A Comprehensive Review of Bioelectrical Impedance Analysis and Other Methods in the Assessment of Nutritional Status in Patients with Liver Cirrhosis

Halina Cichoż-Lach, Agata Michalak, Halina Cichoż-Lach, Agata Michalak

Abstract

It is assumed that approximately 24-66% of patients with liver cirrhosis develop malnutrition. Numerous pathological processes lead to serious disorders of nutritional status in this group of patients. Malnutrition in the course of liver cirrhosis is associated with increased morbidity, complications, and low quality of life. Under these conditions, detection of malnutrition is of crucial importance. This review explores the complex mechanisms that lead to malnutrition in the course of liver cirrhosis and focuses on methods used in the assessment of nutritional status in cirrhotic patients. Among others, the role of bioelectrical impedance is highlighted. This noninvasive tool is promising and quite an accurate method of estimating body composition.

References

    1. Montomoli J., Holland-Fischer P., Bianchi G., et al. Body composition changes after transjugular intrahepatic portosystemic shunt in patients with cirrhosis. World Journal of Gastroenterology. 2010;16:348–353.
    1. Borhofen S. M., Gerner C., Lehmann J., et al. The royal free hospital-nutritional prioritizing tool is an independent predictor of deterioration of liver function and survival in cirrhosis. Digestive Diseases and Sciences. 2016;61:1735–1743. doi: 10.1007/s10620-015-4015-z.
    1. Kalaitzakis E. Gastrointestinal dysfunction in liver cirrhosis. World Journal of Gastroenterology. 2014;20(40):14686–14695. doi: 10.3748/wjg.v20.i40.14686.
    1. Norman K., Pirlich M., Schulzke J. D., et al. Increased intestinal permeability in malnourished patients with liver cirrhosis. European Journal of Clinical Nutrition. 2012;66:1116–1119. doi: 10.1038/ejcn.2012.104.
    1. Koretz R. L. The evidence for the use of nutritional support in liver disease. Current Opinion in Gastroenterology. 2014;30:208–214. doi: 10.1097/MOG.0000000000000049.
    1. Vieira P. M., De-Souza D. A., Oliveira L. C. Nutritional assessment in hepatic cirrhosis; clinical, anthropometric, biochemical and haematological parameters. Nutricion Hospitalaria. 2013;28:1615–1621. doi: 10.3305/nh.2013.28.5.6563.
    1. Ennaifer R., Cheikh M., Romdhane H., et al. Does protein energy malnutrition affect the outcome in Tunisian cirrhotic patients? La Tunisie Medicale. 2016;94:172–176.
    1. Lopez-Delgado J. C., Ballus J., Esteve F., et al. Outcomes of abdominal surgery in patients with liver cirrhosis. World Journal of Gastroenterology. 2016;22:2657–2667. doi: 10.3748/wjg.v22.i9.2657.
    1. Huynh D. K., Selvanderan S. P., Harley H. A., Holloway R. H., Nguyen N. Q. Nutritional care in hospitalized patients with chronic liver disease. World Journal of Gastroenterology. 2015;21:12835–12842. doi: 10.3748/wjg.v21.i45.12835.
    1. Maharshi S., Sharma B. C., Srivastava S. Malnutrition in cirrhosis increases morbidity and mortality. Journal of Gastroenterology and Hepatology. 2015;30:1507–1513. doi: 10.1111/jgh.12999.
    1. Merli M., Giusto M., Giannelli V., Lucidi C., Riggio O. Nutritional status and liver transplantation. Journal of Clinical and Experimental Hepatology. 2011;1:190–198. doi: 10.1016/S0973-6883(11)60237-5.
    1. Ruiz-Margáin A., Macías-Rodríguez R. U., Duarte-Rojo A., Ríos-Torres S. L., Espinosa-Cuevas Á., Torre A. Malnutrition assessed through phase angle and its relation to prognosis in patients with compensated liver cirrhosis: a prospective cohort study. Digestive and Liver Disease. 2015;47:309–314. doi: 10.1016/j.dld.2014.12.015.
    1. Fernandes S. A., Bassani L., Nunes F. F., Aydos M. E., Alves A. V., Marroni C. A. Nutritional assessment in patients with cirrhosis. Arquivos de Gastroenterologia. 2012;49:19–27.
    1. Tandon P., Raman M., Mourtzakis M., Merli M. A practical approach to nutritional screening and assessment in cirrhosis. Hepatology. 2016;65:1044–1057. doi: 10.1002/hep.29003.
