Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders

Somarani Dash, Yasir Ahmed Syed, Mojibur R Khan, Somarani Dash, Yasir Ahmed Syed, Mojibur R Khan

Abstract

The gut microbiome has a tremendous influence on human physiology, including the nervous system. During fetal development, the initial colonization of the microbiome coincides with the development of the nervous system in a timely, coordinated manner. Emerging studies suggest an active involvement of the microbiome and its metabolic by-products in regulating early brain development. However, any disruption during this early developmental process can negatively impact brain functionality, leading to a range of neurodevelopment and neuropsychiatric disorders (NPD). In this review, we summarize recent evidence as to how the gut microbiome can influence the process of early human brain development and its association with major neurodevelopmental psychiatric disorders such as autism spectrum disorders, attention-deficit hyperactivity disorder, and schizophrenia. Further, we discuss how gut microbiome alterations can also play a role in inducing drug resistance in the affected individuals. We propose a model that establishes a direct link of microbiome dysbiosis with the exacerbated inflammatory state, leading to functional brain deficits associated with NPD. Based on the existing research, we discuss a framework whereby early diet intervention can boost mental wellness in the affected subjects and call for further research for a better understanding of mechanisms that govern the gut-brain axis may lead to novel approaches to the study of the pathophysiology and treatment of neuropsychiatric disorders.

Keywords: attention-deficit/hyperactivity disorder; autism spectrum disorder; drug resistance; gut microbiome; inflammation; neurodevelopmental psychiatric disorder; probiotics; schizophrenia.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Dash, Syed and Khan.

Figures

FIGURE 1
FIGURE 1
Significant risk factors affecting events with in human developmental window could bring on neurodevelopmental psychiatric disorders. The critical developmental window spans from the fetal stage until childhood, which consists of early colonization and development of the microbiome, development of the brain and nervous system, and development and maturation of the immune system. Within this period, the composition and diversity of the gut microbiome, genetics, maternal, and other reverent factors can alter the overall developmental homeostasis by causing disturbances in the immune system. Gut dysbiosis, immune alteration, and other factors induce microglial activation via inflammatory response, which leads to systemic and neuroinflammation. This negatively affects the brain development process and leads to abnormal brain development and functionality, including anxiety, depression, intellectual disability, and behavioral abnormality that can be seen in neurodevelopmental and psychotic disorders.
FIGURE 2
FIGURE 2
Role of the gut microbiome in healthy brain development. The gut microbiome plays an essential role in various processes of brain development such as neurogenesis, myelination, microglial maturation, development and maintenance of blood-brain barrier integrity, development of HPA-axis, and HPA-axis stress response. Any alterations in this developmental process can significantly increase the risk for neurodevelopmental disorders.
FIGURE 3
FIGURE 3
Gut-brain homeostasis and inflammatory mechanisms in neurodevelopmental psychiatric disorders due to gut brain dysbiosis. In infancy, the dysbiotic gut is characterized by less diverse microbiota with an abundance of pathogenic microbes, less beneficial microbes, and disrupted gut epithelial barrier with consequent GI tract-related disorders. When severe, the pathogenic microbes may cross through and enter the blood, which holds a massive immune response and releases inflammatory cytokines that lead to inflammation. Cytokine imbalance can induce microglial activation in the brain, which again causes neuroinflammation. This is associated with a disruption in brain development, and delay in neurodevelopmental subsequently may lead to NDD and NPDs.
FIGURE 4
FIGURE 4
The gut microbes regulate the development and maturation of the immune system and play a crucial role in brain development (Green: normal interaction; Red: aberrant interaction). Gut dysbiosis and the immune system in brain development led to neurodevelopmental disorders. A gut dysbiosis alters the immune system homeostasis and leads to the activation of inflammatory response. Such aberration during brain development can disrupt the developmental pathways, leading to developmental delays and neurodevelopmental disorders.
