Clinical Features to Predict the Use of a sEMG Wearable Device (REMO®) for Hand Motor Training of Stroke Patients: A Cross-Sectional Cohort Study

Giorgia Pregnolato, Daniele Rimini, Francesca Baldan, Lorenza Maistrello, Silvia Salvalaggio, Nicolò Celadon, Paolo Ariano, Candido Fabrizio Pirri, Andrea Turolla, Giorgia Pregnolato, Daniele Rimini, Francesca Baldan, Lorenza Maistrello, Silvia Salvalaggio, Nicolò Celadon, Paolo Ariano, Candido Fabrizio Pirri, Andrea Turolla

Abstract

After stroke, upper limb motor impairment is one of the most common consequences that compromises the level of the autonomy of patients. In a neurorehabilitation setting, the implementation of wearable sensors provides new possibilities for enhancing hand motor recovery. In our study, we tested an innovative wearable (REMO®) that detected the residual surface-electromyography of forearm muscles to control a rehabilitative PC interface. The aim of this study was to define the clinical features of stroke survivors able to perform ten, five, or no hand movements for rehabilitation training. 117 stroke patients were tested: 65% of patients were able to control ten movements, 19% of patients could control nine to one movement, and 16% could control no movements. Results indicated that mild upper limb motor impairment (Fugl-Meyer Upper Extremity ≥ 18 points) predicted the control of ten movements and no flexor carpi muscle spasticity predicted the control of five movements. Finally, severe impairment of upper limb motor function (Fugl-Meyer Upper Extremity > 10 points) combined with no pain and no restrictions of upper limb joints predicted the control of at least one movement. In conclusion, the residual motor function, pain and joints restriction, and spasticity at the upper limb are the most important clinical features to use for a wearable REMO® for hand rehabilitation training.

Keywords: hand gesture; myoelectric control; neurological rehabilitation; surface electromyography; upper extremity; wearable technology.

Conflict of interest statement

Author Mrs Francesca Baldan is employed by FisioSPORT Terraglio S.r.l. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationship that could lead to potential conflict of interest.

Figures

Figure 1
Figure 1
REMO® Test Setting. (a) The patient wears REMO® on the paretic forearm while seated at the height-adjustable ergonomic table. In this figure, the patient is performing an example of exercise for hand motor training. (b) Graphical user interface displaying real-time surface-electromyography (sEMG) amplitude on a radar graph with the list of movements to be tested and control buttons for sEMG-biofeedback training. The bar on the screen is the feedback provided to the patient referred to as the level of Contractio Ratio (CR).
Figure 2
Figure 2
The ten movements tested by REMO® In The Experimental Setting. Thumb abduction (a), pinch (b), fingers flexion (c), fingers extension (d), wrist flexion (e), wrist extension (f), pronation (g), supination (h), radial deviation (i), and ulnar wrist deviation (j).
Figure 3
Figure 3
Example of radar graph representation of ten movements’ muscle activations of two patients (Blue and Red line). Each graph is scaled according to the maximum channel output of the two patients.
Figure 4
Figure 4
Area under the Curve (AUC) graphs for classification accuracy. (a) 0 movements controlled (GLM0); (b) up to 5 movements controlled (GLM5); (c) up to 10 movements controlled (GLM10); (d) k-means classification (GLMk).
Figure 5
Figure 5
Subjects classification (K-Means) according to the number of movements tested. In the picture, X-signs correspond to k centroid of each cluster. Two clusters are shown with white diamonds and black filled points.

