growth factor receptor 2 to activate phosphoinositide 3-kinase/Akt and promote angiogenesis. J Biol Chem. (2013) 288:21161–72. 10.1074/jbc.M113.474619
    1. Brasse-Lagnel C, Lavoinne A, Husson A. Control of mammalian gene expression by amino acids, especially glutamine. Febs j (2009) 276:1826–44. 10.1111/j.1742-4658.2009.06920.x
    1. Curi R, Newsholme P, Procopio J, Lagranha C, Gorjao R, Pithon-Curi TC. Glutamine, gene expression, and cell function. Front Biosci J Virtual Libr. (2007) 12:344–57. 10.2741/2068
    1. Swiatkiewicz M, Fiedorowicz M, Orzeł J, Wełniak-Kaminska M, Bogorodzki P, Langfort J, et al. . Increases in brain 1H-MR glutamine and glutamate signals following acute exhaustive endurance exercise in the rat. Front Physiol. (2017) 8:19. 10.3389/fphys.2017.00019
    1. Hawkins RA. The blood-brain barrier and glutamate. Am J Clin Nutr. (2009) 90:867S−74S. 10.3945/ajcn.2009.27462BB
    1. Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A, et al. . In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. (2016) 23:94–102. 10.1016/j.cmet.2015.10.010
    1. Matsui T, Ishikawa T, Ito H, Okamoto M, Inoue K, Lee MC, et al. . Brain glycogen supercompensation following exhaustive exercise. J Physiol. (2012) 590:607–16. 10.1113/jphysiol.2011.217919
    1. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. . Astrocyte-neuron lactate transport is required for long-term memory formation. Cell (2011) 144:810–23. 10.1016/j.cell.2011.02.018
    1. Matsui T, Omuro H, Liu Y-F, Soya M, Shima T, McEwen BS, et al. . Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity. Proc Natl Acad Sci USA. (2017) 114:6358–63. 10.1073/pnas.1702739114
    1. Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, et al. . Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. (2012) 15:405–11. 10.1016/j.cmet.2012.01.001
    1. Camera DM, Burniston JG, Pogson MA, Smiles WJ, Hawley JA. Dynamic proteome profiling of individual proteins in human skeletal muscle after a high-fat diet and resistance exercise. Faseb J. (2017) 31:5478–94. 10.1096/fj.201700531R
    1. Choi S, Liu X, Li P, Akimoto T, Lee SY, Zhang M, et al. . Transcriptional profiling in mouse skeletal muscle following a single bout of voluntary running: evidence of increased cell proliferation. J Appl Physiol. (2005) 99:2406–15. 10.1152/japplphysiol.00545.2005
    1. Hody S, Leprince P, Sergeant K, Renaut J, Croisier JL, Wang F, et al. . Human muscle proteome modifications after acute or repeated eccentric exercises. Med Sci Sports Exerc. (2011) 43:2281–96. 10.1249/MSS.0b013e318222edf3
    1. Laker RC, Garde C, Camera DM, Smiles WJ, Zierath JR, Hawley JA, et al. . Transcriptomic and epigenetic responses to short-term nutrient-exercise stress in humans. Sci Rep. (2017) 7:15134. 10.1038/s41598-017-15420-7
    1. Lundberg TR, Fernandez-Gonzalo R, Tesch PA, Rullman E, Gustafsson T. Aerobic exercise augments muscle transcriptome profile of resistance exercise. Am J Physiol Regul Integr Comp Physiol. (2016) 310:R1279–87. 10.1152/ajpregu.00035.2016
    1. Koh JH, Hancock CR, Terada S, Higashida K, Holloszy JO, Han DH. PPARbeta Is Essential for maintaining normal levels of PGC-1alpha and mitochondria and for the increase in muscle mitochondria induced by exercise. Cell Metab. (2017) 25:1176–85.e1175. 10.1016/j.cmet.2017.04.029
    1. Perez-Schindler J, Svensson K, Vargas-Fernandez E, Santos G, Wahli W, Handschin C. The coactivator PGC-1alpha regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARbeta/delta in sedentary mice fed a regular chow diet. Diabetologia (2014) 57:2405–12. 10.1007/s00125-014-3352-3