    1. Nunes F. F., Bassani L., Fernandes S. A., Deutrich M. E., Pivatto B. C., Marroni C. A. Food consumption of cirrhotic patients, comparison with the nutritional status and disease staging. Arquivos de Gastroenterologia. 2016;53:250–256. doi: 10.1590/S0004-28032016000400008.
    1. Fialla A. D., Israelsen M., Hamberg O., Krag A., Gluud L. L. Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis. Liver International. 2015;35:2072–2078. doi: 10.1111/liv.12798.
    1. Iwasa M., Iwata K., Hara N., et al. Nutrition therapy using a multidisciplinary team improves survival rates in patients with liver cirrhosis. Nutrition. 2013;29:1418–1421. doi: 10.1016/j.nut.2013.05.016.
    1. Kato A., Tanaka H., Kawaguchi T., et al. Nutritional management contributes to improvement in minimal hepatic encephalopathy and quality of life in patients with liver cirrhosis: a preliminary, prospective, open-label study. Hepatology Research. 2013;43:452–458. doi: 10.1111/j.1872-034X.2012.01092.x.
    1. Kim H. Y., Jang J. W. Sarcopenia in the prognosis of cirrhosis: going beyond the MELD score. World Journal of Gastroenterology. 2015;21:7637–7647. doi: 10.3748/wjg.v21.i25.7637.
    1. Kallwitz E. R. Sarcopenia and liver transplant: the relevance of too little muscle mass. World Journal of Gastroenterology. 2015;21:10982–10993. doi: 10.3748/wjg.v21.i39.10982.
    1. Ruiz-Margáin A., Macías-Rodríguez R. U., Ampuero J., et al. Low phase angle is associated with the development of hepatic encephalopathy in patients with cirrhosis. World Journal of Gastroenterology. 2016;22:10064–10070. doi: 10.3748/wjg.v22.i45.10064.
    1. Kalaitzakis E., Bjornsson E. Hepatic encephalopathy in patients with liver cirrhosis: is there a role of malnutrition? World Journal of Gastroenterology. 2008;14:3438–3439.
    1. Norman K., Kirchner H., Lochs H., Pirlich M. Malnutrition affects quality of life in gastroenterology patients. World Journal of Gastroenterology. 2016;12:3380–3385.
    1. Maharshi S., Sharma B. C., Sachdeva S., Srivastava S., Sharma P. Efficacy of nutritional therapy for patients with cirrhosis and minimal hepatic encephalopathy in a randomized trial. Clinical Gastroenterology and Hepatology. 2016;14:454–460. doi: 10.1016/j.cgh.2015.09.028.
    1. Holecek M. Ammonia and amino acid profiles in liver cirrhosis: effects of variables leading to hepatic encephalopathy. Nutrition. 2015;31:14–20. doi: 10.1016/j.nut.2014.03.016.
    1. Kawaguchi T., Taniguchi E., Sata M. Effects of oral branched-chain amino acids on hepatic encephalopathy and outcome in patients with liver cirrhosis. Clinical Gastroenterology and Hepatology. 2013;28:580–588. doi: 10.1177/0884533613496432.
    1. Dam G., Keiding S., Munk O. L., et al. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects. The American Journal of Physiology: Gastrointestinal and Liver Physiology. 2011;301:269–277. doi: 10.1152/ajpgi.00062.2011.
    1. Dam G., Ott P., Aagaard N. K., Vilstrup H. Branched-chain amino acids and muscle ammonia detoxification in cirrhosis. Metabolic Brain Disease. 2013;28(2):217–220. doi: 10.1007/s11011-013-9377-3.
    1. Metcalfe E. L., Avenell A., Fraser A. Branched-chain amino acid supplementation in adults with cirrhosis and porto-systemic encephalopathy: systematic review. Clinical Nutrition. 2014;33:958–965. doi: 10.1016/j.clnu.2014.02.011.
    1. Gluud L. L., Dam G., Les I., et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Systematic Reviews. 2015;17, article CD001939 doi: 10.1002/14651858.CD001939.pub3.
    1. Matsuoka S., Tamura A., Nakagawara H., Moriyama M. Improvement in the nutritional status and clinical conditions of patients with liver failure using a liver diet combined with a branched chain amino acids-enriched elemental diet. Hepato-Gastroenterology. 2014;61:1308–1312.
