Natural Compounds and Autophagy: Allies Against Neurodegeneration

Alessandra Stacchiotti, Giovanni Corsetti, Alessandra Stacchiotti, Giovanni Corsetti

Abstract

Prolonging the healthy life span and limiting neurological illness are imperative goals in gerontology. Age-related neurodegeneration is progressive and leads to severe diseases affecting motility, memory, cognitive function, and social life. To date, no effective treatments are available for neurodegeneration and irreversible neuronal loss. Bioactive phytochemicals could represent a natural alternative to ensure active aging and slow onset of neurodegenerative diseases in elderly patients. Autophagy or macroautophagy is an evolutionarily conserved clearing process that is needed to remove aggregate-prone proteins and organelles in neurons and glia. It also is crucial in synaptic plasticity. Aberrant autophagy has a key role in aging and neurodegeneration. Recent evidence indicates that polyphenols like resveratrol and curcumin, flavonoids, like quercetin, polyamine, like spermidine and sugars, like trehalose, limit brain damage in vitro and in vivo. Their common mechanism of action leads to restoration of efficient autophagy by dismantling misfolded proteins and dysfunctional mitochondria. This review focuses on the role of dietary phytochemicals as modulators of autophagy to fight Alzheimer's and Parkinson's diseases, fronto-temporal dementia, amyotrophic lateral sclerosis, and psychiatric disorders. Currently, most studies have involved in vitro or preclinical animal models, and the therapeutic use of phytochemicals in patients remains limited.

Keywords: Alzheimer’s disease; Parkinson’s disease; alkaloids; autophagy; polyphenols; spermidine; terpenes; trehalose.

Copyright © 2020 Stacchiotti and Corsetti.

Figures

FIGURE 1
FIGURE 1
Macroautophagy signaling in the mammalian brain. It consists in three main phases: formation-elongation of a round structure, maturation then its content degradation-recycling. The first step of autophagy starts in the cytoplasm with the “phagophore,” a peculiar double membrane structure derived from ER, Golgi complex or plasmalemma that subsequently elongates, and closes on itself to produce an “autophagosome,” filled with proteins or lipidic material and damaged organelles. Then the “autophagosome” progressively matures and merges with lysosomes becoming an “autolysosome” or “amphisome”to complete clearing. In the last final step, all cargo is dismantled by acidic lysosomal hydrolases and eventually a new phagophore is reformed. Major regulators of different phases are class III PI3-K complex and Beclin 1 protein, Atg proteins cascade resulting in Atg3/Atg7 mediated LC3I into LC3II conversion as indicated and discussed in the text. Extensive details on macroautophagy machinery are reported by Feng et al. (2014).

References

    1. Achour I., Arel-Dubeau A., Renaud J., Legrand M., Attard E., Germain M., et al. (2016). Oleuropein prevents neuronal death, mitigates mitochondrial superoxide production and modulates autophagy in a dopaminergic cellular model. Int. J. Mol. Sci. 17:1293. 10.3390/ijms17081293
    1. Ahn T., Jeon B. (2015). The role of quercetin on the survival of neuron-like PC12 cells and the expression of α-synuclein. Neurol. Regener. Res. 10 1113–1119. 10.4103/1673-5374.160106
    1. Al Rihani S., Darakjian L., Kaddoumi A. (2019). Oleocanthal-rich extra-virgin olive oil restores the blood-brain barrier function through NLRP3 inflammasome inhibition simultaneously with autophagy induction in TgSwDI mice. ACS Chem. Neurosci. 10 3543–3554. 10.1021/acscheneuro.9b00175
    1. Andreone B., Larhammar M., Lewcock J. (2019). Cell death and Neurodegeneration. Cold Spring Harb. Perspect. Biol. 12:a036434 10.1101/cshperspect
    1. Angeloni C., Malaguti M., Bartalace M., Hrelia S. (2017). Bioactivity of olive oil phenols in neuroprotection. Int. J. Mol. Sci. 18:2230 10.3390/ijmss18112230
    1. Area-Gomez E., de Groof A., Bonilla E., Montesinos J., Tanji K., Boldogh I., et al. (2018). A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis. 9:335. 10.1038/S41419-017-0215-0
    1. Arel-Dubeau A., Longprè F., Bournival J., Tremblay C., Demers-Lamarche J., Haskova P., et al. (2014). Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. Oxid. Med. Cell. Longev. 2014:425496. 10.1155/2014/425496
    1. Arotcarena M., Teil M., Dehay B. (2019). Autophagy in synucleinopathy: the overwhelmed, and defective machinery. Cells 8:565. 10.3390/cells8060565
    1. Asadi F., Jamshidi A., Khodagholi F., Yans A., Azimi L., Faizi M., et al. (2015). Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis marke. Pharmacol. Biochem. Behav. 139 47–58. 10.1016/j.pbb.2015.10.011
    1. Ashrafizadeh M., Ahmadi Z., Farkhondeh T., Samarghandian S. (2019a). Autophagy as a molecular target of quercetin underlying its protective effects in human diseases. Arch. Physiol. Biochem. 28 1–9. 10.1080/13813455.2019.1671458
    1. Ashrafizadeh M., Ahmadi Z., Mohammadineiad R., Kavivani N., Tavakol S. (2019b). Monoterpenes modulating autophagy: A review study. Basic. Clin. Pharmacol. Toxicol. 126:31237736 10.111/bcpt.13282
    1. Bar-Yosef T., Damri O., Agam G. (2019). Dual role of autophagy in diseases of the central nervous system. Front. Cell. Neurosci. 13:196. 10.3389/fncel.2019.00196
    1. Belgrad J., De Pace R., Fields R. (2020). Autophagy in myelinating glia. J. Neurosc. 40 256–266. 10.1523/JNEUROSCI.1066-19.2019
    1. Bento-Cuesta I., Diez H., Ordoňez L., Wandosell F. (2017). Assessment of autophagy in neurons and brain tissue. Cells 6:25. 10.3390/cells6030025
    1. Bernard-Marissal N., Chrast R., Schneider B. (2018). Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: a broken relationship? Cell Death Dis. 9:333. 10.1038/s41419-017-0125-1
    1. Bordi M., Berg M., Mohan P., Peterhoff C., Alldred M., Che S., et al. (2016). Autophagic flux in CA1 neurons of Alzheimer hippocampus increased induction overburdens failing lysosomes to propel neuritic dystrophy. Autophagy 12 2467–2483. 10.1080/15548627.2016.1239009
    1. Buratta S., Tancini B., Sagini K., Delo F., Chiaradia E., Urbanelli L., et al. (2020). Lysosomal exocytosis, exosome release and secretory autophagy: The autophagic- and endo-lysosomal systems go extracellular. Int. J. Mol. Sci. 21:2576. 10.3390/ijms21072576
