The Impact of Bariatric Surgery on the Muscle Mass in Patients with Obesity: 2-Year Follow-up

Marta Comas Martínez, Enzamaria Fidilio Meli, Fiorella Palmas Candia, Francesca Filippi, Ramon Vilallonga, Efrain Cordero, Irene Hernández, Alba Zabalegui Eguinoa, Rosa Burgos, Anna Vila, Rafael Simó, Andreea Ciudin, Marta Comas Martínez, Enzamaria Fidilio Meli, Fiorella Palmas Candia, Francesca Filippi, Ramon Vilallonga, Efrain Cordero, Irene Hernández, Alba Zabalegui Eguinoa, Rosa Burgos, Anna Vila, Rafael Simó, Andreea Ciudin

Abstract

Purpose: Bariatric surgery (BS) induces a significant and sustained weight loss in patients with severe obesity (SO). Nevertheless, apart from significantly reducing body fat, fat-free mass (FFM) might also be lost. At present, there is little and controversial data in the literature regarding the impact of BS on FFM. In recent years, bioimpedance (BIA) has emerged as a reliable test to assess body composition easily to use in the daily clinical practice. On the bases, the aim of the present study is to evaluate the impact of BS on the FFM, evaluated by means of BIA.

Material and methods: This is a prospective, observational study, including consecutive patients with SO that underwent BS between February 2018 and February 2019 at our center. At baseline, 1, 6, 12, and 24 months after the BS, all the patients underwent complete medical history, physical and anthropometric evaluation, and body composition assessment by means of BIA (using Bodystat QuadScan4000®).

Results: Eighty-five patients with SO were recruited, 72.9% females, aged 45.54 ± 9.98 years, pre-BS BMI 43.87 ± 6.52 kg/m2. FFM significantly decreased continuously after BS at all timepoints. The loss of FFM 24 months post-BS accounted for approximately 21.71 ± 13.9% of the total weight loss, and was independent of BS technique or protein metabolism. Pre-BS HOMA-IR and FFM were independent predictors of FFM at 24 months.

Conclusions: Significant and early loss of FFM in patients with SO that undergo BS was seen, not related to protein metabolism parameters or the BS technique used, suggesting an independent mechanism.

Keywords: Fat-free mass, Bariatric surgery; Morbid obesity; Sarcopenic obesity.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Evolution of the FFM and FM during 24-month follow-up. FFM fat-free mass, FM fat mass, M months—reviewer 2
Fig. 2
Fig. 2
Correlation between basal metabolism rate and body composition. BMR basal metabolism rate, BS bariatric surgery