    1. Gluud L. L., Dam G., Borre M., et al. Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. Journal of Nutrition. 2013;143:1263–1268. doi: 10.3945/jn.113.174375.
    1. Kachaamy T., Bajaj J. S. Diet and cognition in chronic liver disease. Current Opinion in Gastroenterology. 2011;27:174–179.
    1. Butterworth R. F. Hepatic encephalopathy in alcoholic cirrhosis. Handbook of Clinical Neurology. 2014;125:589–602. doi: 10.1016/B978-0-444-62619-6.00034-3.
    1. Cichoż-Lach H., Michalak A. Current pathogenetic aspects of hepatic encephalopathy and noncirrhotic hyperammonemic encephalopathy. World Journal of Gastroenterology. 2013;19:26–34. doi: 10.3748/wjg.v19.i1.26.
    1. Tapper E. B., Jiang Z. G., Patwardhan V. R. Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy. Mayo Clinic Proceedings. 2015;90:646–658. doi: 10.1016/j.mayocp.2015.03.003.
    1. Dam G., Sørensen M., Buhl M., et al. Muscle metabolism and whole blood amino acid profile in patients with liver disease. Scandinavian Journal of Clinical and Laboratory Investigation. 2015;75:674–680.
    1. Montano-Loza A. J. Muscle wasting: a nutritional criterion to prioritize patients for liver transplantation. Current Opinion in Clinical Nutrition and Metabolic Care. 2014;17:219–225. doi: 10.1097/MCO.0000000000000046.
    1. Aldridge D. R., Tranah E. J., Shawcross D. L. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. Journal of Clinical and Experimental Hepatology. 2015;5:S7–S20. doi: 10.1016/j.jceh.2014.06.004.
    1. Kotoh K., Nakamuta M., Fukushima M., et al. High relative fat-free mass is important for maintaining serum albumin levels in patients with compensated liver cirrhosis. World Journal of Gastroenterology. 2005;11:1356–1360.
    1. Montano-Loza A. J. Clinical relevance of sarcopenia in patients with cirrhosis. World Journal of Gastroenterology. 2014;20:8061–8071. doi: 10.3748/wjg.v20.i25.8061.
    1. Toshikuni N., Arisawa T., Tsutsumi M. Nutrition and exercise in the management of liver cirrhosis. World Journal of Gastroenterology. 2014;20:7286–7297. doi: 10.3748/wjg.v20.i23.7286.
    1. Thandassery R. B., Montano-Loza A. J. Role of nutrition and muscle in cirrhosis. Current Treatment Options in Gastroenterology. 2016;14:257–273. doi: 10.1007/s11938-016-0093-z.
    1. Juakiem W., Torres D. M., Harrison S. A. Nutrition in cirrhosis and chronic liver disease. Clinical Liver Disease. 2014;18:179–190. doi: 10.1016/j.cld.2013.09.004.
    1. Amodio P., Canesso F., Montagnese S. Dietary management of hepatic encephalopathy revisited. Current Opinion in Clinical Nutrition and Metabolic Care. 2014;17:448–452. doi: 10.1097/MCO.0000000000000084.
    1. Bémeurand C., Butterworth R. F. Nutrition in the management of cirrhosis and its neurological complications. Journal of Clinical and Experimental Hepatology. 2014;4:141–150. doi: 10.1016/j.jceh.2013.05.008.
    1. Guerra T. S., Hoehr N. F., Boin Ide F., Stucchi R. S. Trace elements in plasma and nutritional assessment in patients with compensated cirrhosis on a liver transplant list. Arquivos de Gastroenterologia. 2016;53:84–88. doi: 10.1590/S0004-28032016000200006.
    1. Yao J., Chang L., Yuan L., Duan Z. Nutrition status and small intestinal bacterial overgrowth in patients with virus-related cirrhosis. Asia Pacific Journal of Clinicial Nutrition. 2016;25:283–291.
    1. Chaves G. V., Peres W. A., Gonçalves J. C., Ramalho A. Vitamin A and retinol-binding protein deficiency among chronic liver disease patients. Nutrition. 2015;31:664–668. doi: 10.1016/j.nut.2014.10.016.
    1. Kang D. J., Betrapally N. S., Ghosh S. A., et al. Gut microbiota drive the development of neuroinflammatory response in cirrhosis in mice. Hepatology. 2016;64:1232–1248. doi: 10.1002/hep.28696.