    1. Schuler M, Ali F, Chambon C, Duteil D, Bornert JM, Tardivel A, et al. . PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metab. (2006) 4:407–14. 10.1016/j.cmet.2006.10.003
    1. Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem. (2007) 282:194–9. 10.1074/jbc.M606116200
    1. Kupr B, Handschin C. Complex coordination of cell plasticity by a PGC-1α-controlled transcriptional network in skeletal muscle. Front Physiol. (2015) 6:325. 10.3389/fphys.2015.00325
    1. Kupr B, Schnyder S, Handschin C. Role of nuclear receptors in exercise-induced muscle adaptations. Cold Spring Harb Perspect Med. (2017) 7:a029835. 10.1101/cshperspect.a029835
    1. Schnyder S, Kupr B, Handschin C. Coregulator-mediated control of skeletal muscle plasticity - a mini-review. Biochimie (2017) 136:49–54. 10.1016/j.biochi.2016.12.011
    1. Summermatter S, Santos G, Pérez-Schindler J, Handschin C. Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A. Proc Natl Acad Sci USA (2013) 110:8738–43. 10.1073/pnas.1212976110
    1. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. . HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature (2008) 451:1008–12. 10.1038/nature06613
    1. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, et al. . The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci USA (2009) 106:21401–6. 10.1073/pnas.0909131106
    1. Rowe GC, Raghuram S, Jang C, Nagy JA, Patten IS, Goyal A, et al. . PGC-1α induces SPP1 to activate macrophages and orchestrate functional angiogenesis in skeletal muscle. Circ Res. (2014) 115:504–17. 10.1161/CIRCRESAHA.115.303829
    1. Arnold AS, Gill J, Christe M, Ruiz R, McGuirk S, St-Pierre J, et al. . Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nat Commun (2014) 5:3569. 10.1038/ncomms4569
    1. Mills R, Taylor-Weiner H, Correia JC, Agudelo LZ, Allodi I, Kolonelou C, et al. . Neurturin is a PGC-1α1-controlled myokine that promotes motor neuron recruitment and neuromuscular junction formation. Mol Metab. (2017) 7:12–22. 10.1016/j.molmet.2017.11.001
    1. Jäger S, Handschin C, St.-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci. (2007) 104:12017–22. 10.1073/pnas.0705070104
    1. Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J Biol Chem. (2005) 280:16456–60. 10.1074/jbc.M501485200
    1. Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. (2009) 418:261–75. 10.1042/BJ20082055
    1. Fan W, Waizenegger W, Lin CS, Sorrentino V, He M-X, Wall CE, et al. . PPARδ promotes running endurance by preserving glucose. Cell Metab. (2017) 25:1186–93.e1184. 10.1016/j.cmet.2017.04.006
    1. Handschin C. Caloric restriction and exercise “mimetics”: ready for prime time? Pharmacol Res. (2016) 103:158–66. 10.1016/j.phrs.2015.11.009
    1. Kobilo T, Yuan C, van Praag H. Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learn Mem. (2011) 18:103–7. 10.1101/lm.2001611
    1. Kobilo T, Guerrieri D, Zhang Y, Collica SC, Becker KG, van Praag H. AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learn Mem. (2014) 21:119–26. 10.1101/lm.033332.113
    1. Peluso MAM, Guerra de Andrade LH. Physical activity and mental health: the association between exercise and mood. Clinics (2005). 60:61–70. 10.1590/S1807-59322005000100012
    1. Taylor CB, Sallis JF, Needle R. The relation of physical activity and exercise to mental health. Public Health Rep. (1985) 100:195–202.