    1. Button R., Luo S., Rubinsztein D. (2015). Autophagic activity in neuronal cell death. Neurosci. Bull. 31 382–394. 10.1007/s12264-015-1528-y
    1. Cai Q., Jeong Y. (2020). Mitophagy in Alzheimer’s disease and other age-related neurodegenerative diseases. Cells 9:150. 10.3390/cells9010150
    1. Cao S., Shrestha S., Li J., Yu X., Chen J., Yan F., et al. (2017). Melatonin-mediated mitophagy protects against early brain injury after sub-arachnoid hemorrage through inhibition of NLRP3 inflammasome activation. Sci. Rep. 7:2417 10.1038/s41598-017-02679
    1. Carmona-Gutierrez D., Hughes A., Madeo F., Ruckenstuhl C. (2016). The crucial impact of lysosomes in aging and longevity. Ageing Res. Rev. 32 2–12. 10.1016/j.arr.2016.04.009
    1. Casamenti F., Grossi C., Rigacci S., Pantano D., Luccarini I., Stefani M. (2015). Oleuropein aglycone: a possible drug against degenerative conditions. In vivo evidence of its effectiveness against Alzheimer’s disease. J. Alzheimers Dis. 45, 679–688. 10.3233/JAD-142850
    1. Castellazzi M., Patergnani S., Donadio M., Giorgi C., Bonora M., Bosi M., et al. (2019). Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer’s disease and mild cognitive impairment. Sci. Rep. 9:20009. 10.1038/s41598-019-56614-5
    1. Chakravorthy A., Jetto C., Manjithaya R. (2019). Dysfunctional mitochondria and mitophagy as drivers of Alzheimer’s disease pathogenesis. Front. Aging Neurosci. 11:311. 10.3389/fnagi.2019.00311
    1. Chang C., Lee Y., Lee K., Lin H., Chen C., Shen C. (2016). Therapeutic effect of berberine on TDP-43 related pathogenesis in FTLD and ALS. J. Biomed. Sci. 23:72. 10.1186/s12929-016-0290-z
    1. Chen Y., Chen Y., Liang Y., Hongda C., Ji X., Huang M. (2020). Berberine mitigates cognitive decline in an Alzheimer’s disease mouse model by targeting tau hyperphosphorylation and autophagic clearance. Biomed. Pharmacol. 121:109670. 10.1016/j.biopha.2019.109670
    1. Cheng C., Kao S., Lee Y. (2019). Ferulic acid exerts anti-apoptotic effects against ischemic injury by activating HSP70/Bcl2 and HSP70/autophagy mediated signaling after permanent focal cerebral ischemia in rats. Am. J. Chinese Med. 47 39–61. 10.1142/s0192415X19500034
    1. Cheon S., Kim H., Rubinsztein D., Lee J. (2019). Autophagy, cellular aging and age-related human diseases. Exp. Neurobiol. 28 643–657. 10.5607/en.2019.28.6.643
    1. Chiu H., Venkatakrishnan K., Wang C. (2020). The role of nutraceuticals as complementary therapy against various neurodegenerative diseases: a mini review. J. Trad. Compl. Med. 10 434–439. 10.1016/j.cm.2020.03.008
    1. Cho K., Shin M., Kim S., Lee S. (2018). Recent advances in studies on the therapeutic potential of dietary carotenoids in neurodegenerative diseases. Oxid. Med. Cell. Longev. 2018:4120458. 10.1155/2018/4120458
    1. Chu T. (2019). Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiol. Dis. 122C 23–34. 10.1016/j.nbd.2018.07.015
    1. Chung C., Lee H., Lee S. (2018). Mechanisms of protein toxicity in neurodegenerative diseases. Cell. Mol. Life Sci. 75 3159–3180. 10.1007/s00018-018-2854-4
    1. Colombo E., Biocotino M., Frapporti G., Randazzo P., Christodoulou M., Piccoli G., et al. (2019). Nanolipid-trehalose conjugates and nano-assemblies as putative autophagy inducers. Pharmaceutics 11:422. 10.3390/pharmaceutics11080422
    1. Condello M., Pellegrini E., Caraglia M., Meschini S. (2019). Targeting autophagy to overcome human diseases. Int. J. Mol. Sci. 20 E725. 10.3390/ijms20030725
    1. Cordero J., Garcia-Escudero R., Avila J., Gargini R., Garcia-Escudero V. (2018). Benefit of oleuropein aglycone for Alzheimer’s disease by promoting autophagy. Oxid. Med. Cell Longev. 2018:5010741. 10.1155/2018/5010741
    1. Cortes C., La Spada A. (2019). TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease: Molecular mechanisms, cellular processes, and emerging therapeutic opportunities. Neurobiol. Dis. 122 83–93. 10.1016/j.nbd.2018.05.012
    1. Cowan K., Anichtchik O., Luo S. (2019). Mitochondrial integrity in neurodegeneration. CNS Neurosc. Therap. 25 825–836. 10.1111/cns.13105
    1. Cristofani R., Crippa V., Rusmini P., Cicardi M., Meroni M., Licata N., et al. (2017). Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy 13 1280–1303. 10.1080/15548627.2017.1308985
    1. Cuervo A., Wong E. (2014). Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24 92–104. 10.1038/cr.2013.153
    1. Cummings J., Morstorf T., Zhong K. (2014). Alzheimer’s disease drug-development pipeline: Few candidates, frequent failure. Alzheimers Res. Ther. 6:37. 10.1186/alzrt269
    1. Deng H., Mi M. (2016). Resveratrol attenuates A-beta 25-35 caused neurotoxicity by inducing autophagy through the TyrRS-PARP1-SIRT1 signaling pathway. Neurochem. Res. 41 2367–2379. 10.1007/s11064-016-1950-9
    1. Deng M., Huang L., Ning N., Wang N., Zhang Q., Zhu C., et al. (2016). β-asarone improves learning and memory and reduces acetyl cholinesterase and beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain Res. 1652 188–194. 10.1016/j.brainres.2016.10.008
    1. Devereaux K., Dall’Armi C., Alcazar-Roman A., Ogasawara Y., Zhou X., Wang F., et al. (2013). Regulation of mammalian autophagy by class II and class III PI3-kinases through PI3P synthesis. PLoS One 8:e76405. 10.1371/journal.pone.0076405
    1. Di Meco A., Curtis M., Lauretti E., Pratico’ D. (2020). Autophagy dysfunction in Alzheimer’s disease: mechanistic insights and new therapeutic opportunities. Biol. Psych. 87 797–807. 10.1016/j.biopsych.2019.05.008
    1. Di Paolo M., Papi L., Gori F., Turillazzi E. (2019). Natural products in neurodegenerative diseases: A great promise but an ethical challenge. Int. J. Mol. Sci. 20:5170. 10.3390/ijms20205170
    1. Djajadikerta A., Keshri S., Pavel M., Prestil R., Ryan L., Rubinsztein D. (2019). Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J. Mol. Biol. 432 2799–2821. 10.1016/j.jmb.2019.12.035
    1. Du G., Zhao Z., Chen Y., Li Z., Tian Y., Liu Z., et al. (2016). Quercetin attenuates neuronal autophagy and apoptosis in rat traumatic brain injury model via activation of PI3K/Akt signaling pathway. Neurol. Res. 38 1012–1019. 10.1080/016412.2016.1240393