    1. Ahluwalia V., Betrapally N. S., Hylemon P. B., et al. Impaired gut-liver-brain axis in patients with cirrhosis. Scientific Reports. 2016;6, article 26800 doi: 10.1038/srep26800.
    1. Kappus M. R., Mendoza M. S., Nguyen D., Medici V., McClave S. A. Sarcopenia in patients with chronic liver disease: can it be altered by diet and exercise? Current Gastroenterology Reports. 2016;18:p. 43. doi: 10.1007/s11894-016-0516-y.
    1. Dasarathy S. Cause and management of muscle wasting in chronic liver disease. Current Opinion in Gastroenterology. 2016;32:159–165. doi: 10.1097/MOG.0000000000000261.
    1. Montano-Loza A. J. New concepts in liver cirrhosis: clinical significance of sarcopenia in cirrhotic patients. Minerva Gastroenterologica e Dietologica. 2013;59:173–186.
    1. Karagozian R., Bhardwaj G., Wakefield D. B., Baffy G. Obesity paradox in advanced liver disease: obesity is associated with lower mortality in hospitalized patients with cirrhosis. Liver International. 2016;36:1450–1456. doi: 10.1111/liv.13137.
    1. Purnak T., Yilmaz Y. Liver disease and malnutrition. Best Practice and Research Clinical Gastroenterology. 2013;27:619–629. doi: 10.1016/j.bpg.2013.06.018.
    1. Nishikawa H., Osaki Y. Liver cirrhosis: evaluation, nutritional status, and prognosis. Mediators of Inflammation. 2015;2015:9. doi: 10.1155/2015/872152.872152
    1. Putadechakum S., Klangjareonchai T., Soponsaritsuk A., Roongpisuthipong C. Nutritional status assessment in cirrhotic patients after protein supplementation. International Scholarly Research Network Gastroenterology. 2012;2012:4. doi: 10.5402/2012/690402.690402
    1. Bunchorntavakul C., Supanun R., Atsawarungruangkit A. Nutritional status and its impact on clinical outcomes for patients admitted to hospital with cirrhosis. Journal of the Medical Association of Thailand. 2016;99:S47–S55.
    1. Peres W. A., Lento D. F., Baluz K., Ramalho A. Phase angle as a nutritional evaluation tool in all stages of chronic liver disease. Nutricion Hospitalaria. 2012;27:2072–2078. doi: 10.3305/nh.2012.27.6.6015.
    1. Sasidharan M., Nistala S., Narendhran R. T., Murugesh M., Bhatia S. J., Rathi P. M. Nutritional status and prognosis in cirrhotic patients. Tropical Gastroenterology. 2012;33(4):257–264.
    1. Teiusanu A., Andrei M., Arbanas T., Nicolaie T., Diculescu M. Nutritional status in cirrhotic patients. Maedica (Buchar) 2012;7:284–289.
    1. Giusto M., Lattanzi B., Gregorio V. D., Giannelli V., Lucidi C., Merli M. Changes in nutritional status after liver transplantation. World Journal of Gastroenterology. 2014;20:10682–10690. doi: 10.3748/wjg.v20.i31.10682.
    1. Moctezuma-Velázquez C., García-Juárez I., Soto-Solís R., Hernández-Cortés J., Torre A. Nutritional assessment and treatment of patients with liver cirrhosis. Nutrition. 2013;29:1279–1285. doi: 10.1016/j.nut.2013.03.017.
    1. Bosy-Westphal A., Danielzik S., Dörhöfer R. P., Later W., Wiese S., Müller M. J. Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index. Journal of Parenteral and Enteral Nutrition. 2006;30:309–316. doi: 10.1177/0148607106030004309.
    1. Berbigier M. C., Pasinato V. F., Rubin Bde A., Moraes R. B., Perry I. D. Bioelectrical impedance phase angle in septic patients admitted to intensive care units. Revista Brasileira de Terapia Intensiva. 2013;25:25–31.
    1. Stobäus N., Pirlich M., Valentini L., Schulzke J. D., Norman K. Determinants of bioelectrical phase angle in disease. British Journal of Nutrition. 2012;107:1217–1220. doi: 10.1017/S0007114511004028.
    1. Siddiqui N. I., Khan S. A., Shoeb M., Bose S. Anthropometric predictors of bio-impedance analysis (bia) phase angle in healthy adults. Journal of Clinical and Diagnostic Research. 2016;10:CC01–CC04. doi: 10.7860/JCDR/2016/17229.7976.