    1. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. . Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA. (2011) 108:3017–22. 10.1073/pnas.1015950108
    1. Firth J, Stubbs B, Vancampfort D, Schuch F, Lagopoulos J, Rosenbaum S, et al. . Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. NeuroImage (2018) 166:230–8. 10.1016/j.neuroimage.2017.11.007
    1. Sexton CE, Betts JF, Demnitz N, Dawes H, Ebmeier KP, Johansen-Berg H. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage (2016) 131:81–90. 10.1016/j.neuroimage.2015.09.071
    1. van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA. (1999) 96:13427–31. 10.1073/pnas.96.23.13427
    1. van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci. (1999) 2:266–70. 10.1038/6368
    1. Eisinger BE, Zhao X. Identifying molecular mediators of environmentally enhanced neurogenesis Cell Tissue Res. (2018). 371:7–21. 10.1007/s00441-017-2718-5
    1. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol. (2005) 76:99–125. 10.1016/j.pneurobio.2005.06.003
    1. Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. In: GR Lewin, Carter BD, editors. Neurotrophic Factors. Berlin; Heidelberg: Springer; (2014), p. 223–50.
    1. Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, et al. . Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci. (2008) 11:131–3. 10.1038/nn2038
    1. Yang J, Siao CJ, Nagappan G, Marinic T, Jing D, McGrath K, et al. . Neuronal release of proBDNF. Nat Neurosci. (2009) 12:113–5. 10.1038/nn.2244
    1. Neeper SA, Góauctemez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature (1995) 373:109. 10.1038/373109a0
    1. Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci. (2004) 20:2580–90. 10.1111/j.1460-9568.2004.03720.x
    1. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. . Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. (2009) 94:1062–9. 10.1113/expphysiol.2009.048512
    1. Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, et al. . Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol. (2009) 298:R372–7. 10.1152/ajpregu.00525.2009
    1. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, et al. . Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. (2011) 14:347–53. 10.1017/S1461145710000738
    1. Chacón-Fernández P, Säuberli K, Colzani M, Moreau T, Ghevaert C, Barde Y-A. Brain-derived neurotrophic factor in megakaryocytes. J Biol Chem. (2016) 291:9872–81. 10.1074/jbc.M116.720029
    1. El-Sayed MS, Ali N, El-Sayed Ali Z. Aggregation and activation of blood platelets in exercise and training. Sports Med. (2005) 35:11–22. 10.2165/00007256-200535010-00002
    1. Yáñez-Mó M, Siljander PRM, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, et al. . Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles (2015) 4:27066. 10.3402/jev.v4.27066
    1. Ogborn DI, Gardiner PF. Effects of exercise and muscle type on BDNF, NT-4/5, and TrKB expression in skeletal muscle. Muscle Nerve (2010) 41:385–91. 10.1002/mus.21503
    1. Pedersen BK, Pedersen M, Krabbe KS, Bruunsgaard H, Matthews VB, Febbraio MA. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol. (2009) 94:1153–60. 10.1113/expphysiol.2009.048561
    1. Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, et al. . Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia (2009) 52:1409–18. 10.1007/s00125-009-1364-1
    1. Mousavi K, Jasmin BJ. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J Neurosci. (2006) 26:5739–49. 10.1523/JNEUROSCI.5398-05.2006
    1. Koliatsos VE, Clatterbuck RE, Winslow JW, Cayouette MH, Price DL. Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron (1993) 10:359–67. 10.1016/0896-6273(93)90326-M
    1. Givalois L, Arancibia S, Alonso G, Tapia-Arancibia L. Expression of brain-derived neurotrophic factor and its receptors in the median eminence cells with sensitivity to stress. Endocrinology (2004) 145:4737–47. 10.1210/en.2004-0616