    1. Eisner V., Picard M., Hajnoczky G. (2018). Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 20 755–765. 10.1038/s41556-018-0133-0
    1. Evans C., Holzbaur E. (2020). Quality control in neurons: mitophagy and other selective autophagy mechanisms. J. Mol. Biol. 432 240–260. 10.1016/j.jmb.2019.06.031
    1. Fan Y., Wang N., Rocchi A., Zhang W., Vassar R. (2017). Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy 13 41–56. 10.1080/15548627.2016.1240855
    1. Feng J., Chen X., Guan B., Li C., Qiu J., Shun J. (2018). Inhibition of peroxinitrite-induced mitophagy activation attenuates cerebral ischemia-reperfusion injury. Mol. Neurobiol. 8 6369–6678. 10.1007/s12035-017-0859-x
    1. Feng Y., He D., Yao Z., Klionsky D. (2014). The machinery of macroautophagy. Cell Res. 24 24–41. 10.1038/cr.2013.168
    1. Fernandez-Sanz P., Ruiz-Gabarre D., Garcia-Escudero V. (2019). Modulating effect of diet on Alzheimer’s disease. Diseases 7:12. 10.3390/diseases7010012
    1. Ferrucci M., Biagioni F., Ryskalin L., Limanagi F., Gambardella S., Frati A., et al. (2018). Ambiguous effects of autophagy activation following hypoperfusion/ischemia. Int. J. Mol. Sci. 19:2756. 10.3390/ijms19092756
    1. Forni C., Facchiano F., Bartoli M., Pieretti S., Facchiano A., D’Arcangelo D., et al. (2019). Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed. Res. Int. 2019:8748253. 10.1155/2019/8748253
    1. Fujikake N., Shin M., Shimizu S. (2018). Association between autophagy and neurodegenerative diseases. Front. Neurosci. 12:255. 10.3389/fnins.2018.00255
    1. Fullgrabe J., Ghislat G., Cho D., Rubinstein D. (2016). Transcriptional regulation of mammalian autophagy at a glance. J. Cell Sci. 129 3059–3066. 10.1242/jcs.188920
    1. Galluzzi L., Bravo-San Pedro J., Levine B., Green D., Kroemer G. (2017). Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 16, 487–511. 10.1038/nrd.2017.22
    1. Galluzzi L., Vitale I., Aaronson S., Abrams J., Adam D., Agostinis P., et al. (2018). Molecular mechanisms of cell death: reccomandations of the Nomenclature Committee on cell death. Cell Death Diff. 25 486–541. 10.1038/s41418-017-0012-4
    1. Gan L., Vargas M., Johnson D., Johnson J. (2012). Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J. Neurosci. 32 17775–17787. 10.1523/JNEUROSCI.3049-12.2012
    1. Gao F., Yang J., Wang D., Li C., Fu Y., Wang H., et al. (2017). Mitophagy in Parkinson’s disease: pathogenesis and therapeutic implications. Front. Neurol. 8:527. 10.3389/fneur.2017.00527
    1. Gao Y., Zhuang Z., Gao S., Li X., Zhang Z., Ye Z., et al. (2017). Tetrahydrocumarin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am. J. Transl. Res. 9 887–899.
    1. Gatica D., Lahiri V., Klionsky D. (2018). Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 20 233–242. 10.1038/s41556-018-0037-z
    1. Gelmetti V., De Rosa P., Torosantucci L., Marini E., Romagnoli A., Di Rienzo M., et al. (2017). PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy 13 654–669. 10.1080/15548627.2016.1277309
    1. Georgiou N., Garssen J., Witkamp R. (2011). Pharma-nutrition interface: the gap is narrowing. Eur. J. Pharmacol. 651 1–8. 10.1016/j.ejphar.2010.11.007
    1. Geronimo-Olvera C., Massieu L. (2019). Autophagy as a homeostatic mechanism in response to stress conditions in the central nervous system. Mol. Neurobiol. 56 6594–6608. 10.1007/s12035-019-1546-x
    1. Giampieri F., Afrin S., Forbes-Hernandez T., Gasparrini M., Cianciosi D., Reboredo-Rodriguez P., et al. (2019). Autophagy in human health and disease: novel therapeutic opportunities. Antiox. Redox Signal. 30 577–634. 10.1089/ars.2017.7234
    1. Gonzalez I., Morales M., Rojas A. (2019). Polyphenols and AGEs/RAGE axis. Trends Chall. Food Res. Int. 129:108843. 10.1016/j.foodres.2019.108843
    1. Guo Y., Dong S., Cui X., Feng Y., Liu T., Yin M., et al. (2016). Resveratrol alleviates MPTP-induced motor impairment and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol. Nutr. Food Res. 60 2161–2175. 10.1002/mnfr.201600111
    1. Hansen M., Rubinzstein D., Walker D. (2018). Autophagy as a promoter of longevity: insights from model organisms. Nat. Mol. Cell Biol. 19 579–593. 10.1038/s41580-018-0033-y
    1. Hara T., Nakamura K., Matsui M., Yamamoto A., Nakahara Y., Suzuki-Migishima R., et al. (2006). Suppression of basal autophagy in neuronal cells causes neurodegenerative disease in mice. Nature 441 885–889. 10.1038/nature04724
    1. He C., Klionsky D. (2009). Regulation mechanisms and signaling pathways of autophagy. Ann. Rev. Genet. 43 67–93. 10.1146/annurev-genet-102808-114910
    1. He Q., Koprich J., Wang Y., Yu W., Xiao B., Brotchie J., et al. (2016). Treatment with trehalose prevents behavioural and neurochemical deficits produced in an AAV alpha-synuclein rat model of Parkinson’s disease. Mol. Neurobiol. 53 2258–2268. 10.1007/s12035-015-9173-7
    1. Helal N., Eassa H., Amer A., Eltokhy M., Edaiogho I., Nounon M. (2019). Nutraceuticals’novel formulations: the good, the bad, the unknown and patents. Recent Pat. Drug Deliv. Formul. 13 105–156. 10.2174/1872211313666190503112040
    1. Hirayama K., Oshima H., Yamashita A., Sakatani K., Yoshino A., Katayama Y. (2016). Neuroprotective effects of silymarin on ischemia-induced delayed neuronal cell death in rat hippocampus. Brain Res. 1646 297–303. 10.1016/j.brainres.2016.06018
    1. Holler C., Taylor G., McEachin Z., Deng Q., Watkins W., Hudson K., et al. (2016). Trehalose upregulates progranulin expression in human and mouse models of grp haploinsufficiency: A novel therapeutic lead to treat frontotemporal dementia. Mol. Neurodegener. 11:46. 10.1186/s13024-016-0114-3
    1. Hornedo-Ortega R., Cerezo A., de Pablos R., Krisa S., Richard T., Garcia-Parrilla M., et al. (2018). Phenolic compounds characteristic of the Mediterranean Diet in mitigating microglia-mediated neuroinflammation. Front. Cell. Neurosci. 12:373. 10.3389/fncel.2018.00373
    1. Howes M., Perry N., Vasquez-Londono C., Perry E. (2020). Role of phytochemicals as nutraceuticals for cognitive functions affected in aging. Br. J. Pharmacol. 177 1294–1315. 10.1111/bph.14898
    1. Hu J., Han H., Cao P., Yu W., Yang C., Gao Y., et al. (2017). Resveratrol improves neuron protection and functional recovery trough enhancement of autophagy after spinal cord injury in mice. Am. J. Transl. Res. 9 4607–4616.