References

    1. Feigin V.L., Roth G.A., Naghavi M., Parmar P., Krishnamurthi R., Chugh S., Mensah G.A., Norrving B., Shiue I., Ng M., et al. Global burden of stroke and risk factors in 188 countries, during 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016;15:913–924. doi: 10.1016/S1474-4422(16)30073-4.
    1. Krishnamurthi R.V., Feigin V.L., Forouzanfar M.H., Mensah G.A., Connor M., Bennett D.A., Moran A.E., Sacco R.L., Anderson L.M., Truelsen T., et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob. Health. 2013;1:e259–e281. doi: 10.1016/S2214-109X(13)70089-5.
    1. Tsao C.W., Aday A.W., Almarzooq Z.I., Alonso A., Beaton A.Z., Bittencourt M.S., Boehme A.K., Buxton A.E., Carson A.P., Commodore-Mensah Y., et al. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145:e153–e639. doi: 10.1161/CIR.0000000000001052.
    1. Collaborators G.B.D.S. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:439–458. doi: 10.1016/S1474-4422(19)30034-1.
    1. Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Das S.R., et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139:e56–e528. doi: 10.1161/CIR.0000000000000659.
    1. Feigin V.L., Stark B.A., Johnson C.O., Roth G.A., Bisignano C., Abady G.G., Abbasifard M., Abbasi-Kangevari M., Abd-Allah F., Abedi V., et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021;20:795–820. doi: 10.1016/S1474-4422(21)00252-0.
    1. Feigin V.L., Norrving B., Mensah G.A. Global Burden of Stroke. Circ. Res. 2017;120:439–448. doi: 10.1161/CIRCRESAHA.116.308413.
    1. Cauraugh J.H., Kim S.B. Chronic stroke motor recovery: Duration of active neuromuscular stimulation. J. Neurol. Sci. 2003;215:13–19. doi: 10.1016/S0022-510X(03)00169-2.
    1. Sathian K., Buxbaum L.J., Cohen L.G., Krakauer J.W., Lang C.E., Corbetta M., Fitzpatrick S.M. Neurological principles and rehabilitation of action disorders: Common clinical deficits. Neurorehabil. Neural. Repair. 2011;25:21S–32S. doi: 10.1177/1545968311410941.
    1. Kwakkel G., Kollen B.J., van der Grond J., Prevo A.J. Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:2181–2186. doi: 10.1161/.
    1. Nichols-Larsen D.S., Clark P.C., Zeringue A., Greenspan A., Blanton S. Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke. 2005;36:1480–1484. doi: 10.1161/01.STR.0000170706.13595.4f.
    1. Foley E.L., Nicholas M.L., Baum C.A.-O., Connor L.A.-O. Influence of Environmental Factors on Social Participation Post-Stroke. Behav. Neurol. 2019;2019:2606039. doi: 10.1155/2019/2606039.
    1. Bernhardt J., Hayward K.S., Kwakkel G., Ward N.S., Wolf S.L., Borschmann K., Krakauer J.W., Boyd L.A., Carmichael S.T., Corbett D., et al. Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce. Int. J. Stroke. 2017;12:444–450. doi: 10.1177/1747493017711816.
    1. Winters C., Kwakkel G., van Wegen E.E.H., Nijland R.H.M., Veerbeek J.M., Meskers C.G.M. Moving stroke rehabilitation forward: The need to change research. NeuroRehabilitation. 2018;43:19–30. doi: 10.3233/NRE-172393.
    1. Kwakkel G., Kollen B.J. Predicting activities after stroke: What is clinically relevant? Int. J. Stroke. 2013;8:25–32. doi: 10.1111/j.1747-4949.2012.00967.x.
    1. Stinear C.M., Lang C.E., Zeiler S., Byblow W.D. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020;19:348–360. doi: 10.1016/S1474-4422(19)30415-6.
    1. Coupar F., Pollock A., Rowe P., Weir C., Langhorne P. Predictors of upper limb recovery after stroke: A systematic review and meta-analysis. Clin. Rehabil. 2012;26:291–313. doi: 10.1177/0269215511420305.
