Microbiota in mesenteric adipose tissue from Crohn's disease promote colitis in mice

Zhen He, Jinjie Wu, Junli Gong, Jia Ke, Tao Ding, Wenjing Zhao, Wai Ming Cheng, Zhanhao Luo, Qilang He, Wanyi Zeng, Jing Yu, Na Jiao, Yanmin Liu, Bin Zheng, Lei Dai, Min Zhi, Xiaojian Wu, Christian Jobin, Ping Lan, Zhen He, Jinjie Wu, Junli Gong, Jia Ke, Tao Ding, Wenjing Zhao, Wai Ming Cheng, Zhanhao Luo, Qilang He, Wanyi Zeng, Jing Yu, Na Jiao, Yanmin Liu, Bin Zheng, Lei Dai, Min Zhi, Xiaojian Wu, Christian Jobin, Ping Lan

Abstract

Background: Mesenteric adipose tissue (mAT) hyperplasia, known as creeping fat is a pathologic characteristic of Crohn's disease (CD). The reserve of creeping fat in surgery is associated with poor prognosis of CD patients, but the mechanism remains unknown.

Methods: Mesenteric microbiome, metabolome, and host transcriptome were characterized using a cohort of 48 patients with CD and 16 non-CD controls. Multidimensional data including 16S ribosomal RNA gene sequencing (16S rRNA), host RNA sequencing, and metabolome were integrated to reveal network interaction. Mesenteric resident bacteria were isolated from mAT and functionally investigated both in the dextran sulfate sodium (DSS) model and in the Il10 gene-deficient (Il10-/-) mouse colitis model to validate their pro-inflammatory roles.

Results: Mesenteric microbiota contributed to aberrant metabolites production and transcripts in mATs from patients with CD. The presence of mAT resident microbiota was associated with the development of CD. Achromobacter pulmonis (A. pulmonis) isolated from CD mAT could translocate to mAT and exacerbate both DSS-induced and Il10 gene-deficient (Il10-/-) spontaneous colitis in mice. The levels of A. pulmonis in both mAT and mucous layer from CD patients were higher compared to those from the non-CD group.

Conclusions: This study suggests that the mesenteric microbiota from patients with CD sculpt a detrimental microenvironment and promote intestinal inflammation. Video abstract.