    1. Hussain G., Rasul A., Anwar H., Aziz N., Razzaq A., Wei W., et al. (2018). Role of plant derived alkaloids and their mechanism in neurodegenerative disorders. Int. J. Biol. Sci. 14 341–357. 10.7150/ijbs.23247s
    1. Jaroonwitchawan T., Chaicharoenaudomrung N., Namkaew J., Noisa P. (2017). Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy. Neurosci. Lett. 636 40–47. 10.1016/j.neulet.2016.10.050
    1. Jiang W., Wei W., Gaertig M., Li S., Li X. (2015). Therapeutic effect of berberine on Hungtington’s disease transgenic mouse model. PLoS One 10:e0134142. 10.1371/journal.pone.0134142
    1. Jung S., Choe S., Woo H., Jeong H., An H., Ryu H., et al. (2020). Autophagic death of neural stem cells mediates chronic-stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy 16 512–530. 10.1080/15548627.2019.1630222
    1. Kaushik S., Cuervo A. (2018). The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19 365–381. 10.1038/s41580-018-0001-6
    1. Kennedy D., Wightman E. (2011). Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv. Nutr. 2 32–50. 10.3945/an.110.000117
    1. Khalifeh M., Barreto G., Sahebkar A. (2019). Trehalose as a promising therapeutic candidate for the treatment of Parkinson’s disease. Br. J. Pharmacol. 176 1173–1189. 10.1111/bph.14623
    1. Kiechl S., Pechlaner R., Willeit P., Notdurfter M., Paulweber B., Willeit K. (2018). Higher spermidine intake is linked to lower mortality: a prospective population-based study. Am. J. Clin. Nutr. 108 371–380. 10.1093/ajcn/nqy102
    1. Kim H., Cho M., Shim W., Kim J., Jeon E., Kim D., et al. (2017). Deficient autophagy in microglia impairs synaptic pruning and causes social behavioural defects. Mol. Psych. 22 1576–1584. 10.1038/mp.2016.103
    1. Komatsu M., Waguri S., Chiba T., Murata S., Iwata J., Tanida I., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441 880–884. 10.1038/nature04723
    1. Koronyo-Hamaoui M., Koronyo Y., Ljubimov A., Miller C., Ko M., Black K., et al. (2011). Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54 S204–S217. 10.1016/j.neuroimaging.2010.06.020
    1. Kou X., Chen N. (2017). Resveratrol as a natural autophagy regulator for prevention and treatment of Alzheimer’s disease. Nutrients 9:927 10.3390/nu909027
    1. Krols M., Van Isterdael G., Asselbergh B., Kremer A., Lippens S., Timmerman V., et al. (2016). Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol. 13 505–523. 10.1007/s00401-015-1528-7
    1. Kuang H., Tan C., Tian H., Liu L., Yang M., Hong F., et al. (2019). Exploring the bi-directional relationship between autophagy and Alzheimer’s disease. CNS Neurosci. Ther. 26 155–166. 10.1111/cns.13216
    1. Kuang L., Cao X., Lu Z. (2017). Baicalein protects against rotenone-induced neurotoxicity through induction of autophagy. Biol. Pharm. Bull. 40 1537–1543. 10.1248/bpb.b17-00392
    1. Kulkarni A., Chen J., Maday S. (2018). Neuronal autophagy and intercellular regulation of homeostasis in the brain. Curr. Opin. Neurobiol. 51 29–36. 10.1016/j.conb.2018.02.008
    1. Lachance V., Wang Q., Sweet E., Choi I., Cai C., Zhuang X., et al. (2019). Autophagy protein NRBF2 has reduced expression in Alzheimer’s brains and modulates memory and amyloid-beta homeostasis in mice. Mol. Neurodegen. 14:43 10.1186/s1304-019-0342-4
    1. Laredo F., Plebanski J., Tedeschi A. (2019). Pericytes: Problems and Promises for CNS repair. Front. Cell. Neurosci. 13:546. 10.3389/fncel.2019.00546
    1. Lauretti E., Iuliano L., Pratico’ D. (2017). Extra-virgin olive oil ameliorates cognition and neuropathology of the 3xTg mice: role of autophagy. Ann. Clin. Transl. Neurol. 4 564–574. 10.1002/acn3.431
    1. Lauretti E., Neuov M., Dincer O., Iuliano L., Pratico’ D. (2020). Extra virgin olive oil improves synaptic activity, short-term plasticity, memory and neuropathology in a taupathy model. Aging Cell 19:e13076. 10.1111/acel.13076
    1. Lee A., Hirabayashi Y., Kwon S., Lewis T., Polleux F. (2018). Emerging roles of mitochondria in synaptic transmission and neurodegeneration. Curr. Opin. Physiol. 3 82–93. 10.1016/j.cophys.2018.03.009
    1. Lee H. (2019). Mechanisms and disease implications of sirtuin-mediated autophagic regulation. Exp. Mol. Med. 51:102.
    1. Lee H., Yoon Y., Lee S. (2018). Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis. 9:712. 10.1038/s41419-018-0749-9
    1. Leong Y., Ng K., Chye S., Ling A., Koh R. (2020). Mechanisms of action of amyloid-beta and its precursor protein in neuronal cell death. Metabol. Brain Dis. 35 11–30. 10.1007/s11011-019-00516-y
    1. Li I., Lu Y., Nie J., Xu Y., Zhang W., Yang W., et al. (2017). Dendrobium nobile Lindl alkaloid a novel autophagy inducer, protects against axonal degeneration induced by Abeta25-35 in hippocampal neurons in vitro. CNS Neurosci. Ther. 23 329–340. 10.111/cns.12678
    1. Li P., Ma K., Wu H., Wu Y., Li B. (2017). Isoflavones induce BEX2-dependent autophagy to prevent ATR-induced neurotoxicity in SH-SY5Y cells. Cell Physiol. Biochem. 43 1866–1879. 10.1159/000484075
    1. Li W., Nie T., Xu H., Yang J., Yang Q., Mao Z. (2019). Chaperone-mediated autophagy: Advances from bench to bedside. Neurobiol. Dis. 122 41–48. 10.1016/j.nbd.2018.05.010
    1. Li X., Song J., Dong R. (2019a). Cubeben induces autophagy via PI3K-Akt-mTOR pathway to protect primary neurons against amyloid beta in Alzheimer’s disease. Cytotechnology 71 679–686. 10.1007/s10616-019-00313-6
    1. Li X., Zhang D., Bai Y., Xiao J., Jiao H., He R. (2019b). Ginaton improves neurological function in ischemic stroke rats via inducing autophagy and maintaining mitochondrial homeostasis. Neuropsych. Dis. Treat. 15 1813–1822. 10.2147/NDT.s205612
    1. Li Y., Guo Y., Wang X., Yu X., Duan W., Hong K., et al. (2015). Trehalose decreases mutant SOD1 expression and alleviates motor deficiency in early but not end-stage amyotrophic lateral sclerosis in a SOD1-G93A mouse model. Neuroscience 298 12–25. 10.1016/j.neuroscience.2015.03.061
    1. Liang J., Zhou F., Xiong X., Zhang X., Li S., Li X., et al. (2019). Enhancing the retrograde axonal transport by curcumin promotes autophagic flux in N2a/APP695swe cells. Aging 11 7036–7050. 10.18632/aging.102235
    1. Lie P., Nixon R. (2019). Lysosome trafficking and signalling in health and neurodegenerative diseases. Neurobiol. Dis. 122 94–105. 10.1016/j.nbd.2018.05.015