FIGURE 5
FIGURE 5
Probiotic therapy to overcome adverse effects NDDs at developmental time points. Probiotic treatment at specific time points such as in-utero, after immediate birth, infancy and childhood may help and support the establishment of stable and healthy gut microbiota, prevent the dysregulation in the developmental process, and play the role of a crucial preventive measure for the onset of neurodevelopmental and psychotic disorders via neutralizing the effects of inducing factors.

References

    1. Aagaard K., Ma J., Antony K. M., Ganu R., Petrosino J., Versalovic J. (2014). The Placenta Harbors a Unique Microbiome. Sci. Transl. Med. 6 (237). 10.1126/scitranslmed.3008599
    1. Aarts E., Ederveen T. H. A., Naaijen J., Zwiers M. P., Boekhorst J., Timmerman H. M., et al. (2017). Gut Microbiome in ADHD and its Relation to Neural Reward Anticipation. PLoS ONE 12 (9), e0183509. 10.1371/journal.pone.0183509
    1. Abdel-Haq R., Schlachetzki J. C. M., Glass C. K., Mazmanian S. K. (2019). Microbiome-microglia Connections via the Gut-Brain axis. J. Exp. Med. 216 (1), 41–59. 10.1084/jem.20180794
    1. Acuña I., Cerdó T., Ruiz A., Torres-Espínola F. J., López-Moreno A., Aguilera M., et al. (2021). Infant Gut Microbiota Associated with fine Motor Skills. Nutrients 13 (5), 1673. 10.3390/nu13051673
    1. Agarwal S., Piesco N. P., Johns L. P., Riccelli A. E. (1995). Differential Expression of IL-1β, TNF-α, IL-6, and IL-8 in Human Monocytes in Response to Lipopolysaccharides from Different Microbes. J. Dent Res. 74 (4), 1057–1065. 10.1177/00220345950740040501
    1. Alameddine J., Godefroy E., Papargyris L., Sarrabayrouse G., Tabiasco J., Bridonneau C., et al. (2019). Faecalibacterium Prausnitzii Skews Human DC to Prime IL10-Producing T Cells through TLR2/6/JNK Signaling and IL-10, IL-27, CD39, and Ido-1 Induction. Front. Immunol. 10 (2). 10.3389/fimmu.2019.00143
    1. Alcock J., Maley C. C., Aktipis C. A. (2014). Is Eating Behavior Manipulated by the Gastrointestinal Microbiota? Evolutionary Pressures and Potential Mechanisms. Bioessays 36 (10), 940–949. 10.1002/bies.201400071
    1. Alenina N., Klempin F. (2015). The Role of Serotonin in Adult Hippocampal Neurogenesis. Behavioural Brain Research. Elsevier B.V.. 10.1016/j.bbr.2014.07.038
    1. Alexander C., Rietschel E. T. (2001). Bacterial Lipopolysaccharides and Innate Immunity. J. Endotoxin Res. 7 (3), 167–202. 10.1179/096805101101532675
    1. Alhasson F., Das S., Seth R., Dattaroy D., Chandrashekaran V., Ryan C. N., et al. (2017). Altered Gut Microbiome in a Mouse Model of Gulf War Illness Causes Neuroinflammation and Intestinal Injury via Leaky Gut and TLR4 Activation. PLoS ONE 12 (3), e0172914. 10.1371/journal.pone.0172914
    1. Allam-Ndoul B., Castonguay-Paradis S., Veilleux A. (2020). Gut Microbiota and Intestinal Trans-epithelial Permeability. Ijms 21 (17), 6402. 10.3390/ijms21176402
    1. Almeida R. G., Lyons D. A. (2017). On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function. J. Neurosci. 37 (42), 10023–10034. 10.1523/JNEUROSCI.3185-16.2017
    1. Altamura A. C., Pozzoli S., Fiorentini A., Dell'Osso B. (2013). Neurodevelopment and Inflammatory Patterns in Schizophrenia in Relation to Pathophysiology. Prog. Neuro-Psychopharmacology Biol. Psychiatry 42, 63–70. 10.1016/j.pnpbp.2012.08.015