    1. Walter-Kroke A., Kroker A., Mattiucci-Guehlke M., Glaab T. A practical guide to bioelectrical impedance analysis using the example of chronic obstructive pulmonary disease. Nutrition Journal. 2011;10:p. 35. doi: 10.1186/1475-2891-10-35.
    1. Malbrain M. L., Huygh J., Dabrowski W., De Waele J. J., Staelens A., Wauters J. The use of bio-electrical impedance analysis (BIA) to guide fluid management, resuscitation and deresuscitation in critically ill patients: a bench-to-bedsidereview. Anaesthesiology Intensive Therapy. 2014;46:381–391. doi: 10.5603/AIT.2014.0061.
    1. Lee S. Y., Lee Y. J., Yang J. H., Kim C. M., Choi W. S. The association between phase angle of bioelectrical impedance analysis and survival time in advanced cancer patients: preliminary study. Korean Journal of Family Medicine. 2014;35:251–256. doi: 10.4082/kjfm.2014.35.5.251.
    1. Barbosa-Silva M. C., Barros A. J., Wang J., Heymsfield S. B., Pierson R. N., Jr. Bioelectrical impedance analysis: population reference values for phase angle by age and sex. American Journal of Clinical Nutrition. 2005;82:49–52.
    1. Kahraman A., Hilsenbeck J., Nyga M., et al. Bioelectrical impedance analysis in clinical practice: implications for hepatitis C therapy BIA and hepatitis C. Virology Journal. 2010;7:p. 191. doi: 10.1186/1743-422X-7-191.
    1. Kumar S., Dutt A., Hemraj S., Bhat S., Manipadybhima B. Phase angle measurement in healthy human subjects through bio-impedance analysis. Iranian Journal of Basic Medical Sciences. 2012;15:1180–1184.
    1. Davenport A., Argawal B., Wright G., et al. Can non-invasive measurements aid clinical assessment of volume in patients with cirrhosis? World Journal of Hepatology. 2013;5:433–438. doi: 10.4254/wjh.v5.i8.433.
    1. Vulcano D. S., Carvalhaes M. A., Bakonyi Neto A. Evaluation of nutritional indicators and body composition in patients with advanced liver disease enrolled for liver transplantation. Acta Cirurgica Brasileira. 2013;28:733–739.
    1. Thibault R., Pichard C. The evaluation of body composition: a useful tool for clinical practice. Annals of Nutrition and Metabolism. 2012;60:6–16. doi: 10.1159/000334879.
    1. Fernandes S. A., de Mattos A. A., Tovo C. V., Marroni C. A. Nutritional evaluation in cirrhosis: emphasis on the phase angle. World Journal of Hepatology. 2016;8:1205–1211. doi: 10.4254/wjh.v8.i29.1205.
    1. Belarmino G., Gonzalez M. C., Torrinhas R. S., et al. Phase angle obtained by bioelectrical impedance analysis independently predicts mortality in patients with cirrhosis. World Journal of Hepatology. 2017;9:401–408. doi: 10.4254/wjh.v9.i7.401.
    1. Naqvi I. H., Mahmood K., Salekeen S., Akhter S. T. Determining the frequency and severity of malnutrition and correlating it with the severity of liver cirrhosis. Turkish Journal of Gastroenterology. 2013;24:415–422.
    1. Lee Y., Kwon O., Shin C. S., Lee S. M. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clinical Nutrition Research. 2015;4:32–40. doi: 10.7762/cnr.2015.4.1.32.
    1. Kawaguchi T., Taniguchi E., Itou M., et al. Body cell mass is a useful parameter for assessing malnutrition and severity of disease in non-ascitic cirrhotic patients with hepatocellular carcinoma or esophageal varices. International Journal of Molecular Medicine. 2008;22:589–594.
    1. Gupta D., Lis G. S., Dahlk S. L., et al. The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutrition Journal. 2008;7:p. 19. doi: 10.1186/1475-2891-7-19.
    1. Norman K., Stobäus N., Zocher D., et al. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. American Journal of Clinical Nutrition. 2010;92:612–619. doi: 10.3945/ajcn.2010.29215.
    1. Abe Vicente M., Donizetti Silva T., Barão K., Felipe A. V., Oyama Missae L., Manoukian Forones N. The influence of nutritional status and disease on adiponectin and TNF-α; levels in colorectal cancer patients. Nutricion Hospitalaria. 2014;30:140–146. doi: 10.3305/nh.2014.30.1.7132.
