APOE Variants in an Iberian Alzheimer Cohort Detected through an Optimized Sanger Sequencing Protocol

Ricardo D González, Iva Gomes, Catarina Gomes, Rita Rocha, Luís Durães, Patrícia Sousa, Manuel Figueruelo, Maria Rodríguez, Carmen Pita, Roberto Hornero, Carlos Gómez, Alexandra M Lopes, Nádia Pinto, Sandra Martins, Ricardo D González, Iva Gomes, Catarina Gomes, Rita Rocha, Luís Durães, Patrícia Sousa, Manuel Figueruelo, Maria Rodríguez, Carmen Pita, Roberto Hornero, Carlos Gómez, Alexandra M Lopes, Nádia Pinto, Sandra Martins

Abstract

The primary genetic risk factor for late onset Alzheimer's disease (LOAD) is the APOE4 allele of Apolipoprotein E (APOE) gene. The three most common variants of APOE are determined by single nucleotide polymorphisms (SNPs) rs429358 and rs7412. Our aim was to estimate allele and genotype frequencies of APOE variants in an Iberian cohort, thus helping to understand differences in APOE-related LOAD risk observed across populations. We analyzed saliva or buccal swab samples from 229 LOAD patients and 89 healthy elderly controls (≥68 years old) from Northern Portugal and Castile and León region, Spain. The genotyping was performed by Sanger sequencing, optimized to overcome GC content drawbacks. Results obtained in our Iberian LOAD and control cohorts are in line with previous large meta-analyses on APOE frequencies in Caucasian populations; however, we found differences in allele frequencies between our Portuguese and Spanish subgroups of AD patients. Moreover, when comparing studies from Iberian and other Caucasian cohorts, differences in APOE2 and APOE4 frequencies and subsequent different APOE-related LOAD risks must be clarified. These results show the importance of studying genetic variation at the APOE gene in different populations (including analyses at a regional level) to increase our knowledge about its clinical significance.

Keywords: Apolipoprotein E (APOE); disease risk; late onset Alzheimer’s disease (LOAD); rs429358; rs7412; sanger sequencing.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Sequenced region for Apolipoprotein E (APOE) including single nucleotide polymorphisms (SNPs) rs429358 (squared T in figure) and rs7412 (squared C in figure). Sequence downloaded from UCSC Genome Browser (https://genome.ucsc.edu) Assembly Dec. 2013, GRCh38/hg38, Chr19: 44908567-44909018. Designed forward and reverse primers for amplification and sequencing of target region are represented in italic and bold.
Figure 2
Figure 2
Schematic representation of the optimized protocol for Apolipoprotein E (APOE) genotyping.