    1. Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9:1228–1232. doi: 10.1016/S1474-4422(10)70247-7.
    1. Meldrum D., Pittock S.J., Hardiman O., Ni Dhuill C., O’Regan M. Recovery of the upper limb post ischaemic stroke and the predictive value of the Orpington Prognostic Score. Clin. Rehabil. 2004;18:694–702. doi: 10.1191/0269215504cr753oa.
    1. Hancock N.J., Collins K., Dorer C., Wolf S.L., Bayley M., Pomeroy V.M. Evidence-based practice ‘on-the-go’: Using ViaTherapy as a tool to enhance clinical decision making in upper limb rehabilitation after stroke, a quality improvement initiative. BMJ Open Qual. 2019;8:e000592. doi: 10.1136/bmjoq-2018-000592.
    1. Wolf S.L., Kwakkel G., Bayley M., McDonnell M.N., Upper Extremity Stroke Algorithm Working Group Best practice for arm recovery post stroke: An international application. Physiotherapy. 2016;102:1–4. doi: 10.1016/j.physio.2015.08.007.
    1. Pollock A., Farmer S.E., Brady M.C., Langhorne P., Mead G.E., Mehrholz J., van Wijck F. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2014;11:CD010820. doi: 10.1002/14651858.CD010820.pub2.
    1. Everard G., Declerck L., Detrembleur C., Leonard S., Bower G., Dehem S., Lejeune T. New technologies promoting active upper limb rehabilitation after stroke: An overview and network meta-analysis. Eur. J. Phys. Rehabil. Med. 2022;58:530–548. doi: 10.23736/S1973-9087.22.07404-4.
    1. Wu J., Zeng A., Chen Z., Wei Y., Huang K., Chen J., Ren Z. Effects of Virtual Reality Training on Upper Limb Function and Balance in Stroke Patients: Systematic Review and Meta-Meta-Analysis. J. Med. Internet Res. 2021;23:e31051. doi: 10.2196/31051.
    1. Gandolfi M., Valè N., Posteraro F., Morone G., Dell’orco A., Botticelli A., Dimitrova E., Gervasoni E., Goffredo M., Zenzeri J., et al. State of the art and challenges for the classification of studies on electromechanical and robotic devices in neurorehabilitation: A scoping review. Eur. J. Phys. Rehabil. Med. 2021;57:831–840. doi: 10.23736/S1973-9087.21.06922-7.
    1. Veerbeek J.M., Langbroek-Amersfoort A.C., van Wegen E.E., Meskers C.G., Kwakkel G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke. Neurorehabil. Neural. Repair. 2017;31:107–121. doi: 10.1177/1545968316666957.
    1. Bell A., Grampurohit N., Kains G., Marino R.J. Developing guiding principles for technology-based rehabilitation program by engaging people with motor incomplete tetraplegia. J. Neuroeng. Rehabil. 2022;19:128. doi: 10.1186/s12984-022-01096-2.
    1. Lirio-Romero C., Torres-Lacomba M., Gómez-Blanco A., Acero-Cortés A., Retana-Garrido A., de la Villa-Polo P., Sánchez-Sánchez B. Electromyographic biofeedback improves upper extremity function: A randomized, single-blinded, controlled trial. Physiotherapy. 2021;110:54–62. doi: 10.1016/j.physio.2020.02.002.
    1. Papazian C., Baicoianu N.A., Peters K.M., Feldner H.A., Steele K.M. Electromyography Recordings Detect Muscle Activity Before Observable Contractions in Acute Stroke Care. Arch. Rehabil. Res. Clin. Transl. 2021;3:100136. doi: 10.1016/j.arrct.2021.100136.
    1. Raurale S.A., McAllister J., Rincon J.M.d. Real-Time Embedded EMG Signal Analysis for Wrist-Hand Pose Identification. IEEE Trans. Signal Process. 2020;68:2713–2723. doi: 10.1109/TSP.2020.2985299.
    1. Munoz-Novoa M., Kristoffersen M.B., Sunnerhagen K.S., Naber A., Alt Murphy M., Ortiz-Catalan M. Upper Limb Stroke Rehabilitation Using Surface Electromyography: A Systematic Review and Meta-Analysis. Front. Hum. Neurosci. 2022;16:897870. doi: 10.3389/fnhum.2022.897870.