Keywords: Bacterial translocation; Crohn’s disease; Mesenteric adipose tissue; Microbiota.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Multi-omics signatures of mesenteric adipose tissue in CD versus non-CD. a Separation of mesenteric microbiome between patients with 48 CD and 16 non-CD controls, revealed by principal component analysis (PCA) (Adonis p = 0.009). b LDA score computed from features differentially abundant between CD patients and non-CD controls. The criteria for feature selection is log LDA score > 3. c Separation of the mesenteric transcriptome between 46 CD patients and 15 non-CD controls, revealed by PCA (Adonis p = 0.001). d Heatmap of the immune-associated DEGs (FDR p < 0.05) from 46 patients with CD and 15 non-CD controls. Ordering by diagnosis, clustering within diagnosis. e Separation of mesenteric metabolome between 48 CD patients and 16 non-CD controls, revealed by PCA (Adonis p = 0.003). f Twenty-eight metabolites were significantly (Studentʼs t-test, p < 0.05) enriched in mAT from 48 CD, while 19 metabolites were significantly enriched in 16 non-CD controls. The violin plot indicated the difference of mean and 95% confidence interval for an individual metabolite. The statistical significance values are denoted as *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001
Fig. 2
Fig. 2
Critical role of isolated bacterial biomarkers in CD inflammation. a The top 16 mAT bacterial biomarkers were identified by applying Random Forests regression of their relative abundance. Biomarker taxa are ranked in decreasing order of importance to the accuracy of the model. The model based on these biomarkers achieved an AUC of 0.987. b ROC analysis of these mAT bacterial biomarkers in the RF model achieved an AUC of 0.852 to classify patients with endoscopic recurrence. c Circularized plot showing the abundance of mesenteric resident bacteria isolated from different culture mediums. d Significant association of host-microbiome interactions: isolated species, immune transcripts, and differential metabolites. Network shows the significant correlations (Spearman’s correlation, p < 0.05) between two omics variables. Nodes are colored by different omics variables and sized by the number of connections. e Kaplan–Meier (KM) survival curves classify patients into high- and low-risk groups based on the major pathogens in the CD cohort
Fig. 3
Fig. 3
Mesenteric resident bacteria exacerbate colitis in mice. a SPF C57BL/6 mice were treated by an antibiotic cocktail for 4 days. One day post antibiotics, the mice were daily orally colonized with bacterial cocktail (5-Mix or E. fergusonii, 109 CFU/mouse/dose) or BHI until being euthanized. After 5 days bacterial colonization, the mice were exposed to 3% DSS for 7 days, followed by regular water for 3 days. b and c Changes of body weight (b) and disease activity index (DAI) after administration of 3% DSS (c). d–g Representative colons (d), colon length (e), representative colonic histological images (Scale bar = 40 μm and 10 μm) (f), colonic histological score (g) in mice treated with 5-mix bacterial cocktail, E. fergusonii and BHI. h Messenger RNA levels of key cytokines (TNF-α, IL-6, and IL-1β) in the terminal ileum (n=5 per group). i SPF Il10−/− mice were treated with antibiotics cocktail for 4 days. One day post antibiotics, the mice were daily orally colonized with bacterial cocktail (5-Mix or E. fergusonii, 109 CFU/mouse/dose) or BHI for 3 weeks. j–m Representative colons (j), colon length (k), representative colonic histological images (Scale bar= 40 μm and 20 μm) (l), colonic histological score