    1. Lieberman O., Frier M., McGuirt A., Griffey C., Rafkian E., Yang M., et al. (2020). Cell-type-specific regulation of neuronal intrinsic excitability by macroautophagy. eLife 9:e50843. 10.7554/eLife.50843
    1. Lieberman O., McGuirt A., Tang G., Sulzer D. (2019). Roles for neuronal and glial autophagy in synaptic pruning during development. Neurobiol. Dis. 122 49–63. 10.1016/j.nbd.2018.04.017
    1. Lieberman O., Sulzer D. (2019). The synaptic autophagy cycle. J. Mol. Biol. 432 2589–2604. 10.1016/j.jmb.2019.12.028
    1. Lin L., Li C., Zhang D., Yuan M., Chen C., Li M. (2020). Berberine and curcumin on improving cognitive function in an Alzheimer’s disease mouse model. Neurochem. Res. 45 1130–1141. 10.1007/s11064020-02992-6
    1. Lin T., Chen S., Chuang Y., Lin H., Huang C., Chuang J., et al. (2014). Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic 5H-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int. J. Mol. Sci. 15 1625–1646. 10.3390/ijms15011625
    1. Lin T., Lin K., Chen S., Liou C., Chuang Y., Lin H., et al. (2019). The overcrowded crossroads: mitochondria, alpha-synuclein, and the endo-lysosomal system interaction in Parkinson’s disease. Int. J. Mol. Sci. 20:5312. 10.3390/ijms20215312
    1. Ling S., Polymenidou M., Cleveland D. (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79 416–438. 10.1016/j.neuron.2013.07.033
    1. Lipinski M., Zheng B., Yan Z., Py B., Ng A., Xavier R., et al. (2010). Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. PNAS 107 14164–14169. 10.1073/pnas.1009485107
    1. Liu C., Yin H., Gao J., Xu X., Zhang T., Yang Z. (2016). Leonurine ameliorates cognitive dysfunction via antagonizing excitotoxic glutamate insults and inhibiting autophagy. Phytomedicine 23 1638–1646. 10.1016/j.phymed.2016.10.005
    1. Liu J., Li L. (2019). Targeting autophagy for the treatment of Alzheimer’s disease: Challenges and Opportunities. Front. Mol. Neurosci. 12:203. 10.3389/fnmol.2019.00203
    1. Liu Y., Zhou H., Gong Y., Yuan G., Chen L., Liu J. (2019). Quercetin-modified gold-palladium nanoparticles as a potential autophagy inducer for the treatment of Alzheimer’s disease. J. Colloid. Interface Sci. 552 388–400. 10.1016/j.jcis.2019.05.066
    1. Luan Y., Ren X., Zheng W., Zeng Z., Guo Y., Hou Z., et al. (2018). Chronic caffeine treatment ttprotects against α-synucleinopathy by reestablishing autophagy activity in the mouse striatum. Front. Neurosci. 12:301. 10.3389/fnins.2018.00301
    1. Madeo F., Bauer M., Carmona-Gutierrez D., Kroemer G. (2019). Spermidine: a physiological autophagy inducer acting as an anti-aging vitamin in humans? Autophagy 15 165–168. 10.1080/15548627.2018.1530929
    1. Maiti P., Rossignol J., Dunbar G. (2017). Curcumin modulates molecular chaperones and autophagy-lysosomal pathways in vitro after exposure to Aβ42. J Alzheimers Dis. Parkinsonism 7:299 10.4172/2161-0460.1000299
    1. Maiuri M., Kroemer G. (2019). Therapeutic modulation of autophagy: which disease comes first? Cell Death Diff. 26 680–689. 10.1038/s41418-019-0290-0
    1. Malampati S., Song J., Tong B., Nalluri A., Yang C., Wang Z., et al. (2020). Targeting aggrephagy for the treatment of Alzheimer’s disease. Cells 9:311. 10.3390/cells9020311
    1. Malik B., Maddison D., Smith G., Peters O. (2019). Autophagic and endo-lysosomal dysfunction in neurodegenerative disease. Mol. Brain 12:100. 10.1186/s13041-019-0504-x
    1. Manap A., Vijayabalan S., Madhavan P., Chia Y., Arya A., Wong E., et al. (2019). Bacopa monnieri, a neuroprotective lead in Alzheimer Disease: a review on its properties, mechanisms of action, and preclinical and clinical studies. Drug Target Insights 13:1177392819866412. 10.1177/1177392819866412
    1. Mariňo G., Madeo F., Kroemer G. (2011). Autophagy for tissue homeostasis and neuroprotection. Curr. Opin. Cell Biol. 23 198–206. 10.1016/j.ceb.2010.10.001
    1. Martinez-Vicente M., Talloczy Z., Wong E., Tang G., Koga H., Kaushik S., et al. (2010). Cargo recognition failure is responsible for inefficient autophagy in Hungtington’s disease. Nat. Neurosci. 13 567–576. 10.1038/nn.2528
    1. Matias I., Mogado J., Carvalho Alcantara-Gomez F. (2019). Astrocyte heterogeneity: Impact to brain aging and disease. Front. Aging Neurosci. 11:59. 10.3389/fnagi.2019.00059
    1. Mazzanti G., Di Giacomo S. (2016). Curcumin and resveratrol in the management of cognitive disorders: what is the clinical evidence? Molecules 21:1243. 10.3390/molecules21091243
    1. Menzies F., Fleming A., Caricasole C., Bento S., Andrews A., Ashkenazi A., et al. (2017). Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93 1015–1034. 10.1016/j.neuron.2017.01.022
    1. Misgeld T., Schwarz T. (2017). Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96 651–666. 10.1016/j.neuron.2017.09055
    1. Mizushima N. (2018). Perspective. A brief history of autophagy from cell biology to physiology and disease. Nat. Cell Biol. 20 521–527. 10.1038/s41556-018-0092-5
    1. Mogk A., Bukau B. (2017). Role of sHSPs in organizing cytosolic protein aggregation and disaggregation. Cell Stress Chaperones 22 493–502. 10.1007/s12192-017-0762-4
    1. Moon J., Lee J., Park J., Kim S., Lee Y., Kang S., et al. (2014). Caffeine prevents human prion-protein-mediated neurotoxicity through the induction of autophagy. Int. J. Mol. Med. 34 553–558. 10.3892/ijms.2014.1814
    1. Morel E., Mehrpour M., Botti J., Dupont N., Hamai A., Nascimbeni A., et al. (2017). Autophagy: a druggable process. Ann. Rev. Pharmacol. Toxicol. 57 375–398. 10.1146/annurev-pharmatox-010716-104936
    1. Morimoto R., Cuervo A. (2014). Proteostasis and the aging proteome in health and disease. J. Gerontol. Ser A Biol. Sci. Med. Sci. 69 S33–S38. 10.1093/Gerona/glu049
    1. Morishita H., Mizushima N. (2019). Diverse cellular roles of autophagy. Ann. Rev. Cell Dev. 35 453–475. 10.1146/annurev-cellbio-100818-125300
    1. Mputhia Z., Hone E., Tripathi T., Sargeant T., Martins R., Bharadwaj P. (2019). Autophagy modulation as a treatment of amyloid diseases. Molecules 24:3372. 10.3390/molecules24183372
    1. Muñoz-Esparza N., Latorre-Moratalla M., Comas-Basté O., Toro-Funes N., Veciana-Nogues M., Vidal-Carou C. (2019). Polyamines in Food. Front. Nutr 6:108. 10.3389/fnut.2019.00108