    1. Amminger G. P., Schäfer M. R., Schlögelhofer M., Klier C. M., McGorry P. D. (2015). Longer-term Outcome in the Prevention of Psychotic Disorders by the Vienna omega-3 Study. Nat. Commun. 6. 10.1038/ncomms8934
    1. Anand D., Colpo G. D., Zeni G., Zeni C. P., Teixeira A. L. (2017). Attention-deficit/hyperactivity Disorder and Inflammation: What Does Current Knowledge Tell US? A Systematic Review. Front. Psychiatry 8 (11). 10.3389/fpsyt.2017.00228
    1. Anisman H., Kokkinidis L., Merali Z. (1996). Interleukin-2 Decreases Accumbal Dopamine Efflux and Responding for Rewarding Lateral Hypothalamic Stimulation. Brain Res. 731 (1–2), 1–11. 10.1016/0006-8993(96)00460-X
    1. Ardissone A. N., De La Cruz D. M., Davis-Richardson A. G., Rechcigl K. T., Li N., Drew J. C., et al. (2014). Meconium Microbiome Analysis Identifies Bacteria Correlated with Premature Birth. PLoS ONE 9 (3). 10.1371/journal.pone.0090784
    1. Argou-Cardozo I., Zeidán-Chuliá F. (2018). Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Med. Sci. 6 (2). 10.3390/medsci6020029
    1. Aroniadis O. C., Brandt L. J. (2013). Fecal Microbiota Transplantation: Past, Present and Future. Curr. Opin. Gastroenterol. 29 (1). 10.1097/MOG.0b013e32835a4b3e
    1. Ashwood P., Krakowiak P., Hertz-Picciotto I., Hansen R., Pessah I., van de Water J. (2011). Elevated Plasma Cytokines in Autism Spectrum Disorders Provide Evidence of Immune Dysfunction and Are Associated with Impaired Behavioral Outcome. Brain Behav. Immun. 25 (1). 10.1016/j.bbi.2010.08.003
    1. Ashwood P., Wakefield A. J. (2006). Immune Activation of Peripheral Blood and Mucosal CD3+ Lymphocyte Cytokine Profiles in Children with Autism and Gastrointestinal Symptoms. J. Neuroimmunology 173 (1–2). 10.1016/j.jneuroim.2005.12.007
    1. Athanasiu L., Giddaluru S., Fernandes C., Christoforou A., Reinvang I., Lundervold A. J., et al. (2017). A Genetic Association Study of CSMD1 and CSMD2 with Cognitive Function. Brain Behav. Immun. 61. 10.1016/j.bbi.2016.11.026
    1. Babulas V., Factor-Litvak P., Goetz R., Schaefer C. A., Brown A. S. (2006). Prenatal Exposure to Maternal Genital and Reproductive Infections and Adult Schizophrenia. Am. J. Psychiatry 163 (5). 10.1176/ajp.2006.163.5.927
    1. Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., et al. (2015). Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host and Microbe 17 (5), 690–703. 10.1016/j.chom.2015.04.004
    1. Barak B., Feldman N., Okun E. (2014). Toll-like Receptors as Developmental Tools that Regulate Neurogenesis during Development: an Update. Front. Neurosci. 8. 10.3389/fnins.2014.00272
    1. Baumgarth N. (2011). The Double Life of a B-1 Cell: Self-Reactivity Selects for Protective Effector Functions. Nat. Rev. Immunol. 11, 34–46. 10.1038/nri2901
    1. Belenguer A., Duncan S. H., Calder A. G., Holtrop G., Louis P., Lobley G. E., et al. (2006). Two Routes of Metabolic Cross-Feeding between Bifidobacterium Adolescentis and Butyrate-Producing Anaerobes from the Human Gut. Appl. Environ. Microbiol. 72 (5). 10.1128/AEM.72.5.3593-3599.2006