References

    1. Alzheimer’s Association 2008 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2008;4:110–133. doi: 10.1016/j.jalz.2008.02.005.
    1. Schachter A.S., Davis K.L. Alzheimer’s Disease. Dialogues Clin. Neurosci. 2000;2:91–100. doi: 10.1007/s11940-000-0023-0.
    1. Liu C.-C., Kanekiyo T., Xu H., Bu G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol. 2013;9:106–118. doi: 10.1038/nrneurol.2012.263.
    1. Gleerup H.S., Hasselbalch S.G., Simonsen A.H. Biomarkers for Alzheimer’s Disease in Saliva: A Systematic Review. Dis. Markers. 2019;2019:4761054. doi: 10.1155/2019/4761054.
    1. Joe E., Ringman J.M. Cognitive symptoms of Alzheimer’s disease: Clinical management and prevention. BMJ. 2019;367:l6217. doi: 10.1136/bmj.l6217.
    1. Bloom G.S. Amyloid-β and Tau. JAMA Neurol. 2014;71:505–508. doi: 10.1001/jamaneurol.2013.5847.
    1. Reale M., Gonzales-Portillo I., Borlongan C.V. Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer’s Disease: Present and future applications. Brain Res. 2020;1727:146535. doi: 10.1016/j.brainres.2019.146535.
    1. Blennow K., Zetterberg H. Biomarkers for Alzheimer’s disease: Current status and prospects for the future. J. Intern. Med. 2018;284:643–663. doi: 10.1111/joim.12816.
    1. Buschmann D., González R., Kirchner B., Mazzone C., Pfaffl M.W., Schelling G., Steinlein O., Reithmair M. Glucocorticoid receptor overexpression slightly shifts microRNA expression patterns in triple-negative breast cancer. Int. J. Oncol. 2018;52:1765–1776. doi: 10.3892/ijo.2018.4336.
    1. Ross C.A., Aylward E.H., Wild E.J., Langbehn D.R., Long J.D., Warner J.H., Scahill R.I., Leavitt B.R., Stout J.C., Paulsen J.S., et al. Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 2014;10:204–216. doi: 10.1038/nrneurol.2014.24.
    1. Frieden C., Garai K. Concerning the structure of apoE. Protein Sci. 2013;22:1820–1825. doi: 10.1002/pro.2379.
    1. Kushioka T., Ocho M., Ito Y., Yokokawa T., Yui K., Yamasaki Y. Evaluation of ApoE Genotyping Using Saliva-Derived DNA. J. Clin. Med Genom. 2018;6:2. doi: 10.4172/2472-128X.1000149.
    1. Heffernan A.L., Chidgey C., Peng P., Masters C.L., Roberts B.R. The Neurobiology and Age-Related Prevalence of the ε4 Allele of Apolipoprotein E in Alzheimer’s Disease Cohorts. J. Mol. Neurosci. 2016;60:316–324. doi: 10.1007/s12031-016-0804-x.
    1. Chiang G.C., Insel P., Tosun D., Schuff N., Truransacrey D., Raptentsetsang S.T., Jack C.R., Aisen P.S., Petersen R.C., Weiner M.W., et al. Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects. Neurology. 2010;75:1976–1981. doi: 10.1212/WNL.0b013e3181ffe4d1.
    1. Belloy M.E., Napolioni V., Greicius M.D. A Quarter Century of APOE and Alzheimer’s Disease: Progress to Date and the Path Forward. Neuron. 2019;101:820–838. doi: 10.1016/j.neuron.2019.01.056.
    1. Mahley R.W. Apolipoprotein E: From cardiovascular disease to neurodegenerative disorders. J. Mol. Med. 2016;94:739–746. doi: 10.1007/s00109-016-1427-y.
    1. Muza P., Bachmeier C., Mouzon B., Algamal M., Rafi N.G., Lungmus C., Abdullah L., Evans J.E., Ferguson S., Mullan M., et al. APOE Genotype Specific Effects on the Early Neurodegenerative Sequelae Following Chronic Repeated Mild Traumatic Brain Injury. Neuroscience. 2019;404:297–313. doi: 10.1016/j.neuroscience.2019.01.049.
    1. Jack C.R., Jr., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018.
    1. Folstein M.F., Folstein S.E., McHugh P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Borgström E., Paterlini M., Mold J.E., Frisen J., Lundeberg J. Comparison of whole genome amplification techniques for human single cell exome sequencing. PLoS ONE. 2017;12:e0171566. doi: 10.1371/journal.pone.0171566.
    1. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463.