    1. Ding Q, Vaynman S, Akhavan M, Ying Z, Gomez-Pinilla F. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience (2006) 140:823–33. 10.1016/j.neuroscience.2006.02.084
    1. Trejo JL, Carro E, Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci (2001) 21:1628–34. 10.1523/JNEUROSCI.21-05-01628.2001
    1. Cheng A, Wan R, Yang JL, Kamimura N, Son TG, Ouyang X, et al. . Involvement of PGC-1alpha in the formation and maintenance of neuronal dendritic spines. Nat Commun. (2012) 3:1250. 10.1038/ncomms2238
    1. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. . Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab. (2013) 18:649–59. 10.1016/j.cmet.2013.09.008
    1. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, et al. . Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell (2006) 127:397–408. 10.1016/j.cell.2006.09.024
    1. Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of alzheimer's disease. J Neurosci. (2005) 25:4217–21. 10.1523/JNEUROSCI.0496-05.2005
    1. Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington's disease transgenic mice. Neuroscience (2006) 141:569–84. 10.1016/j.neuroscience.2006.04.013
    1. Praag HV, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci Official J Soc Neurosci. (2005)25:8680–5. 10.1523/JNEUROSCI.1731-05.2005
    1. Duzel E, van Praag H, Sendtner M. Can physical exercise in old age improve memory and hippocampal function? Brain (2016) 139:662–73. 10.1093/brain/awv407
    1. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, et al. . Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus (2009) 19:1030–9. 10.1002/hipo.20547
    1. Prakash RS, Voss MW, Erickson KI, Kramer AF. Physical activity and cognitive vitality. Annu Rev Psychol. (2015) 66:769–97. 10.1146/annurev-psych-010814-015249
    1. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. (2000) 425:479–94. 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>;2-3
    1. Kraus RM, Stallings HW, Yeager RC, Gavin TP. Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. J Appl Physiol. (2004) 96:1445–50. 10.1152/japplphysiol.01031.2003
    1. Fabel K, Fabel K, Tam B, Kaufer D, Baiker A, Simmons N, et al. . VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci. (2003) 18:2803–12. 10.1111/j.1460-9568.2003.03041.x
    1. Gomez-Pinilla F, Ying Z, Opazo P, Roy RR, Edgerton VR. Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. Eur J Neurosci. (2001) 13:1078–84. 10.1046/j.0953-816x.2001.01484.x
    1. McCullough MJ, Peplinski NG, Kinnell KR, Spitsbergen JM. Glial cell line-derived neurotrophic factor protein content in rat skeletal muscle is altered by increased physical activity in vivo and in vitro. Neuroscience (2011) 174:234–44. 10.1016/j.neuroscience.2010.11.016
    1. Tajiri N, Yasuhara T, Shingo T, Kondo A, Yuan W, Kadota T, et al. . Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain Res. (2010) 1310:200–7. 10.1016/j.brainres.2009.10.075
    1. Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F. Voluntary exercise increases neurotrophin-3 and its receptor TrkC in the spinal cord. Brain Res. (2003) 987:93–9. 10.1016/S0006-8993(03)03258-X
    1. Phillips C, Baktir MA, Srivatsan M, Salehi A. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Front Cell Neurosci. (2014) 8:170. 10.3389/fncel.2014.00170
    1. Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes (2004) 53:1643–8. 10.2337/diabetes.53.7.1643
    1. Catoire M, Mensink M, Kalkhoven E, Schrauwen P, Kersten S. Identification of human exercise-induced myokines using secretome analysis. Physiol Genomics (2014) 46:256–67. 10.1152/physiolgenomics.00174.2013
    1. Raschke S, Eckardt K, Bjorklund Holven K, Jensen J, Eckel J. Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells. PLoS ONE (2013) 8:e62008. 10.1371/journal.pone.0062008
    1. Scheler M, Irmler M, Lehr S, Hartwig S, Staiger H, Al-Hasani H, et al. . Cytokine response of primary human myotubes in an in vitro exercise model. Am J Physiol Cell Physiol. (2013) 305:C877–886. 10.1152/ajpcell.00043.2013