    1. Mugler E.M., Tomic G., Singh A., Hameed S., Lindberg E.W., Gaide J., Alqadi M., Robinson E., Dalzotto K., Limoli C., et al. Myoelectric Computer Interface Training for Reducing Co-Activation and Enhancing Arm Movement in Chronic Stroke Survivors: A Randomized Trial. Neurorehabilit. Neural Repair. 2019;33:284–295. doi: 10.1177/1545968319834903.
    1. Parker J., Powell L., Mawson S. Effectiveness of Upper Limb Wearable Technology for Improving Activity and Participation in Adult Stroke Survivors: Systematic Review. J. Med. Internet Res. 2020;22:e15981. doi: 10.2196/15981.
    1. Meeker C., Park S., Bishop L., Stein J., Ciocarlie M. EMG pattern classification to control a hand orthosis for functional grasp assistance after stroke. IEEE Int. Conf. Rehabil. Robot. 2017;2017:1203–1210. doi: 10.1109/ICORR.2017.8009413.
    1. Di Girolamo M., Celadon N., Appendino S., Turolla A., Ariano P. EMG-based biofeedback system for motor rehabilitation: A pilot study; Proceedings of the 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS); Turin, Italy. 19–21 October 2017; pp. 1–4.
    1. Rimini D., Salvalaggio S., Pregnolato G., Alhelou M., Berlingieri C., Mascotto E., Turolla A., Ariano P., Celadon N., Ahmed D. sEMG-biofeedback armband for hand motor rehabilitation in stroke patients: A preliminary pilot longitudinal study; Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA); Bari, Italy. 1 June 2020; pp. 1–5.
    1. Markovic M., Schweisfurth M.A., Engels L.F., Farina D., Dosen S. Myocontrol is closed-loop control: Incidental feedback is sufficient for scaling the prosthesis force in routine grasping. J. Neuroeng. Rehabil. 2018;15:81. doi: 10.1186/s12984-018-0422-7.
    1. Hartmann C., Dosen S., Amsuess S., Farina D. Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking. IEEE Trans. Neural. Syst. Rehabil. Eng. 2015;23:807–816. doi: 10.1109/TNSRE.2014.2357175.
    1. Oboe R., Tonin A., Yu K., Ohnishi K., Turolla A. Robotic finger rehabilitation system for stroke patient using surface EMG armband; Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society; Florence, Italy. 23–26 October 2016; Piscataway, NJ, USA: IEEE; 2016. pp. 785–790.
    1. Fox J. The R Commander: A Basic-Statistics Graphical User Interface to R. J. Stat. Softw. 2005;14:1–42. doi: 10.18637/jss.v014.i09.
    1. Milligan G.W. Clustering and Classification. World Scientific; Singapore: 1996. Clustering Validation: Results and Implications for Applied Analyses; pp. 341–375.
    1. Steinley D. K-means clustering: A half-century synthesis. Pt 1Br. J. Math. Stat. Psychol. 2006;59:1–34. doi: 10.1348/000711005X48266.
    1. Ahn H. Effect Modeling of Count Data Using Logistic Regression with Qualitative Predictors. Engineering. 2014;6:758–772. doi: 10.4236/eng.2014.612074.
    1. McFadden D. Quantitative Methods for Analyzing Travel Behaviour of Individuals: Some Recent Developments; Cowles Foundation for Research in Economics. Yale University; New Haven, CT, USA: 1977. No 474, Cowles Foundation Discussion Papers, Cowles Foundation for Research in Economics.
    1. Brier G.W. Verification of Forecasts Expressed in terms of Probability. Mon. Weather. Rev. 1950;78:1–3. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>;2.