from Il10−/− mice treated with 5-Mix, E. fergusonii and BHI (m). n Inflammatory cytokines from macrophage cell line RAW264.7 after co-culture with 5 different bacteria or 5-Mix. Results are shown as the mean ± SEM. Each dot indicates an individual mouse. The statistical significance values are denoted as: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. One-way ANOVA following Tukey’s multiple comparison test (e, g, h, k, m, and n); two-way ANOVA following Tukey’s multiple comparison test (b and c). A.p, A. pulmonis; O.a, O.anthropi; P.a, P.alcaliphila; A.d, A.deleyi; D.r, D.riboflavina
Fig. 4
Fig. 4
A. pulmonis is sufficient to elicit a strong inflammatory response in mice. a SPF C57BL/6 mice were treated with an antibiotic cocktail for 4 days. One day post antibiotics, the mice were daily orally colonized with bacterial cocktail (A. pulmonis, 5-Mix or residual 4-Mix, 109 CFU/mouse/dose) or BHI until being euthanized. After 5 days bacterial colonization, the mice were exposed to 3% DSS for 7 days, followed by regular water for 3 days. b and c Changes of body weight (b) and disease activity index (DAI) (c) after 3% DSS administration. d–g Colon length (d), representative colons (e), representative colonic histological images (Scale bar = 40 μm and 10 μm) (f), colonic histological score (g) in mice treated with A. pulmonis, 5-mix bacterial cocktail, 4-mix bacterial cocktail and BHI. h SPF Il10−/− mice were treated with antibiotics cocktail for 4 days. One day post antibiotics, the mice were daily orally colonized with bacterial cocktail (A. pulmonis or E. fergusonii, 109 CFU/mouse/dose) or BHI for 3 weeks. i-l Colon length (i), representative colons (j), representative colonic histological images (Scale bar = 40 μm and 20 μm) (k), colonic histological score (l) from Il10−/− mice treated with A. pulmonis, E. fergusonii and BHI. Results are shown as the mean± SEM. Each dot indicates an individual mouse. The statistical significance values are denoted as: *p < 0.05, **p < 0.01, *** p < 0.001, ****p < 0.0001. One-way ANOVA following Tukey’s multiple comparison test (d, g, j, and l); two-way ANOVA following Tukey’s multiple comparison test (b and c)
Fig. 5
Fig. 5
Bacterial translocation into mesenteric adipose tissue is associated with development of colitis. a Representative images of mucous depth in the colonic section stained by alcian blue (Scale bar = 40 μm and 10 μm) from mice colonized with bacterial cocktail (A. pulmonis, 5-Mix or residual 4-Mix, 109 CFU/mouse/dose) or BHI in DSS-colitis model. b Mucous depth from mice treated with A. pulmonis, 5-Mix, 4-Mix, or BHI in the DSS-colitis model. c The quantity of A. pulmonis in mesenteric tissue from mice was assessed by qPCR in the DSS-colitis model. Results are shown as the mean± SEM. d Detection of A. pulmonis in the human mesenteric tissue (mAT) from CD patients and non-CD controls by fluorescence in situ hybridization (FISH). Mesenteric tissue sections were stained with DAPI (blue), A. pulmonis-specific probes (green dot) and EUB338 (red dot). (Scale bar = 10 μm). e The quantity of A. pulmonis in human mAT from CD and non-CD controls was assessed by qPCR. f The quantity of A. pulmonis in human mAT from CD patients with and without endoscopic recurrence was assessed by qPCR. g and h The quantity of A. pulmonis in human mAT (g) or mucous layer (h) from a new validation cohort. Each dot indicates an individual mouse. The statistical significance values are denoted as *p < 0.05, **p < 0.01, ***p < 0.001. One-way ANOVA following Tukey’s multiple comparison test (b and c); two-tailed Student’s t-test (e–h)