    1. Naoi M., Shamoto-Nagai M., Maruyama W. (2019). Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol. 14:FNL9 10.2217/fnl-2018-0028
    1. Negrete-Hurtado A., Overhoff M., Bera S., De Buruyckere E., Schatzmuller K., Kye M., et al. (2020). Autophagy lipidation machinery regulates axonal microtubule dynamics but is dispensable for survival of mammalian neurons. Nat. Commun. 11:1535. 10.1038/s41467-020-15287-9
    1. Nikoletopoulou V., Papandreou M., Tavernarakis N. (2015). Autophagy in the physiology and pathology of the central nervous system. Cell Death Diff. 22 398–407. 10.1038/cdd.2014.204
    1. Nixon R. (2013). The role of autophagy in neurodegenerative disease. Nat. Med. 19 983–997. 10.1038/nm3232
    1. Noda S., Sato S., Fukuda T., Tada N., Uchiyama Y., Tanaka K., et al. (2020). Loss of Parkin contributes to mitochondrial turnover and dopaminergic neuronal loss in aged mice. Neurobiol. Dis. 136:104717. 10.1016/j.nbd.2019.104717
    1. Nopparat C., Sinjanakhom P., Govitrapong P. (2017). Melatonin reverses H2O2-induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-kB. J. Pineal Res. 63:28295567. 10.1111/jpi.12407
    1. Oshima M., Seki T., Kurauchi Y., Hisatsune A., Katsuki H. (2019). Reciprocal regulation of chaperone-mediated autophagy/microautophagy and exosome release. Biol. Pharm. Bull. 42 1394–1401. 10.1248/bpb.b19-00316
    1. Palikaras K., Lionaki E., Tavernarakis N. (2018). Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20 1013–1022. 10.1038/s41556-0180176-2
    1. Palikaras K., Tavernarakis N. (2020). Regulation and roles of mitophagy at synapses. Mech. Ageing Dev. 187:111216. 10.1016/j.mad.2020.111216
    1. Palmieri M., Pal R., Nelvagal H., Lotfi T., Stinnett G., Seymour M., et al. (2017). mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases. Nat. Commun. 8:14338 10.1038/comms14338
    1. Park G., Kusuma I., Kim Y. (2018). Multiple bioactivities of traditional medicinal herbs for treatment of neurodegenerative diseases. Evid Based Compl. Alt. Med. 2018:3075458. 10.1155/2018/3075458
    1. Park H., Kang J., Lee S. (2020). Autphagy in neurodegenerative diseases: a hunter for aggregates. Int. J. Mol. Sci. 21:3369 10.3390/ijms20193369
    1. Peng W., Minakaki G., Nguyen M., Krainc D. (2019). Preserving lysosomal function in the aging brain: insights from neurodegeneration. Neurotherapeutics 16 611–634. 10.1007/s13311-019-00742-3
    1. Perez-Hernandez J., Zaldivar-Machorro V., Villanueva-Porras D., Vega-Avila E., Chavarria A. (2016). A potential alterative against neurodegenerative diseases: Phytodrugs. Oxid. Med. Cell. Long. 2016:8378613. 10.1155/2016/8378613
    1. Perrone L., Squillano T., Napolitano F., Terracciano C., Sampaolo S., Melone M. (2019). The autophagy signaling pathway: a potential multifunctional therapeutic target of curcumin in neurological and neuromuscular diseases. Nutrients 11:1881. 10.3390/nu11081881
    1. Pickford F., Masliah E., Britschgi M., Lucin K., Narasimhan R., Jager P., et al. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118 2190–2199. 10.1172/JCI33585
    1. Pietrocola F., Lachkar S., Enot D., Niso-Santano M., Bravo-San Pedro J., Sica V., et al. (2015). Spermidine induces autophagy by inhibiting the acetyltransferase EP300. Cell Death Diff. 22 509–516. 10.1038/cdd.2014.215
    1. Pineda-Ramirez N., Alquisiras-Burgos I., Ortiz-Plata A., Ruiz-Tachiquin M., Espinoza-Rojo M., Aguilera P. (2020). Resveratrol activates neuronal autophagy through AMPK in the ischemic brain. Mol. Neurobiol. 57 1055–1069. 10.1007/s12035-019-01803-6
    1. Plaza-Zabala A., Sierra-Torre V., Sierra A. (2017). Autophagy and microglia: Novel partners in neurodegeneration and aging. Int. J. Mol. Sci. 18:598 10.3390/ijms1803598
    1. Pohl F., Lin P. (2018). The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical studies. Molecules 23:3283. 10.3390/molecules23123283
    1. Porquet D., Griñan-Ferré C., Ferrer I., Camins A., Sanfelin C., del Valle J., et al. (2014). Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J. Alzheimer’s Diease 42 1209–1220. 10.3233/JAD-140444
    1. Portbury S., Hare D., Sgambelloni C., Perronnes K., Portbury A., Finkelstein D., et al. (2017). Trehalose improves cognition in the transgenic Tg2576 mouse model of Alzheimer’s disease. J Alzheimer’s Disease 60 549–560. 10.3233/JAD-170322
    1. Potì F., Sarti D., Spaggiari G., Zimetti F., Zanotti I. (2019). Polyphenol health effects on cardiovascular and neurodegenerative disorders: a review and meta-analysis. Int. J. Mol. Sci. 20:351 10.3390/ijms2020351
    1. Prasanth M., Sivamaruthi B., Chaiyasut C., Tencomnao T. (2019). A review of the role of green tea (Camelia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 11:474. 10.3390/nu11020474
    1. Prieto-Dominguez N., Garcia-Mediavilla M., Sanchez-Campos S., Mauriz J., Gonzales-Gallego J. (2018). Autophagy as a molecular target of flavonoids underlying the protective effects in human diseases. Curr. Med. Chem. 25 814–838. 10.2174/092986732466617091812515
    1. Quintans J., Shanmugam S., Heimfarth L., Araujo A., Almeida J., Picot L., et al. (2019). Monoterpenes modulating cytokines-A review. Food Chem. Toxicol. 123 233–257. 10.1016/j
    1. Rahman M., Rahman R., Zaman T., Uddini S., Islam R., Abdel-Daim M., et al. (2020). Emerging potential of naturally occurring autophagy modulators against neurodegeneration. Curr. Pharmaceutic. Des. 7 772–779. 10.2174/1381612826666200107142541
    1. Reddy P., Oliver D. (2019). Amyloid beta and phosphorylated tau-induced defective autophagy and mitophagy in Alzheimer’s disease. Cells 8:E488. 10.3390/cells8050488
    1. Rekha K., Sivakamasundari R. (2018). Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s disease. Neurochem. Res. 43 1947–1962. 10.1007/s11064-018-2617-5
    1. Renaud J., Martinoli M. (2019). Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int. J. Mol. Sci. 20:1883. 10.3390/ijms20081883
    1. Rigacci S., Miceli C., Nediani C., Berti A., Cascella R., Pantano D., et al. (2015). Oleuropein aglycone induces autophagy via the AMPK/mTOR signalling pathway: a mechanistic insight. Oncotarget 6:35344. 10.18632/oncotarget.6119