    1. Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am J Physiol Endocrinol Metab. (2011) 301:E1013–21. 10.1152/ajpendo.00326.2011
    1. Roca-Rivada A, Al-Massadi O, Castelao C, Senin LL, Alonso J, Seoane LM, et al. . Muscle tissue as an endocrine organ: comparative secretome profiling of slow-oxidative and fast-glycolytic rat muscle explants and its variation with exercise. J Proteomics (2012) 75:5414–25. 10.1016/j.jprot.2012.06.037
    1. Pourteymour S, Eckardt K, Holen T, Langleite T, Lee S, Jensen J, et al. . Global mRNA sequencing of human skeletal muscle: search for novel exercise-regulated myokines. Mol Metab. (2017) 6:352–65. 10.1016/j.molmet.2017.01.007
    1. Schnyder S, Handschin C. Skeletal muscle as an endocrine organ: PGC-1α, myokines and exercise. Bone (2015) 80:115–25. 10.1016/j.bone.2015.02.008
    1. Roberts LD, Bostrom P, O'Sullivan JF, Schinzel RT, Lewis GD, Dejam A, et al. . β -Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. (2014) 19:96–108. 10.1016/j.cmet.2013.12.003
    1. Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, et al. . Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. (2016) 24:332–40. 10.1016/j.cmet.2016.05.025
    1. Morland C, Andersson KA, Haugen OP, Hadzic A, Kleppa L, Gille A, et al. . Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun. (2017) 8:15557. 10.1038/ncomms15557
    1. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, et al. . Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife (2016) 5:e15092. 10.7554/eLife.15092
    1. Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, et al. . FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. (2013) 19:1147–52. 10.1038/nm.3249
    1. Kim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS ONE (2013) 8:e63517. 10.1371/journal.pone.0063517
    1. Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. . FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. (2014) 20:670–7. 10.1016/j.cmet.2014.07.012
    1. Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci (2000) 20:2926–33. 10.1523/JNEUROSCI.20-08-02926.2000
    1. Agudelo LZ, Femenia T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, et al. . Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell (2014) 159:33–45. 10.1016/j.cell.2014.07.051
    1. Schlittler M, Goiny M, Agudelo LZ, Venckunas T, Brazaitis M, Skurvydas A, et al. . Endurance exercise increases skeletal muscle kynurenine aminotransferases and plasma kynurenic acid in humans. Am J Physiol Cell Physiol. (2016) 310:C836–40. 10.1152/ajpcell.00053.2016
    1. Ehlen JC, Brager AJ, Baggs J, Pinckney L, Gray CL, DeBruyne JP, et al. . Bmal1 function in skeletal muscle regulates sleep. Elife (2017) 6:e26557. 10.7554/eLife.26557
    1. Ferrer-Martinez A, Ruiz-Lozano P, Chien KR. Mouse PeP: a novel peroxisomal protein linked to myoblast differentiation and development. Dev Dyn. (2002) 224:154–67. 10.1002/dvdy.10099
    1. Teufel A, Malik N, Mukhopadhyay M, Westphal H. Frcp1 and Frcp2, two novel fibronectin type III repeat containing genes. Gene (2002) 297:79–83. 10.1016/S0378-1119(02)00828-4
    1. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. . A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature (2012) 481:463–8. 10.1038/nature10777
    1. Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, et al. . Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry. Cell Metab (2015) 22:734–40. 10.1016/j.cmet.2015.08.001
    1. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. . Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. (2014) 19:302–9. 10.1016/j.cmet.2013.12.017
    1. Perakakis N, Triantafyllou GA, Fernandez-Real JM, Huh JY, Park KH, Seufert J, et al. . Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol. (2017) 13:324–37. 10.1038/nrendo.2016.221
    1. Hashemi MS, Ghaedi K, Salamian A, Karbalaie K, Emadi-Baygi M, Tanhaei S, et al. . Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience (2013) 231:296–304. 10.1016/j.neuroscience.2012.11.041
