Registry on the Treatment of Central and Complex Sleep-Disordered Breathing with Adaptive Servo-Ventilation (READ-ASV): protocol and cohort profile

Michael Arzt, Oliver Munt, Jean-Louis Pépin, Raphael Heinzer, Raphaela Kübeck, Ulrike von Hehn, Daniela Ehrsam-Tosi, Adam Benjafield, Holger Woehrle, Michael Arzt, Oliver Munt, Jean-Louis Pépin, Raphael Heinzer, Raphaela Kübeck, Ulrike von Hehn, Daniela Ehrsam-Tosi, Adam Benjafield, Holger Woehrle

Abstract

Background: Although adaptive servo-ventilation (ASV) effectively supresses central sleep apnoea (CSA), little is known about real-world indications of ASV therapy and its effects on quality of life (QoL).

Methods: This report details the design, baseline characteristics, indications for ASV and symptom burden in patients enrolled in the Registry on the Treatment of Central and Complex Sleep-Disordered Breathing with Adaptive Servo-Ventilation (READ-ASV). This multicentre, European, non-interventional trial enrolled participants prescribed ASV in clinical practice between September 2017 and March 2021. An expert review board assigned participants to ASV indications using a guideline-based semi-automated algorithm. The primary end-point was change in disease-specific QoL based on the Functional Outcomes of Sleep Questionnaire (FOSQ) from baseline to 12-month follow-up.

Results: The registry population includes 801 participants (age 67±12 years, 14% female). Indications for ASV were treatment-emergent or persistent CSA (56%), CSA in cardiovascular disease (31%), unclassified CSA (2%), coexisting obstructive sleep apnoea and CSA (4%), obstructive sleep apnoea (3%), CSA in stroke (2%) and opioid-induced CSA (1%). Baseline mean apnoea--hypopnoea index was 48±23 events·h-1 (≥30 events·h-1 in 78%), FOSQ score was 16.7±3.0 (<17.9 in 54%) and Epworth Sleepiness Scale (ESS) score was 8.8±4.9 (>10 in 34%); 62% of patients were symptomatic (FOSQ score <17.9 or ESS score >10).

Conclusion: The most common indications for ASV were treatment-emergent or persistent CSA or CSA in cardiovascular disease (excluding systolic heart failure). Patients using ASV in clinical practice had severe sleep-disordered breathing and were often symptomatic. One-year follow-up will provide data on the effects of ASV on QoL, respiratory parameters and clinical outcomes in these patients.

Conflict of interest statement

Conflict of interest: M. Arzt has received grant support from ResMed, the ResMed Foundation, Philips Respironics and the Else-Kroehner Fresenisus Foundation, and lecture and consulting fees from ResMed, Philips Respironics, Boehringer Ingelheim, NRI, Novartis and Jazz Pharmaceuticals outside the submitted work. O. Munt, D. Ehrsam-Tosi and A. Benjafield are all employees of ResMed. J-L. Pépin is supported by the French National Research Agency in the framework of the Investissements d'Avenir programme (grant ANR-15-IDEX-02), and the e-Health and Integrated Care and Trajectories Medicine and MIAI Artificial Intelligence (ANR-19-P3IA-0003) chairs of excellence from the Grenoble Alpes University Foundation, and reports lecture fees or conference travel grants from ResMed, Philips, Jazz Pharmaceuticals, Agiradom and Bioprojet. R. Heinzer has no conflicts of interest to disclose. R. Kübeck is an employee of The Clinical Research Institute, which was funded by ResMed to support this study. H. Woehrle reports lecture/consulting fees from Astra Zeneca, Allergopharma, Bioprojet, Boehringer Ingelheim, Chiesi, GSK, Novartis, Inspire, Jazz and ResMed and research support from ResMed and Novartis.

Copyright ©The authors 2023.

Figures

FIGURE 1
FIGURE 1
Schematic classification of indications for adaptive servo-ventilation (ASV) therapy as defined during expert review board classification. Teal boxes represent diagnostic findings (e.g. diagnostic polysomnography or polygraphy or, if these were not available, based on the aetiology provided by the investigator) and blue boxes represent findings during standard positive airway pressure (PAP) therapy but also take into account the reason for a switch to ASV therapy provided by the investigator. OSA: obstructive sleep apnoea; CSA: central sleep apnoea; CAI: central apnoea index; OAI: obstructive apnoea index; HI: hypopnoea index; CSR: Cheyne–Stokes respiration; HF: heart failure; CAD: coronary artery disease; AF: atrial fibrillation; TE-CSA: treatment-emergent or persistent central sleep apnoea; CVD: cardiovascular disease. #: depending on diagnostic information.
FIGURE 2
FIGURE 2
Indication for adaptive servo-ventilation therapy. TE-CSA: treatment-emergent or persistent central sleep apnoea; CSA: central sleep apnoea; CVD: cardiovascular disease; OSA: obstructive sleep apnoea.
FIGURE 3
FIGURE 3
Proportion of patients in the total population and by indication subgroup that was symptomatic based on a) a Functional Outcomes of Sleep Questionnaire (FOSQ) score 10 (n=246 of 720) and c) an FOSQ score 10 (n=456 of 736). The numbers and circles at the bottom of the columns indicate the size of the respective subgroup. TE-CSA: treatment-emergent or persistent central sleep apnoea; CSA: central sleep apnoea; CVD: cardiovascular disease; OSA: obstructive sleep apnoea.