    1. Gomes A., Korf B. Pediatric Cancer Genetics. Elsevier BV; Amsterdam, The Netherlands: 2018. Genetic Testing Techniques; pp. 47–64.
    1. Hagemann I.S. Clinical Genomics. Elsevier BV; Amsterdam, The Netherlands: 2015. Overview of Technical Aspects and Chemistries of Next-Generation Sequencing; pp. 3–19.
    1. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596.
    1. Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091.
    1. Excoffier L., Lischer H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x.
    1. Korbie D.J., Mattick J.S. Touchdown PCR for Increased Specificity and Sensitivity in PCR Amplification. Nat. Protoc. 2008;3:1452–1456. doi: 10.1038/nprot.2008.133.
    1. Haddy N., De Bacquer D., Chemaly M.M., Maurice M., Ehnholm C., Evans A., Sans S., Martins M.D.C., De Backer G., Siest G., et al. The importance of plasma apolipoprotein E concentration in addition to its common polymorphism on inter-individual variation in lipid levels: Results from Apo Europe. Eur. J. Hum. Genet. 2002;10:841–850. doi: 10.1038/sj.ejhg.5200864.
    1. Seixas S., Trovoada M.J., Rocha J. Haplotype analysis of the apolipoprotein E and apolipoprotein C1 loci in Portugal and São Tomé e Príncipe (Gulf of Guinea): Linkage disequilibrium evidence that APOE*4 is the ancestral APOE allele. Hum. Biol. 1999;71:1001–1008.
    1. Ibarreta L., Gómez-Isla T., Portera-Sanchez A., Parrilla R., Ayuso-Parrilla M.S. Apolipoprotein E genotype in Spanish patients of Alzheimer’s or Parkinson’s disease. J. Neurol. Sci. 1995;134:146–149. doi: 10.1016/0022-510X(95)00238-3.
    1. Farrer L.A., Cupples L.A., Haines J.L., Hyman B., Kukull W.A., Mayeux R., Myers R.H., Pericak-Vance M.A., Risch N., van Duijn C.M. Effects of Age, Sex, and Ethnicity on the Association between Apolipoprotein E Genotype and Alzheimer Disease. A Meta-Analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278:1349–1356. doi: 10.1001/jama.1997.03550160069041.
    1. Corbo R.M., Scacchi R. Apolipoprotein E (APOE) allele distribution in the world. IsAPOE*4a ‘thrifty’ allele? Ann. Hum. Genet. 1999;63:301–310. doi: 10.1046/j.1469-1809.1999.6340301.x.
    1. Singh P.P., Singh M., Mastana S. APOE distribution in world populations with new data from India and the UK. Ann. Hum. Biol. 2006;33:279–308. doi: 10.1080/03014460600594513.
    1. Egert S., Rimbach G., Huebbe P. ApoE genotype: From geographic distribution to function and responsiveness to dietary factors. Proc. Nutr. Soc. 2012;71:410–424. doi: 10.1017/S0029665112000249.
    1. Mortensen E.L., Høgh P. A gender difference in the association between APOE genotype and age-related cognitive decline. Neurology. 2001;57:89–95. doi: 10.1212/WNL.57.1.89.
    1. Tudorache I.F., Trusca V.G., Gafencu A.V. Apolipoprotein E-a Multifunctional Protein with Implications in Various Pathologies as a Result of Its Structural Features. Comput. Struct. Biotechnol. J. 2017;15:359–365. doi: 10.1016/j.csbj.2017.05.003.
    1. Toro C.A., Zhang L., Cao J., Cai D. Sex differences in Alzheimer’s disease: Understanding the molecular impact. Brain Res. 2019;1719:194–207. doi: 10.1016/j.brainres.2019.05.031.
    1. Neu S.C., Pa J., Kukull W., Beekly D., Kuzma A., Gangadharan P., Wang L.-S., Romero K., Arneric S.P., Redolfi A., et al. Apolipoprotein E Genotype and Sex Risk Factors for Alzheimer Disease. JAMA Neurol. 2017;74:1178–1189. doi: 10.1001/jamaneurol.2017.2188.
    1. Nebel R.A., Aggarwal N.T., Barnes L.L., Gallagher A., Goldstein J.M., Kantarci K., Mallampalli M.P., Mormino E.C., Scott L., Yu W.H., et al. Understanding the impact of sex and gender in Alzheimer’s disease: A call to action. Alzheimer’s Dement. 2018;14:1171–1183. doi: 10.1016/j.jalz.2018.04.008.

Source: PubMed

3
订阅