    1. Zhang W, Chang L, Zhang C, Zhang R, Li Z, Chai B, et al. . Central and peripheral irisin differentially regulate blood pressure. Cardiovasc Drugs Ther. (2015) 29:121–7. 10.1007/s10557-015-6580-y
    1. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. . Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta (2012) 1824:68–88. 10.1016/j.bbapap.2011.10.002
    1. Aggarwal N, Sloane BF. Cathepsin B: multiple roles in cancer. Proteomics Clin Appl. (2014) 8:427–37. 10.1002/prca.201300105
    1. Theocharis AD, Gialeli C, Bouris P, Giannopoulou E, Skandalis SS, Aletras AJ, et al. . Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J. (2014) 281:5023–42. 10.1111/febs.12927
    1. Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, et al. . Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex (2014) 24:2784–95. 10.1093/cercor/bht136
    1. Wang L, Chopp M, Gregg SR, Zhang RL, Teng H, Jiang A, et al. . Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF. J Cereb Blood Flow Metab. (2008) 28:1361–8. 10.1038/jcbfm.2008.32
    1. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. . Capillary pericytes regulate cerebral blood flow in health and disease. Nature (2014) 508:55–60. 10.1038/nature13165
    1. Craft LL, Perna FM. The benefits of exercise for the clinically depressed. Prim Care Companion J Clin Psychiatry (2004) 6:104–11. 10.4088/PCC.v06n0301
    1. Josefsson T, Lindwall M, Archer T. Physical exercise intervention in depressive disorders: meta-analysis and systematic review. Scand J Med Sci Sports (2014) 24:259–72. 10.1111/sms.12050
    1. Reus GZ, Jansen K, Titus S, Carvalho AF, Gabbay V, Quevedo J. Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: Evidences from animal and human studies. J Psychiatr Res (2015) 68:316–28. 10.1016/j.jpsychires.2015.05.007
    1. Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. (2012) 13:465–77. 10.1038/nrn3257
    1. Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences (2007) 30:464–72. 10.1016/j.tins.2007.06.011
    1. Di Benedetto S, Müller L, Wenger E, Düzel S, Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. NeurosciBiobehavl Rev. (2017) 75:114–28. 10.1016/j.neubiorev.2017.01.044
    1. Svensson K, Albert V, Cardel B, Salatino S, Handschin C. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice. Faseb J. (2016) 30:1976–86. 10.1096/fj.201500128
    1. Koppel I, Timmusk T. Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors. Neuropharmacology (2013) 75:106–15. 10.1016/j.neuropharm.2013.07.015
    1. Chavan R, Feillet C, Costa SS, Delorme JE, Okabe T, Ripperger JA, et al. . Liver-derived ketone bodies are necessary for food anticipation. Nat Commun. (2016) 7:10580. 10.1038/ncomms10580
    1. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev. (2012) 92:1087–187. 10.1152/physrev.00032.2011
    1. Partch CL, Green CB, Takahashi JS. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. (2014) 24:90–9. 10.1016/j.tcb.2013.07.002
    1. Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, et al. . The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci. (2000) 20:8138–43. 10.1523/JNEUROSCI.20-21-08138.2000
    1. Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T, Campbell SS, et al. . Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell (2017) 169:203–15 e213. 10.1016/j.cell.2017.03.027
    1. Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F. Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep (2005) 28:395–409. 10.1093/sleep/28.4.395
    1. Dyar KA, Ciciliot S, Wright LE, Bienso RS, Tagliazucchi GM, Patel VR, et al. . Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. (2014) 3:29–41. 10.1016/j.molmet.2013.10.005
    1. Harfmann BD, Schroder EA, Kachman MT, Hodge BA, Zhang X, Esser KA. Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle (2016) 6:12. 10.1186/s13395-016-0082-x
    1. McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, et al. . Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science (2006) 314:1304–8. 10.1126/science.1132430