References

    1. Bixler EO, Vgontzas AN, Lin HM, et al. . Prevalence of sleep-disordered breathing in women: effects of gender. Am J Respir Crit Care Med 2001; 163: 608–613. doi:10.1164/ajrccm.163.3.9911064
    1. Heinzer R, Vat S, Marques-Vidal P, et al. . Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med 2015; 3: 310–318. doi:10.1016/S2213-2600(15)00043-0
    1. Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 2002; 165: 1217–1239. doi:10.1164/rccm.2109080
    1. Benjafield AV, Ayas NT, Eastwood PR, et al. . Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 2019; 7: 687–698. doi:10.1016/S2213-2600(19)30198-5
    1. Arzt M, Oldenburg O, Graml A, et al. . Prevalence and predictors of sleep-disordered breathing in chronic heart failure: the SchlaHF-XT registry. ESC Heart Fail 2022; 9: 4100–4111. doi:10.1002/ehf1002.14027
    1. Lal C, Weaver TE, Bae CJ, et al. . Excessive daytime sleepiness in obstructive sleep apnea. Mechanisms and clinical management. Ann Am Thorac Soc 2021; 18: 757–768. doi:10.1513/AnnalsATS.202006-696FR
    1. Baillieul S, Dekkers M, Brill AK, et al. . Sleep apnoea and ischaemic stroke: current knowledge and future directions. Lancet Neurol 2022; 21: 78–88. doi:10.1016/S1474-4422(21)00321-5
    1. Bangash A, Wajid F, Poolacherla R, et al. . Obstructive sleep apnea and hypertension: a review of the relationship and pathogenic association. Cureus 2020; 12: e8241.
    1. Douglas N, Young A, Roebuck T, et al. . Prevalence of depression in patients referred with snoring and obstructive sleep apnoea. Intern Med J 2013; 43: 630–634. doi:10.1111/imj.12108
    1. Peppard PE, Szklo-Coxe M, Hla KM, et al. . Longitudinal association of sleep-related breathing disorder and depression. Arch Intern Med 2006; 166: 1709–1715. doi:10.1001/archinte.166.16.1709
    1. Peppard PE, Young T, Palta M, et al. . Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 2000; 342: 1378–1384. doi:10.1056/NEJM200005113421901
    1. Punjabi NM, Shahar E, Redline S, et al. . Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol 2004; 160: 521–530. doi:10.1093/aje/kwh261
    1. Reutrakul S, Mokhlesi B. Obstructive sleep apnea and diabetes: a state of the art review. Chest 2017; 152: 1070–1086. doi:10.1016/j.chest.2017.05.009
    1. Baldwin CM, Griffith KA, Nieto FJ, et al. . The association of sleep-disordered breathing and sleep symptoms with quality of life in the Sleep Heart Health Study. Sleep 2001; 24: 96–105. doi:10.1093/sleep/24.1.96
    1. Pauletto P, Réus JC, Bolan M, et al. . Association between obstructive sleep apnea and health-related quality of life in untreated adults: a systematic review. Sleep Breath 2021; 25: 1773–1789. doi:10.1007/s11325-021-02323-1
    1. Wanberg LJ, Rottapel RE, Reid ML, et al. . Prevalence of sleepiness and associations with quality of life in patients with sleep apnea in an online cohort. J Clin Sleep Med 2021; 17: 2363–2372. doi:10.5664/jcsm.9436
    1. Eckert DJ, Jordan AS, Merchia P, et al. . Central sleep apnea: pathophysiology and treatment. Chest 2007; 131: 595–607. doi:10.1378/chest.06.2287
    1. Allam JS, Olson EJ, Gay PC, et al. . Efficacy of adaptive servoventilation in treatment of complex and central sleep apnea syndromes. Chest 2007; 132: 1839–1846. doi:10.1378/chest.07-1715
    1. Teschler H, Dohring J, Wang YM, et al. . Adaptive pressure support servo-ventilation: a novel treatment for Cheyne­­–Stokes respiration in heart failure. Am J Respir Crit Care Med 2001; 164: 614–619. doi:10.1164/ajrccm.164.4.9908114
    1. Sharma BK, Bakker JP, McSharry DG, et al. . Adaptive servoventilation for treatment of sleep-disordered breathing in heart failure: a systematic review and meta-analysis. Chest 2012; 142: 1211–1221. doi:10.1378/chest.12-0815