    1. Rusmini P., Cortese K., Crippa V., Cristofani R., Cicardi M., Ferrari V., et al. (2019). Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 4 631–651. 10.1080/15548627.2018.1535292
    1. Russo R., Cassiano M., Ciociaro A., Adornetto A., Varano G., Chiappini C., et al. (2014). Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells. Plos One 9:e113682. 10.1371/journal.pone.0113682
    1. Ryan T., Bamm V., Stukel M., Coackley C., Humphries K., Jamieson-Williams R., et al. (2018). Cardiolipin exposure on the outer mitochondrial membrane modulates α-synuclein. Nat. Commun. 9:817. 10.1038/s41467-018-03241-9
    1. Salehi B., Mishra A., Nigam M., Sener B., Kilic M., Sharifi-Rad M., et al. (2018). Resveratrol: A double-edged sword in health benefits. Biomedicines 6:91. 10.3390/biomedicines6030091
    1. Sanchez-Martin P., Komatsu M. (2018). P62/SQSTM1-steering the cell through health and disease. J. Cell Sci. 131:jcs222836. 10.1242/jcs.222836
    1. Sasazawa Y., Sato N., Umezawa K., Simizu S. (2015). Conophylline protects cells in cellular models of neurodegenerative diseases by inducing mammalian target of rapamycin (mTOR)-independent autophagy. J. Biol. Chem. 290 6168–6178. 10.1074/jbc.M114.606293
    1. Sato M., Seki T., Konno A., Hirai H., Kurauchi Y., Hisatsune A., et al. (2019). Rapamycin activates mammalian microautophagy. J. Pharmacol. Sci. 140 201–204. 10.1016/j.phs.2019.05.007
    1. Schepers M., Martens N., Tiane A., Vanbrabant K., Liu H., Lutjohann D., et al. (2020). Edible seaweed-derived constituents: an undisclosed source of neuroprotective compounds. Neural Regen. Res. 15 790–795. 10.4103/1673-5374.268894
    1. Schwarz C., Stekovic S., Wirth M., Benson G., Royer P., Sigrist S., et al. (2018). Safety and tolerability of spermidine supplementation in mice and older adults with subjective cognitive decline. Aging 10 19–33. 10.18632/aging.101354
    1. Scrivo A., Bourdenx M., Pampliego O., Cuervo A. (2018). Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol. 17 802–815. 10.1016/S1474-4422(18)30238-2
    1. Shakeri A., Cicero A., Panah Y., Sahebkar A. (2019). Curcumin: a naturally occuring autophagy modulator. J. Cell Physiol. 234 5643–5654. 10.1002/jcp.27404
    1. Shi L., Liang F., Zheng J., Zhou K., Chen S., Yu J., et al. (2018). Melatonin regulates apoptosis and autophagy via ROS-MST1 pathway in sub-arachnoid hemorrage. Front. Mol. Neurosci. 11:93. 10.3389/fnmol.2018.00093
    1. Shukla M., Chinchalongporn V., Govitrapong P., Reiter R. (2019). The role of melatonin in targeting cell signalling pathways in neurodegeneration. Ann. N Y Acad. Sci. 1443 75–96. 10.1111/nyas.14005
    1. Song J., Sun Y., Peluso I., Zeng Y., Yu X., Wang M., et al. (2016). A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of mTOR inhibition. Autophagy 12 1372–1389. 10.1080/15548627.2016.1179404
    1. Stavoe A., Holzbaur E. (2019). Axonal autophagy: Mini-review for autophagy in the CNS. Neurosc. Lett. 697 17–23. 10.1016/j.neulet.2018.03.025
    1. Steiner G., Bensoussan A., Liu J., Hohenberg M., Chang D. (2018). Study protocol for randomized, double-blind, placebo-controlled 12 week pilot phase II trial of sailuotong (SLT) for cognitive function in older adults with mild cognitive impairment. Trials 19:522. 10.1186/s13063-018-2912-0
    1. Stevens B. (2003). Glia-much more than the neuron’s side-kick. Curr. Biol. 13 R469–R472. 10.1016/S0960-9822(03)00404-4
    1. Strohm L., Behrends C. (2019). Glia-specific autophagy dysfunction in ALS. Semin. Cell Dev. Biol 99 172–182. 10.1016/j.semcdb.2019.05.024
    1. Suomi F., Mc Williams T. (2020). Autophagy in the mammalian nervous system: a primer for neuroscientists. Neuronal Signaling 3:NS20180134. 10.1042/NS20180134
    1. Tan S., Yu C., Sim Z., Low Z., Lee B., See F., et al. (2019). Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy. Sci. Rep. 9:727 10.1038/s41598-018-37400
    1. Tanaka K., Matsuda N. (2014). Proteostasis and neurodegeneration: The roles of proteasomal degradation and autophagy. BBA-Mol. Cell Res. 1843 197–204. 10.1016/j.bbamcr.2013.03.012
    1. Taylor R., Berendzen K., Dillin A. (2014). Systemic stress signalling: Understanding the cell-non-autonomous control of proteostasis. Nat. Rev. Mol. Cell Biol. 15 211–217. 10.1038/nrm3752
    1. Thellung S., Corsaro A., Nizzari M., Barbieri F., Florio T. (2019). Autophagy activator drugs: a new opportunity in neuroprotection from misfolded protein toxicity. Int. J. Mol. Sci. 20:901. 10.3390/ijms20040901
    1. Tian J., Liu Y., Chen K. (2017). Ginkgo biloba extract in vascular protection: molecular mechanisms and clinical applications. Curr. Vasc. Pharmacol. 15 532–548. 10.2174/1570161115666170713095545
    1. Tien N., Karaca I., Tamboli I., Walter J. (2016). Trehalose alters subcellular trafficking and the metabolism of the Alzheimer -associated amyloid precursor protein. J. Biol. Chem. 291 10528–10540. 10.1074/jbc.H116.719286
    1. Tomoda T., Yang K., Sawa A. (2019). Neuronal autophagy in synaptic functions and psychiatric disorders. Biol. Psych. 87 787–796. 10.1016/j.biopsych.2019.07.018
    1. Tripathi M., Rajput C., Mishra S., Rasheed M., Singh M. (2019). Malfunctioning of chaperone-mediated autophagy in Parkinson’s disease: Feats, Constraints, and Flaws of modulators. Neurotoxicity Res. 35 260–270. 10.1007/s12640-018-9917-z
    1. Truban D., Hou X., Caulfield T., Fiesel F., Springer W. (2017). PINK1, Parkin, and Mitochondrial quality control: What can we learn about Parkinson’s disease pathobiology? J. Parkinson’s Dis. 7 13–29. 10.3222/JPD-160989
    1. Tsao R. (2010). Chemistry and biochemistry of dietary polyphenols. Nutrients 2 1231–1246. 10.3390/nu2121231
    1. Umezawa K., Kojima I., Simizu S., Lin Y., Fukatsu H., Koide N., et al. (2018). Therapeutic activity of plant-derived alkaloid conophylline on metabolic syndrome and neurodegenerative diseases models. Hum. Cell 31 95–101. 10.1007/s13577-017-0196-4
    1. Ungelenk S., Moayed F., Ho C., Grousl T., Scharf A., Mashaghi A., et al. (2016). Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nat. Commun. 7:13673. 10.1038/ncomms13673
    1. Vauzour D., Camprubi-Robles M., Miquel-Kergoat S., Andres-Lacueva C., Banati D., Barberger-Gateau P., et al. (2017). Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res. Rev. 35 222–240. 10.1016/j.arr.2016.09.010