    1. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, et al. . Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes (2006) 55:2688–97. 10.2337/db05-1404
    1. Ellingsgaard H, Hauselmann I, Schuler B, Habib AM, Baggio LL, Meier DT, et al. . Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med. (2011) 17:1481–9. 10.1038/nm.2513
    1. Wueest S, Item F, Boyle CN, Jirkof P, Cesarovic N, Ellingsgaard H, et al. . Interleukin-6 contributes to early fasting-induced free fatty acid mobilization in mice. Am J Physiol Regul Integr Comp Physiol. (2014) 306:R861–7. 10.1152/ajpregu.00533.2013
    1. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. (2012) 8:457–65. 10.1038/nrendo.2012.49
    1. Banks WA. Blood-brain barrier transport of cytokines: a mechanism for neuropathology. Curr Pharm Des. (2005) 11:973–84. 10.2174/1381612053381684
    1. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci. (2014) 8:430. 10.3389/fncel.2014.00430
    1. Galic MA, Riazi K, Pittman QJ. Cytokines and brain excitability. Front Neuroendocrinol. (2012) 33:116–25. 10.1016/j.yfrne.2011.12.002
    1. Fisher FM, Maratos-Flier E. Understanding the Physiology of FGF21. Annu Rev Physiol. (2016) 78:223–41. 10.1146/annurev-physiol-021115-105339
    1. Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides (2007) 28:2382–6. 10.1016/j.peptides.2007.10.007
    1. Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: relationship with plasma FGF21 and body adiposity. Diabetes (2011) 60:2758–62. 10.2337/db11-0672
    1. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Satjaritanun P, Wang X, Liang G, et al. . FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats. Horm Behav. (2016) 85:86–95. 10.1016/j.yhbeh.2016.08.006
    1. Guridi M, Tintignac LA, Lin S, Kupr B, Castets P, Ruegg MA. Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21. Sci Signal (2015) 8:ra113. 10.1126/scisignal.aab3715
    1. Harris LA, Skinner JR, Shew TM, Pietka TA, Abumrad NA, Wolins NE. Perilipin 5-driven lipid droplet accumulation in skeletal muscle stimulates the expression of fibroblast growth factor 21. Diabetes (2015) 64:2757–68. 10.2337/db14-1035
    1. Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K. FGF21 is an Akt-regulated myokine. FEBS Lett. (2008) 582:3805–10. 10.1016/j.febslet.2008.10.021
    1. Keipert S, Ost M, Johann K, Imber F, Jastroch M, van Schothorst EM, et al. . Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am J Physiol Endocrinol Metab. (2014) 306:E469–82. 10.1152/ajpendo.00330.2013
    1. Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A, et al. . OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. (2017) 36:2126–45. 10.15252/embj.201696179
    1. Estall JL, Ruas JL, Choi CS, Laznik D, Badman M, Maratos-Flier E, et al. . PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(α) axis. Proc Natl Acad Sci USA. (2009) 106:22510–5. 10.1073/pnas.0912533106
    1. Wu J, Ruas JL, Estall JL, Rasbach KA, Choi JH, Ye L, et al. . The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab. (2011) 13:160–9. 10.1016/j.cmet.2011.01.003
    1. Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine (2014) 45:165–77. 10.1007/s12020-013-0026-8
    1. Karasik D, Kiel DP. Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone (2010) 46:1226–37. 10.1016/j.bone.2010.01.382
    1. Novotny SA, Warren GL, Hamrick MW. Aging and the muscle-bone relationship. Physiology (2015) 30:8–16. 10.1152/physiol.00033.2014
    1. Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone (2015) 80:109–14. 10.1016/j.bone.2015.02.010
    1. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. . Endocrine regulation of energy metabolism by the skeleton. Cell (2007) 130:456–69. 10.1016/j.cell.2007.05.047
    1. Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galan-Diez M, et al. . Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab. (2016) 23:1078–92. 10.1016/j.cmet.2016.05.004