References

    1. Roda G, Chien Ng S, Kotze PG, Argollo M, Panaccione R, Spinelli A, et al. Crohnʼs disease. Nat Rev Dis Primers. 2020;6(1):22. doi: 10.1038/s41572-020-0156-2.
    1. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390(10114):2769–2778. doi: 10.1016/s0140-6736(17)32448-0.
    1. Thia KT, Sandborn WJ, Harmsen WS, Zinsmeister AR, Loftus EV., Jr Risk factors associated with progression to intestinal complications of Crohnʼs disease in a population-based cohort. Gastroenterology. 2010;139(4):1147–1155. doi: 10.1053/j.gastro.2010.06.070.
    1. Peyrin-Biroulet L, Chamaillard M, Gonzalez F, Beclin E, Decourcelle C, Antunes L, et al. Mesenteric fat in Crohnʼs disease: a pathogenetic hallmark or an innocent bystander? Gut. 2007;56(4):577–583. doi: 10.1136/gut.2005.082925.
    1. Coffey CJ, Kiernan MG, Sahebally SM, Jarrar A, Burke JP, Kiely PA, et al. Inclusion of the mesentery in ileocolic resection for Crohnʼs disease is associated with reduced surgical recurrence. J Crohns Colitis. 2018;12(10):1139–1150. doi: 10.1093/ecco-jcc/jjx187.
    1. Plichta DR, Graham DB, Subramanian S, Xavier RJ. Therapeutic opportunities in inflammatory bowel disease: mechanistic dissection of host-microbiome relationships. Cell. 2019;178(5):1041–1056. doi: 10.1016/j.cell.2019.07.045.
    1. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdez-Humarán LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol Med. 2011;3(9):559–572. doi: 10.1002/emmm.201100159.
    1. Zulian A, Cancello R, Cesana E, Rizzi E, Consolandi C, Severgnini M, et al. Adipose tissue microbiota in humans: an open issue. Int J Obes (Lond). 2016;40(11):1643–1648. doi: 10.1038/ijo.2016.111.
    1. Anhê FF, Jensen BAH, Varin TV, Servant F, Van Blerk S, Richard D, et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat Metab. 2020;2(3):233–242. doi: 10.1038/s42255-020-0178-9.
    1. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–1481. doi: 10.2337/db07-1403.
    1. Lam YY, Ha CW, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, et al. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One. 2012;7(3):e34233. doi: 10.1371/journal.pone.0034233.
    1. Gummesson A, Carlsson LM, Storlien LH, Bäckhed F, Lundin P, Löfgren L, et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity (Silver Spring). 2011;19(11):2280–2282. doi: 10.1038/oby.2011.251.
    1. Teixeira TF, Souza NC, Chiarello PG, Franceschini SC, Bressan J, Ferreira CL, et al. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr. 2012;31(5):735–740. doi: 10.1016/j.clnu.2012.02.009.
    1. Serena C, Queipo-Ortuño M, Millan M, Sanchez-Alcoholado L, Caro A, Espina B, et al. Microbial signature in adipose tissue of Crohnʼs disease patients. J Clin Med. 2020;9(8). 10.3390/jcm9082448.
    1. Ha CWY, Martin A, Sepich-Poore GD, Shi B, Wang Y, Gouin K, et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell. 2020. 10.1016/j.cell.2020.09.009.
    1. Whelan FJ, Waddell B, Syed SA, Shekarriz S, Rabin HR, Parkins MD, et al. Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. Nat Microbiol. 2020;5(2):379–390. doi: 10.1038/s41564-019-0643-y.
    1. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69(2):238–249.
    1. Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology--a systematic review. BMC Vet Res. 2013;9:123. doi: 10.1186/1746-6148-9-123.
    1. Oh JY, Kang MS, An BK, Shin EG, Kim MJ, Kwon JH, et al. Isolation and epidemiological characterization of heat-labile enterotoxin-producing Escherichia fergusonii from healthy chickens. Vet Microbiol. 2012;160(1-2):170–175. doi: 10.1016/j.vetmic.2012.05.020.
    1. Gaastra W, Kusters JG, van Duijkeren E, Lipman LJ. Escherichia fergusonii. Vet Microbiol. 2014;172(1-2):7–12. doi: 10.1016/j.vetmic.2014.04.016.
    1. Gevers D, Kugathasan S, Knights D, Kostic AD, Knight R, Xavier RJ. A microbiome foundation for the study of Crohnʼs disease. Cell Host Microbe. 2017;21(3):301–304. doi: 10.1016/j.chom.2017.02.012.
    1. Massier L, Chakaroun R, Tabei S, Crane A, Didt KD, Fallmann J, et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut. 2020. 10.1136/gutjnl-2019-320118.
    1. Lelouvier B, Servant F, Païssé S, Brunet AC, Benyahya S, Serino M, et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology. 2016;64(6):2015–2027. doi: 10.1002/hep.28829.
    1. Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol. 2019;9:148. doi: 10.3389/fcimb.2019.00148.