    1. Belkaid Y., Hand T. W. (2014). Role of the Microbiota in Immunity and Inflammation. Cell 157 (1). 10.1016/j.cell.2014.03.011
    1. Benes F. M. (1989). Myelination of Cortical-Hippocampal Relays during Late Adolescence. Schizophrenia Bull. 15 (4). 10.1093/schbul/15.4.585
    1. Benros M. E., Nielsen P. R., Nordentoft M., Eaton W. W., Dalton S. O., Mortensen P. B. (2011). Autoimmune Diseases and Severe Infections as Risk Factors for Schizophrenia: A 30-year Population-Based Register Study. Am. J. Psychiatry 168 (12). 10.1176/appi.ajp.2011.11030516
    1. Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., et al. (2011). The Intestinal Microbiota Affect central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology 141 (2). 10.1053/j.gastro.2011.04.052
    1. Bezawada N., Phang T. H., Hold G. L., Hansen R. (2020). Autism Spectrum Disorder and the Gut Microbiota in Children: A Systematic Review. Ann. Nutr. Metab. 76 (1). 10.1159/000505363
    1. Biagi E., Nylund L., Candela M., Ostan R., Bucci L., Pini E., et al. (2010). Through Ageing, and beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS ONE 5 (5). 10.1371/journal.pone.0010667
    1. Biasucci G., Rubini M., Riboni S., Morelli L., Bessi E., Retetangos C. (2010). Mode of Delivery Affects the Bacterial Community in the Newborn Gut. Early Hum. Dev. 86 (1). 10.1016/j.earlhumdev.2010.01.004
    1. Bilbo S. D., Block C. L., Bolton J. L., Hanamsagar R., Tran P. K. (2018). Beyond Infection - Maternal Immune Activation by Environmental Factors, Microglial Development, and Relevance for Autism Spectrum Disorders. Exp. Neurol. 299. 10.1016/j.expneurol.2017.07.002
    1. Birnbaum R., Weinberger D. R. (2017). Genetic Insights into the Neurodevelopmental Origins of Schizophrenia. Nat. Rev. Neurosci. 18 (12), 727–740. 10.1038/nrn.2017.125
    1. Black C., Miller B. J. (2015). Meta-analysis of Cytokines and Chemokines in Suicidality: Distinguishing Suicidal versus Nonsuicidal Patients. Biol. Psychiatry 78 (1). 10.1016/j.biopsych.2014.10.014
    1. Blum K., Chen A. L. C., Braverman E. R., Comings D. E., Chen T. J. H., Arcuri V., et al. (2008). Attention-deficit-hyperactivity Disorder and Reward Deficiency Syndrome. Neuropsychiatr. Dis. Treat. 4 (5). 10.2147/ndt.s2627
    1. Bojović K., Ignjatović Ð. d. i., Soković Bajić S., Vojnović Milutinović D., Tomić M., Golić N., et al. (2020). Gut Microbiota Dysbiosis Associated with Altered Production of Short Chain Fatty Acids in Children with Neurodevelopmental Disorders. Front. Cell Infect. Microbiol. 10. 10.3389/fcimb.2020.00223
    1. Bolte E. R. (1998). Autism and clostridium Tetani. Med. Hypotheses 51 (2). 10.1016/S0306-9877(98)90107-4
    1. Bolton J. L., Huff N. C., Smith S. H., Mason S. N., Foster W. M., Auten R. L., et al. (2013). Maternal Stress and Effects of Prenatal Air Pollution on Offspring Mental Health Outcomes in Mice. Environ. Health Perspect. 121 (9). 10.1289/ehp.1306560
    1. Bolton J. L., Marinero S., Hassanzadeh T., Natesan D., Le D., Belliveau C., et al. (2017). Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-specific Manner. Front. Synaptic Neurosci. 9 (5). 10.3389/fnsyn.2017.00010