    1. Mosialou I, Shikhel S, Liu JM, Maurizi A, Luo N, He Z, et al. . MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature (2017) 543:385–90. 10.1038/nature21697
    1. Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, et al. . Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature (2004) 432:917–21. 10.1038/nature03104
    1. Furrer R, Eisele PS, Schmidt A, Beer M, Handschin C. Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. Sci Rep. (2017) 7:40789. 10.1038/srep40789
    1. Yau SY, Li A, Hoo RL, Ching YP, Christie BR, Lee TM, et al. . Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc Natl Acad Sci USA. (2014) 111:15810–5. 10.1073/pnas.1415219111
    1. Quinn LS, Strait-Bodey L, Anderson BG, Argiles JM, Havel PJ. Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: evidence for a skeletal muscle-to-fat signaling pathway. Cell Biol Int. (2005) 29:449–57. 10.1016/j.cellbi.2005.02.005
    1. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. (2016) 23:1048–59. 10.1016/j.cmet.2016.06.001
    1. Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science (2016) 354:994–9. 10.1126/science.aah4965
    1. Bedrosian TA, Fonken LK, Nelson RJ. Endocrine effects of circadian disruption. Annu Rev Physiol. (2016) 78:109–31. 10.1146/annurev-physiol-021115-105102
    1. McClung CA. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther. (2007) 114:222–32. 10.1016/j.pharmthera.2007.02.003
    1. Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. (2010) 11:589–99. 10.1038/nrn2868
    1. Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, et al. . CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA. (2010) 107:19090–5. 10.1073/pnas.1014523107
    1. Loizides-Mangold U, Perrin L, Vandereycken B, Betts JA, Walhin J-P, Templeman I, et al. . Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci USA. (2017) 114:E8565–74. 10.1073/pnas.1705821114
    1. Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, et al. . Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med. (2013) 19:1039–46. 10.1038/nm.3213
    1. Aoyama S, Shibata S. The role of circadian rhythms in muscular and osseous physiology and their regulation by nutrition and exercise. Front Neurosci. (2017) 11:63. 10.3389/fnins.2017.00063
    1. Wolff G, Esser KA. Scheduled exercise phase shifts the circadian clock in skeletal muscle. Med Sci Sports Exerc. (2012) 44:1663–70. 10.1249/MSS.0b013e318255cf4c
    1. Perrin L, Loizides-Mangold U, Skarupelova S, Pulimeno P, Chanon S, Robert M, et al. . Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Mol Metab. (2015) 4:834–45. 10.1016/j.molmet.2015.07.009
    1. Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism. Nature (2007) 447:477–81. 10.1038/nature05767
    1. Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev. (2013) 93:107–35. 10.1152/physrev.00016.2012
    1. Gerstner JR, Lyons LC, Wright KP, Loh DH, Rawashdeh O, Eckel-Mahan KL, et al. . Cycling behavior and memory formation. J Neurosci. (2009) 29:12824–30. 10.1523/JNEUROSCI.3353-09.2009
    1. Jilg A, Lesny S, Peruzki N, Schwegler H, Selbach O, Dehghani F, et al. . Temporal dynamics of mouse hippocampal clock gene expression support memory processing. Hippocampus (2010) 20:377–88. 10.1002/hipo.20637
    1. Marpegan L, Swanstrom AE, Chung K, Simon T, Haydon PG, Khan SK, et al. . Circadian regulation of ATP release in astrocytes. J Neurosci.(2011) 31:8342–50. 10.1523/JNEUROSCI.6537-10.2011
    1. Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, Lee Y, et al. . Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest. (2013) 123:5389–400. 10.1172/JCI70317
    1. Valnegri P, Khelfaoui M, Dorseuil O, Bassani S, Lagneaux C, Gianfelice A, et al. . A circadian clock in hippocampus is regulated by interaction between oligophrenin-1 and Rev-erbalpha. Nat Neurosci. (2011) 14:1293–301. 10.1038/nn.2911
    1. Catoire M, Kersten S. The search for exercise factors in humans. FASEB J. (2015) 29:1615–28. 10.1096/fj.14-263699

Source: PubMed

3
订阅