    1. Hernandez AV, Jeon A, Denegri-Galvan J, et al. . Use of adaptive servo ventilation therapy as treatment of sleep-disordered breathing and heart failure: a systematic review and meta-analysis. Sleep Breath 2020; 24: 49–63. doi:10.1007/s11325-019-01882-8
    1. Arzt M, Schroll S, Series F, et al. . Auto-servo ventilation in heart failure with sleep apnoea: a randomised controlled trial. Eur Respir J 2013; 42: 1244–1254. doi:10.1183/09031936.00083312
    1. Yamamoto S, Yamaga T, Nishie K, et al. . Positive airway pressure therapy for the treatment of central sleep apnoea associated with heart failure. Cochrane Database Syst Rev 2019; 12: Cd012803.
    1. Aurora RN, Bista SR, Casey KR, et al. . Updated adaptive servo-ventilation recommendations for the 2012 AASM Guideline: “the treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses”. J Clin Sleep Med 2016; 12: 757–761. doi:10.5664/jcsm.5812
    1. Cowie MR, Woehrle H, Wegscheider K, et al. . Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 2015; 373: 1095–1105. doi:10.1056/NEJMoa1506459
    1. Mozaffarian D, Benjamin EJ, Go AS, et al. . Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation 2015; 131: e29–322. doi:10.1161/circ.131.suppl_2.o29
    1. Okura Y, Ramadan MM, Ohno Y, et al. . Impending epidemic: future projection of heart failure in Japan to the year 2055. Circ J 2008; 72: 489–491. doi:10.1253/circj.72.489
    1. Tamisier R, Damy T, Bailly S, et al. . Adaptive servo ventilation for sleep apnoea in heart failure: the FACE study 3-month data. Thorax 2022; 77: 178–185. doi:10.1136/thoraxjnl-2021-217205
    1. Tamisier R, Damy T, Davy JM, et al. . Cohort profile: FACE, prospective follow-up of chronic heart failure patients with sleep-disordered breathing indicated for adaptive servo ventilation. BMJ Open 2020; 10: e038403.
    1. Randerath W, Verbraecken J, Andreas S, et al. . Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. Eur Respir J 2017; 49: 1600959. doi:10.1183/13993003.00959-2016
    1. Mayer G, Arzt M, Braumann B, et al. . German S3 guideline nonrestorative sleep/sleep disorders, chapter “sleep-related breathing disorders in adults,” short version. Somnologie 2017; 21: 290–301. doi:10.1007/s11818-017-0136-2
    1. Baillieul S, Revol B, Jullian-Desayes I, et al. . Diagnosis and management of central sleep apnea syndrome. Expert Rev Respir Med 2019; 13: 545–557. doi:10.1080/17476348.2019.1604226
    1. Aurora RN, Chowdhuri S, Ramar K, et al. . The treatment of central sleep apnea syndromes in adults: practice parameters with an evidence-based literature review and meta-analyses. Sleep 2012; 35: 17–40. doi:10.5665/sleep.1580
    1. Mayer G, Artz M, Braumann B, et al. . German S3 guideline nonrestorative sleep/sleep disorders, chapter “Sleep-related breathing disorders in adults,” short version: German Sleep Society (Deutsche Gesellschaft für Schlafforschung und Schlafmedizin, DGSM). Somnologie 2017; 21: 290-301. doi:10.1007/s11818-017-0136-2
    1. Berry RB, Brooks R, Gamaldo C, et al. . AASM Scoring Manual updates for 2017 (version 2.4). J Clin Sleep Med 2017; 13: 665–666. doi:10.5664/jcsm.6576
    1. Berry RB, Gamaldo CE, Harding SM, et al. . AASM Scoring Manual version 2.2 updates: new chapters for scoring infant sleep staging and home sleep apnea testing. J Clin Sleep Med 2015; 11: 1253–1254. doi:10.5664/jcsm.5176
    1. Weaver TE, Laizner AM, Evans LK, et al. . An instrument to measure functional status outcomes for disorders of excessive sleepiness. Sleep 1997; 20: 835–843.
    1. Kapur VK, Auckley DH, Chowdhuri S, et al. . Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med 2017; 13: 479–504. doi:10.5664/jcsm.6506
    1. Weaver TE, Maislin G, Dinges DF, et al. . Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep 2007; 30: 711–719. doi:10.1093/sleep/30.6.711
    1. Patel S, Kon SSC, Nolan CM, et al. . The Epworth Sleepiness Scale: minimum clinically important difference in obstructive sleep apnea. Am J Respir Crit Care Med 2018; 197: 961–963. doi:10.1164/rccm.201704-0672LE