    1. Vidoni C., Secomandi E., Castiglioni A., Melone M., Isidoro C. (2018). Resveratrol protects neuronal-like cells expressing mutant huntingtin from dopamine toxicity by rescuing ATG4-mediated autophagosome formation. Neurochem. Int. 117 174–187. 10.1016/j.neuint.2017.05.013
    1. Voulgaropoulou S., Vanamelsvoort T., Prickaerts J., Vingerhoets C. (2019). The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: a systematic review of preclinical and clinical studies. Brain Res. 1725:146476. 10.1016/j.brainres.2019.146476
    1. Wang C., Zhang X., Teng Z., Zhang T., Li Y. (2014). Downregulation of PI3K/Akt/mTOR signalling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur. J. Pharmacol. 740 312–320. 10.1016/j.ejphar.2014.06.051
    1. Wang D., Li S., Wu W., Zhu X., Wang Y., Yuan H. (2014). Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem. Res. 39 1533–1543. 10.1007/s11064-014-1343-x
    1. Wang H., Jiang T., Li W., Gao N., Zhang T. (2018). Resveratrol attenuates oxidative damage trough activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol. Lett. 282 100–108. 10.1016/j.toxlet.2017.10.021
    1. Wang H., Liu C., Mei X., Cao Y., Guo Z., Yuan Y., et al. (2017). Berberine attenuated pro-inflammatory factors and protect against neuronal damage via triggering oligodendrocyte autophagy - in spinal cord injury. Oncotarget 8 98312–98321. 10.18632/oncotarget.21203
    1. Wang J., Qi Q., Feng Z., Zhang X., Huang B., Chen A., et al. (2016). Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1 pathway. Oncotarget 7 66944–66958. 10.18632/oncotarget.11396
    1. Wang J., Xu C. (2020). Astrocytes autophagy in aging and neurodegenerative disorders. Biomed. Pharmacother. 122:109691. 10.1016/j.biopha.2019.109691
    1. Wang N., Wang H., Li L., Li Y., Zhang R. (2020). β-asarone inhibits amyloid-β by promoting autophagy in a cell model of Alzheimer’s disease. Front. Pharmacol. 10:1529. 10.3389/fphar.2019.01529
    1. Wang P., Jiang L., Zhou N., Zhou H., Liu H., Zhao W., et al. (2018). Resveratrol ameliorates autophagic flux to promote functional recovery in rats after spinal cord injury. Oncotarget 9 8427–8440. 10.18632/oncotarget.23877
    1. Wilhelm B., Mandad S., Truckenbrodt S., Krohnert K., Schafer C., Rammner B., et al. (2014). Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344 1023–1028. 10.1126/science.1252884
    1. Wu H., Chen S., Ammar A., Xu J., Wu Q., Pan K., et al. (2015). Crosstalk between macroautophagy and chaperone-mediated autophagy: Implications for the treatment of neurological diseases. Mol. Neurobiol. 52 1284–1296. 10.1007/s12035-014-8933-0
    1. Wu Y., Whitens C., Xu C., Hayworth K., Weinberg R., Hesse H., et al. (2017). Contacts between the endoplasmic reticulum and other membranes in neurons. PNAS 114 E4859–E4867. 10.1073/pnas.1701078114
    1. Xie C., Aman Y., Adrianse B., Cader M., Plun-Favreau H., Xiao J., et al. (2020). Culprit or Bystander: Defective mitophagy in Alzheimer’s disease. Front. Cell Dev. Biol. 7:391 10.3388/fcell.2019.00391
    1. Xie J., Liang J., Chen N. (2019). Autophagy-associated signal pathways of functional foods for chronic diseases. Food Sci. Hum. Wellness 8 25–33. 10.1016/j.fshw.2019.03.002
    1. Xilouri M., Brekk O., Landeck N., Pitychoutis P., Papasilekas T., Papadopoulou-Daifoti Z., et al. (2013). Boosting chaperone-mediated autophagy in vivo mitigates α-synuclein-induced neurodegeneration. Brain 136 2130–2146. 10.1093/brain/awt131
    1. Yang C., Cai C., Song J., Tan J., Durairajan S., Iyaswamy A., et al. (2017). NRBF2 is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models. Autophagy 13 2028–2040. 10.1080/15548627.2017.1379633
    1. Yang Q., Zheng C., Cao J., Cao G., Shou P., Lin L., et al. (2016). Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 23 1850–1861. 10.1038/cdd.2016.71
    1. Yessenkyzy A., Saliev T., Zhanaliyeva H., Masoud A., Umbayev B., Sergazy S., et al. (2020). Polyphenols as caloric-restriction mimetics and autophagy inducers in aging research. Nutrients 12:1344. 10.3390/nu12051344
    1. Yoon Y., Cho E., Ahn W., Lee K., Lee S., Lee H. (2017). Is trehalose an autophagic inducer? Unraveling the roles of non-reducing disaccharides on autophagic flux and alpha-synuclein aggregation. Cell Death Dis. 8:e3091. 10.1038/cddis.2017.501
    1. Yu D., Li M., Nie P., Zhang Z., Zhou Y. (2018). Bcl-2/E1B-19kD-Interacting protein 3/light chain 3 interaction induces mitophagy in spinal cord injury in rats both in vivo and in vitro. J. Neurotrauma. 35 2183–2194. 10.1089/neu.2017.5280
    1. Yu S., Baek S., Brennan R., Bradley C., Park S., Lee Y., et al. (2008). Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells 26 2602–2610. 10.1634/stemcells.2008-0153
    1. Zachari M., Gauley I. (2017). The mammalian ULK1 complex and autophagy initiation. Ess. Biochem. 61 585–596. 10.1042/EBC20170021
    1. Zeng H., Sanes J. (2017). Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18:530. 10.1038/nrn.2017.85
    1. Zeng Q., Siu W., Li L., Liang S., Cao M., Ma M., et al. (2019). Autophagy in Alzheimer’s disease and promising modulatory effects of herbal medicine. Exp. Gerontol. 119 100–110. 10.1016/j.exger.2019.01.027
    1. Zhang L., Fang Y., Cheng X., Lian Y., Zeng Z., Wu C., et al. (2018). The potential protective effect of curcumin on amyloid-β-42 induced cytotoxicity in HT-22 cells. Biomed. Res. Int. 2018:8134902. 10.1155/2018/8134902
    1. Zhang L., Wang H., Fan Y. (2017). Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci. Rep. 7:46763. 10.1038/srep46763
    1. Zhang X., Chen J., Ouyang D., Lu J. (2020). Quercetin in animal models of Alzheimer’s disease: a systematic review of preclinical studies. Int. J. Mol. Sci. 21:493 10.3390/ijms2102493
    1. Zhao H., Chen S., Gao K., Zhou Z., Wang C., Shen Z., et al. (2017). Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signalling pathway. Neuroscience 348 241–251. 10.1016/j.neuroscience.2017.02.027
    1. Zholos A., Moroz O., Storozhuk M. (2019). Curcuminoids and novel opportunities for the treatment of Alzhemeir’s disease: Which molecules are actually effective? Curr. Mol. Pharmacol. 12 12–26. 10.2174/1874467211666181012150847

Source: PubMed

3
订阅