    1. Zhang X., Chen X., Zhao Z.-Y., Tu Y.-Q., Yang J.-H., Lantz V., Wang K.-Q. Medical Biometrics. ICMB 2008. Lecture Notes in Computer Science. Volume 4901. Springer; Berlin/Heidelberg, Germany: 2007. Research on Gesture Definition and Electrode Placement in Pattern Recognition of Hand Gesture Action SEMG.
    1. Mesa I., Rubio A., Tubia I., De No J., Diaz J. Channel and feature selection for a surface electromyographic pattern recognition task. Expert Syst. Appl. 2014;41:5190–5200. doi: 10.1016/j.eswa.2014.03.014.
    1. Carpinella I., Jonsdottir J., Ferrarin M. Multi-finger coordination in healthy subjects and stroke patients: A mathematical modelling approach. J. Neuroeng. Rehabil. 2011;8:19. doi: 10.1186/1743-0003-8-19.
    1. van Kordelaar J., van Wegen E.E., Nijland R.H., Daffertshofer A., Kwakkel G. Understanding adaptive motor control of the paretic upper limb early poststroke: The EXPLICIT-stroke program. Neurorehabil. Neural Repair. 2013;27:854–863. doi: 10.1177/1545968313496327.
    1. Kwakkel G., Winters C., van Wegen E.E., Nijland R.H., van Kuijk A.A., Visser-Meily A., de Groot J., de Vlugt E., Arendzen J.H., Geurts A.C., et al. Effects of Unilateral Upper Limb Training in Two Distinct Prognostic Groups Early After Stroke: The EXPLICIT-Stroke Randomized Clinical Trial. Neurorehabil. Neural Repair. 2016;30:804–816. doi: 10.1177/1545968315624784.
    1. Jarque-Bou N.J., Sancho-Bru J.L., Vergara M. A Systematic Review of EMG Applications for the Characterization of Forearm and Hand Muscle Activity during Activities of Daily Living: Results, Challenges, and Open Issues. Sensors. 2021;21:s21093035. doi: 10.3390/s21093035.
    1. Cognolato M., Atzori M., Marchesin C., Marangon S., Faccio D., Tiengo C., Bassetto F., Gassert R., Petrone N., Müller H. Multifunction control and evaluation of a 3D printed hand prosthesis with the Myo armband by hand amputees. bioRxiv. 2018:445460. doi: 10.1101/445460.
    1. Farina D., Jiang N., Rehbaum H., Holobar A., Graimann B., Dietl H., Aszmann O.C. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 2014;22:797–809. doi: 10.1109/TNSRE.2014.2305111.
    1. Brambilla C., Scano A. The Number and Structure of Muscle Synergies Depend on the Number of Recorded Muscles: A Pilot Simulation Study with OpenSim. Sensors. 2022;22:8584. doi: 10.3390/s22228584.
    1. Paleari M., Girolamo M.D., Celadon N., Favetto A., Ariano P. On optimal electrode configuration to estimate hand movements from forearm surface electromyography; Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Milan, Italy. 25–29 August 2015; pp. 6086–6089.
    1. Celadon N., Došen S., Binder I., Ariano P., Farina D. Proportional estimation of finger movements from high-density surface electromyography. J. Neuroeng. Rehabil. 2016;13:73. doi: 10.1186/s12984-016-0172-3.
    1. Leone F., Gentile C., Ciancio A.L., Gruppioni E., Davalli A., Sacchetti R., Guglielmelli E., Zollo L. Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces. Front. Neurorobot. 2019;13:42. doi: 10.3389/fnbot.2019.00042.
    1. Atzori M., Gijsberts A., Castellini C., Caputo B., Hager A.G., Elsig S., Giatsidis G., Bassetto F., Müller H. Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Sci. Data. 2014;1:140053. doi: 10.1038/sdata.2014.53.
    1. Lyu M., Lambelet C., Woolley D., Zhang X., Chen W., Ding X., Gassert R., Wenderoth N. Training wrist extensor function and detecting unwanted movement strategies in an EMG-controlled visuomotor task. IEEE Int. Conf. Rehabil. Robot. 2017;2017:1549–1555. doi: 10.1109/ICORR.2017.8009468.

Source: PubMed

3
订阅