    1. Buysse DJ, Reynolds CF, 3rd, Monk TH, et al. . The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 1989; 28: 193–213. doi:10.1016/0165-1781(89)90047-4
    1. Buysse DJ, Germain A, Moul DE, et al. . Efficacy of brief behavioral treatment for chronic insomnia in older adults. Arch Intern Med 2011; 171: 887–895. doi:10.1001/archinternmed.2010.535
    1. EuroQol . EQ-5D. . Date last accessed: 6 October 2022.
    1. EuroQol . EQ-5D-3L User Guide. . Date last accessed: 6 October 2022.
    1. Randerath W, Schumann K, Treml M, et al. . Adaptive servoventilation in clinical practice: beyond SERVE-HF? ERJ Open Res 2017; 3: 00078-02017. doi:10.1183/23120541.00078-2017
    1. Cantero C, Adler D, Pasquina P, et al. . Adaptive servo-ventilation: a comprehensive descriptive study in the Geneva Lake Area. Front Med 2020; 7: 105. doi:10.3389/fmed.2020.00105
    1. d'Ortho M-P, Woehrle H, Arzt M. Current and future use of adaptive servo-ventilation. Eur Respir Pulm Dis 2016; 2: 18–22.
    1. Jaffuel D, Philippe C, Rabec C, et al. . What is the remaining status of adaptive servo-ventilation? The results of a real-life multicenter study (OTRLASV-study). Respir Res 2019; 20: 235. doi:10.1186/s12931-019-1221-9
    1. Malfertheiner MV, Lerzer C, Kolb L, et al. . Whom are we treating with adaptive servo-ventilation? A clinical post hoc analysis. Clin Res Cardiol 2017; 106: 702–710. doi:10.1007/s00392-017-1112-3
    1. Bitter T, Westerheide N, Hossain MS, et al. . Complex sleep apnoea in congestive heart failure. Thorax 2011; 66: 402–407. doi:10.1136/thx.2010.146522
    1. Westhoff M, Arzt M, Litterst P. Prevalence and treatment of central sleep apnoea emerging after initiation of continuous positive airway pressure in patients with obstructive sleep apnoea without evidence of heart failure. Sleep Breath 2012; 16: 71–78. doi:10.1007/s11325-011-0486-0
    1. Randerath WJ, Treml M, Priegnitz C, et al. . Evaluation of a noninvasive algorithm for differentiation of obstructive and central hypopneas. Sleep 2013; 36: 363–368. doi:10.5665/sleep.2450
    1. Tafelmeier M, Knapp M, Lebek S, et al. . Predictors of delirium after cardiac surgery in patients with sleep disordered breathing. Eur Respir J 2019; 54: 1900354. doi:10.1183/13993003.00354-2019
    1. Oldenburg O, Wellmann B, Bitter T, et al. . Adaptive servo-ventilation to treat central sleep apnea in heart failure with reduced ejection fraction: the Bad Oeynhausen prospective ASV registry. Clin Res Cardiol 2018; 107: 719–728. doi:10.1007/s00392-018-1239-x
    1. Flint AC, Conell C, Ren X, et al. . Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med 2019; 381: 243–251. doi:10.1056/NEJMoa1803180
    1. Kjeldsen SE. Hypertension and cardiovascular risk: general aspects. Pharmacol Res 2018; 129: 95–99. doi:10.1016/j.phrs.2017.11.003
    1. O'Connor CM, Whellan DJ, Fiuzat M, et al. . Cardiovascular outcomes with minute ventilation-targeted adaptive servo-ventilation therapy in heart failure: the CAT-HF trial. J Am Coll Cardiol 2017; 69: 1577–1587. doi:10.1016/j.jacc.2017.01.041
    1. Hastings PC, Vazir A, O'Driscoll DM, et al. . Symptom burden of sleep-disordered breathing in mild-to-moderate congestive heart failure patients. Eur Respir J 2006; 27: 748–755. doi:10.1183/09031936.06.00063005
    1. Rao A, Georgiadou P, Francis DP, et al. . Sleep-disordered breathing in a general heart failure population: relationships to neurohumoral activation and subjective symptoms. J Sleep Res 2006; 15: 81–88. doi:10.1111/j.1365-2869.2006.00494.x
    1. Gershon AS, Lindenauer PK, Wilson KC, et al. . Informing healthcare decisions with observational research assessing causal effect. An Official American Thoracic Society research statement. Am J Respir Crit Care Med 2021; 203: 14–23. doi:10.1164/rccm.202010-3943ST

Source: PubMed

3
订阅