References

    1. Stensel D. Obesity and diabetes. Exerc Physiol Spec Popul. 2008;13(2):21–49. doi: 10.1016/B978-0-443-10343-8.00002-0.
    1. Mc Farlane SI. Obesity, obstructive sleep apnea and type 2 diabetes mellitus: epidemiology and pathophysiologic insights. Sleep Med Disord Int J. 2018;2(3):52–58. doi: 10.15406/smdij.2018.02.00045.
    1. Kahn BB, Flier JS. On diabetes: insulin resistance Obesity and insulin resistance. J Clin Invest. 2000;106(4):473–481. doi: 10.1172/JCI10842.
    1. Son JW, Lee SS, Kim SR, Yoo SJ, Cha BY, Son HY, et al. Low muscle mass and risk of type 2 diabetes in middle-aged and older adults: findings from the KoGES. Diabetologia. 2017;60(5):865–872. doi: 10.1007/s00125-016-4196-9.
    1. Janssen I, Ross R. Linking age-related changes in skeletal muscle mass and composition with metabolism and disease. J Nutr Heal Aging. 2005;9(6):408–419.
    1. Johnson Stoklossa CA, Sharma AM, Forhan M, Siervo M, Padwal RS, Prado CM. Prevalence of sarcopenic obesity in adults with class II/III obesity using different diagnostic criteria. J Nutr Metab. 2017;2017.
    1. Khadra D, Itani L, Tannir H, Kreidieh D, El MD, El GM. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: a systematic review and meta-analysis. World J Diabetes. 2019;10(5):311–323. doi: 10.4239/wjd.v10.i5.311.
    1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169.
    1. Sivakumar J, Chong L, Ward S, Sutherland TR, Read M, Hii MW. Body composition changes following a very-low-calorie pre-operative diet in patients undergoing bariatric surgery. Obes Surg. 2020;30(1):119–126. doi: 10.1007/s11695-019-04174-y.
    1. Cruz Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Maurits Vandewoude MZ. Sarcopenia: consenso europeo sobre su definición y diagnóstico. Age Ageing. 2010;39(4):412–423. doi: 10.1093/ageing/afq034.
    1. Pateyjohns IR, Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity. 2006;14(11):2064–2070. doi: 10.1038/oby.2006.241.
    1. Ruiz De Eguilaz MH, Martínez De Morentín B, Pérez-Diez S, Navas-Carretero S, Martínez JA. Estudio comparativo de medidas de composición corporal por absorciometría dual de rayos X, bioimpedancia y pliegues cutańeos en mujeres. An la Real Acad Nac Farm. 2010;76(2):209–222.
    1. Lee K, Shin Y, Huh J, Sung YS, Lee IS, Yoon KH, et al. Recent issues on body composition imaging for sarcopenia evaluation. Korean J Radiol. 2019;20(2):205–217. doi: 10.3348/kjr.2018.0479.
    1. Sjöström L et al. for the SOSS. Effects of bariatric surgery on mortality in Swedish obese subjects. 2007.
    1. Mastino D, Robert M, Betry C, Laville M, Gouillat C, Disse E. Bariatric surgery outcomes in sarcopenic obesity. Obes Surg. 2016;26(10):2355–2362. doi: 10.1007/s11695-016-2102-7.
    1. Vaurs C, Diméglio C, Charras L, Anduze Y, Chalret du Rieu M, Ritz P. Determinants of changes in muscle mass after bariatric surgery. Diabetes Metab [Internet] 2015;41(5):416–421. Available from: 10.1016/j.diabet.2015.04.003
    1. García Almeida JM, García García C, Bellido Castañeda V, Bellido GD. Nuevo enfoque de la nutrición. Valoración del estado nutricional del paciente: función y composición corporal. Nutr Hosp. 2018;35(3):1–14. doi: 10.20960/nh.2027.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis - part I: review of principles and methods. Clin Nutr. 2004;23(5):1226–1243. doi: 10.1016/j.clnu.2004.06.004.
    1. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis - part II: utilization in clinical practice. Clin Nutr. 2004;23(6):1430–1453. doi: 10.1016/j.clnu.2004.09.012.
    1. da Silva BR, Gonzalez MC, Cereda E, Prado CM. Exploring the potential role of phase angle as a marker of oxidative stress: a narrative review. Nutrition [Internet]. 2022;93:111493. Available from: 10.1016/j.nut.2021.111493
    1. Riddle MC, Cefalu WT, Evans PH, Gerstein HC, Nauck MA, Oh WK, et al. Consensus report: definition and interpretation of remission in type 2 diabetes. 2021;1–7.
    1. Anja BW, Danielzik S, Dörhöfer RP, Later W, Wiese S, Müller MJ. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. J Parenter Enter Nutr. 2006;30(4):309–316. doi: 10.1177/0148607106030004309.
    1. Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes. 2008;32:S56–S59. doi: 10.1038/ijo.2008.87.
    1. Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis. Int J Obes [Internet] 2010;34(5):791–799. Available from: 10.1038/ijo.2010.5
    1. Segal-Lieberman G, Segal P, Dicker D. Revisiting the role of bmi in the guidelines for bariatric surgery. Diabetes Care. 2016;39(August):S268–S273. doi: 10.2337/dcS15-3018.
    1. Fidilio E, Comas M, Giribés M, Cárdenas G, Vilallonga R, Palma F, et al. Evaluation of resting energy expenditure in subjects with severe obesity and its evolution after bariatric surgery. Obes Surg. 2021
    1. Thibault R, Makhlouf AM, Mulliez A, Cristina Gonzalez M, Kekstas G, Kozjek NR, et al. Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study Phase Angle Project. Intensive Care Med. 2016;42(9):1445–1453. doi: 10.1007/s00134-016-4468-3.
    1. Alves FD, Souza GC, Clausell N, Biolo A. Prognostic role of phase angle in hospitalized patients with acute decompensated heart failure. Clin Nutr. 2016;35(6):1530–1534. doi: 10.1016/j.clnu.2016.04.007.
    1. Norman K, Stobäus N, Zocher D, Bosy-Westphal A, Szramek A, Scheufele R, et al. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am J Clin Nutr. 2010;92(3):612–619. doi: 10.3945/ajcn.2010.29215.
    1. Barbosa-Silva MCG, Barros AJD, Wang J, Heymsfield SB, Pierson RN. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr. 2005;82(1):49–52. doi: 10.1093/ajcn/82.1.49.
    1. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the Third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab. 2011;96(9):2898–2903. doi: 10.1210/jc.2011-0435.
    1. Ostler JE, Maurya SK, Dials J, Roof SR, Devor ST, Ziolo MT, et al. Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models. Am J Physiol - Endocrinol Metab. 2014;306(6):592–605. doi: 10.1152/ajpendo.00277.2013.
    1. Wang X, Hu Z, Hu J, Du J, Mitch WE. Insulin resistance accelerates muscle protein degradation: activation of the ubiquitin-proteasome pathway by defects in muscle cell signaling. Endocrinology. 2006;147(9):4160–4168. doi: 10.1210/en.2006-0251.
    1. Gayoso-Diz P, Otero-González A, Rodriguez-Alvarez MX, Gude F, García F, De Francisco A, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13(Cvd).

Source: PubMed

3
订阅