    1. Maurício S. F., da Silva J. B., Bering T., CorreiaI M. I. Relationship between nutritional status and the Glasgow prognostic score in patients with colorectal cancer. Nutrition. 2013;29:625–629. doi: 10.1016/j.nut.2012.09.016.
    1. Evans D., McNamara L., Maskew M., et al. Impact of nutritional supplementation on immune response, body mass index and bioelectrical impedance in HIV-positive patients starting antiretroviral therapy. Nutrition Journal. 2013;12:p. 111. doi: 10.1186/1475-2891-12-111.
    1. Gupta D., Lammersfeld C. A., Burrows J. L., et al. Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. American Journal of Clinical Nutrition. 2004;80:1634–1638.
    1. Cui M. L., Ahn H. S., Kim J. Y., et al. Bioelectrical impedance may predict cell viability during ischemia and reperfusion in rat liver. Journal of Korean Medical Science. 2010;25:577–582. doi: 10.3346/jkms.2010.25.4.577.
    1. de Luis D. A., Izaola O., Velicia M. C., et al. Impact of dietary intake and nutritional status on outcomes after liver transplantation. Revista Espanola de Enfermedades Digestivas. 2006;98:6–13.
    1. Singal A. K., Kamath P. S., Francisco Ziller N., et al. Nutritional status of patients with alcoholic cirrhosis undergoing liver transplantation: time trends and impact on survival. Transplant International. 2013;26:788–794. doi: 10.1111/tri.12123.
    1. García-Rodríguez M. T., Piñón-Villar Mdel C., López-Calviño B., et al. Assessment of nutritional status and health-related quality of life before and after liver transplantation. BMC Gastroenterology. 2015;15:p. 6. doi: 10.1186/s12876-015-0232-3.
    1. Ferreira L. G., Anastácio L. R., Soares Lima A., Touslon Davisson Correia M. I. Predictors of mortality in patients on the waiting list for liver transplantation. Nutricion Hospitalaria. 2013;28:914–919. doi: 10.3305/nh.2013.28.3.6333.
    1. Kalafateli M., Mantzoukis K., Choi Yau Y., et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the Model for End-stage Liver Disease score. Journal of Cachexia Sarcopenia Muscle. 2017;8:113–121. doi: 10.1002/jcsm.12095.
    1. Eghtesad S., Poustchi H., Malekzadeh R. Malnutrition in liver cirrhosis: the influence of protein and sodium. Middle East Journal of Digestive Diseases. 2013;5:65–75.
    1. Hamada Y. Objective Data Assessment (ODA) methods as nutritional assessment tools. Journal of Medical Investigation. 2015;62:119–122. doi: 10.2152/jmi.62.119.
    1. Lindqvist C., Majeed A., Wahlin S. Body composition assessed by dual-energy X-ray absorptiometry predicts early infectious complications after liver transplantation. Journal of Human Nutrition and Dietetics. 2017;30:284–291. doi: 10.1111/jhn.12417.
    1. Romeiro F. G., Augusti L. Nutritional assessment in cirrhotic patients with hepatic encephalopathy. World Journal of Hepatology. 2015;7:2940–2954. doi: 10.4254/wjh.v7.i30.2940.
    1. Nishikawa H., Enomoto H., Ishii A., et al. Development of a simple predictive model for decreased skeletal muscle mass in patients with compensated chronic liver disease. Hepatology Research. 2016 doi: 10.1111/hepr.12857.
    1. Tandon P., Low G., Mourtzakis M., et al. A model to identify sarcopenia in patients with cirrhosis. Clinical Gastroenterology and Hepatology. 2016;14:1473–1480. doi: 10.1016/j.cgh.2016.04.040.
    1. Montano-Loza A. J., Duarte-Rojo A., Meza-Junco J., et al. Inclusion of sarcopenia within MELD (MELD-sarcopenia) and the prediction of mortality in patients with cirrhosis. Clinical and Translational Gastroenterology. 2015;6, article e102 doi: 10.1038/ctg.2015.31.
    1. Dasarathy S. Treatment to improve nutrition and functional capacity evaluation in liver transplant candidates. Current Treatment Options in Gastroenterology. 2014;12:242–255. doi: 10.1007/s11938-014-0016-9.

Source: PubMed

3
订阅