    1. Traykova D, Schneider B, Chojkier M, Buck M. Blood microbiome quantity and the hyperdynamic circulation in decompensated cirrhotic patients. PLoS One. 2017;12(2):e0169310. doi: 10.1371/journal.pone.0169310.
    1. Sokol H, Brot L, Stefanescu C, Auzolle C, Barnich N, Buisson A, et al. Prominence of ileal mucosa-associated microbiota to predict postoperative endoscopic recurrence in Crohnʼs disease. Gut. 2020;69(3):462–472. doi: 10.1136/gutjnl-2019-318719.
    1. Zulian A, Cancello R, Ruocco C, Gentilini D, Di Blasio AM, Danelli P, et al. Differences in visceral fat and fat bacterial colonization between ulcerative colitis and Crohnʼs disease. an in vivo and in vitro study. PLoS One. 2013;8(10):e78495. doi: 10.1371/journal.pone.0078495.
    1. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305. doi: 10.1038/s41564-018-0306-4.
    1. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569(7758):655–662. doi: 10.1038/s41586-019-1237-9.
    1. Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, et al. Ectopic colonization of oral bacteria in the intestine drives T(H)1 cell induction and inflammation. Science. 2017;358(6361):359–365. doi: 10.1126/science.aan4526.
    1. Britton GJ, Contijoch EJ, Mogno I, Vennaro OH, Llewellyn SR, Ng R, et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt(+) regulatory T cells and exacerbate colitis in mice. Immunity. 2019;50(1):212–24.e4. doi: 10.1016/j.immuni.2018.12.015.
    1. Obata T, Goto Y, Kunisawa J, Sato S, Sakamoto M, Setoyama H, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibody-mediated symbiosis. Proc Natl Acad Sci U S A. 2010;107(16):7419–7424. doi: 10.1073/pnas.1001061107.
    1. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321–1325. doi: 10.1126/science.1222551.
    1. Kruis T, Batra A, Siegmund B. Bacterial translocation - impact on the adipocyte compartment. Front Immunol. 2014;4:510. doi: 10.3389/fimmu.2013.00510.
    1. Peyrin-Biroulet L, Gonzalez F, Dubuquoy L, Rousseaux C, Dubuquoy C, Decourcelle C, et al. Mesenteric fat as a source of C reactive protein and as a target for bacterial translocation in Crohnʼs disease. Gut. 2012;61(1):78–85. doi: 10.1136/gutjnl-2011-300370.
    1. Batra A, Heimesaat MM, Bereswill S, Fischer A, Glauben R, Kunkel D, et al. Mesenteric fat - control site for bacterial translocation in colitis? Mucosal Immunol. 2012;5(5):580–591. doi: 10.1038/mi.2012.33.
    1. Johansson ME, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63(2):281–291. doi: 10.1136/gutjnl-2012-303207.
    1. Chen X, Li P, Liu M, Zheng H, He Y, Chen MX, et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut. 2020;69(3):513–522. doi: 10.1136/gutjnl-2019-319101.
    1. Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol. 2013;11(9):1075–1083. doi: 10.1016/j.cgh.2013.07.001.
    1. Lennon G, Balfe A, Earley H, Devane LA, Lavelle A, Winter DC, et al. Influences of the colonic microbiome on the mucous gel layer in ulcerative colitis. Gut Microbes. 2014;5(3):277–285. doi: 10.4161/gmic.28793.
    1. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105(11):2420–2428. doi: 10.1038/ajg.2010.281.
    1. Cervera-Tison M, Tailford LE, Fuell C, Bruel L, Sulzenbacher G, Henrissat B, et al. Functional analysis of family GH36 α-galactosidases from Ruminococcus gnavus E1: insights into the metabolism of a plant oligosaccharide by a human gut symbiont. Appl Environ Microbiol. 2012;78(21):7720–7732. doi: 10.1128/aem.01350-12.
    1. Rowan F, Docherty NG, Murphy M, Murphy B, Calvin Coffey J, OʼConnell PR. Desulfovibrio bacterial species are increased in ulcerative colitis. Dis Colon Rectum. 2010;53(11):1530–1536. doi: 10.1007/DCR.0b013e3181f1e620.
    1. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, et al. A genomic view of the human-bacteroides thetaiotaomicron symbiosis. Science. 2003;299(5615):2074–2076. doi: 10.1126/science.1080029.
    1. Prindiville TP, Sheikh RA, Cohen SH, Tang YJ, Cantrell MC, Silva J., Jr Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg Infect Dis. 2000;6(2):171–174. doi: 10.3201/eid0602.000210.
    1. Chen X, Wang Y, Yang F, Qu Y, Li X. Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase. Ann Microbiol. 2015;65(3):1699–1707. doi: 10.1007/s13213-014-1009-6.
    1. Qiao C, Ryan Penton C, Liu C, Shen Z, Ou Y, Liu Z, et al. Key extracellular enzymes triggered high-efficiency composting associated with bacterial community succession. Bioresour Technol. 2019;288:121576. doi: 10.1016/j.biortech.2019.121576.

Source: PubMed

3
订阅