    1. Bolton J. L., Smith S. H., Huff N. C., Gilmour M. I., Foster W. M., Auten R. L., et al. (2012). Prenatal Air Pollution Exposure Induces Neuroinflammation and Predisposes Offspring to Weight Gain in Adulthood in a Sex-specific Manner. FASEB J. 26 (11). 10.1096/fj.12-210989
    1. Borre Y. E., Keeffe G. W. O., Clarke G., Stanton C., Dinan T. G., Cryan J. F. (2014). Microbiota and Neurodevelopmental Windows: Implications for Brain Disorders. Trends Mol. Med. 20 (9), 509–518. 10.1016/j.molmed.2014.05.002
    1. Bos I., de Boever P., Emmerechts J., Buekers J., Vanoirbeek J., Meeusen R., et al. (2012). Changed Gene Expression in Brains of Mice Exposed to Traffic in a Highway Tunnel. Inhalation Toxicol. 24 (10). 10.3109/08958378.2012.714004
    1. Boulanger-Bertolus J., Pancaro C., Mashour G. A. (2018). Increasing Role of Maternal Immune Activation in Neurodevelopmental Disorders. Front. Behav. Neurosci. 12. 10.3389/fnbeh.2018.00230
    1. Boyer L., Richieri R., Dassa D., Boucekine M., Fernandez J., Vaillant F., et al. (2013). Association of Metabolic Syndrome and Inflammation with Neurocognition in Patients with Schizophrenia. Psychiatry Res. 210 (2). 10.1016/j.psychres.2013.06.020
    1. Boyle C. A., Boulet S., Schieve L. A., Cohen R. A., Blumberg S. J., Yeargin-Allsopp M., et al. (2011). Trends in the Prevalence of Developmental Disabilities in US Children, 1997-2008. Pediatrics 127 (6), 1034–1042. 10.1542/peds.2010-2989
    1. Bradley A. J., Dinan T. G. (2010). A Systematic Review of Hypothalamic-Pituitary-Adrenal axis Function in Schizophrenia: Implications for Mortality. J. Psychopharmacol. (Oxford, England) 24 (4). 10.1177/1359786810385491
    1. Brandon N. J., Millar J. K., Korth C., Sive H., Singh K. K., Sawa A. (2009). Understanding the Role of DISC1 in Psychiatric Disease and during normal Development. J. Neurosci. 29 (41). 10.1523/JNEUROSCI.3355-09.2009
    1. Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., et al. (2014). The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Sci. Translational Med. 6 (263). 10.1126/scitranslmed.3009759
    1. Braunschweig D., van de Water J. (2012). Maternal Autoantibodies in Autism. Arch. Neurol. 69 (6). 10.1001/archneurol.2011.2506
    1. Brenner D. R., Scherer D., Muir K., Schildkraut J., Boffetta P., Spitz M. R., et al. (2014). A Review of the Application of Inflammatory Biomarkers in Epidemiologic Cancer Research. Cancer Epidemiol. Biomarkers Prev. 23 (9). 10.1158/1055-9965.EPI-14-0064
    1. Brotman R. M. (2011). Vaginal Microbiome and Sexually Transmitted Infections: An Epidemiologic Perspective. J. Clin. Invest. 121 (12). 10.1172/JCI57172
    1. Brown A. S., Begg M. D., Gravenstein S., Schaefer C. A., Wyatt R. J., Bresnahan M., et al. (2004). Serologic Evidence of Prenatal Influenza in the Etiology of Schizophrenia. Arch. Gen. Psychiatry 61 (8). 10.1001/archpsyc.61.8.774
    1. Brown A. S., Cohen P., Greenwald S., Susser E. (2000). Nonaffective Psychosis after Prenatal Exposure to Rubella. Am. J. Psychiatry 157 (3). 10.1176/appi.ajp.157.3.438
    1. Brown A. S., Conway F. (2019). Maternal Immune Activation and Related Factors in the Risk of Offspring Psychiatric Disorders. Front. Psychiatry 10 (5). 10.3389/fpsyt.2019.00430
    1. Brown A. S., Derkits E. J. (2010). Prenatal Infection and Schizophrenia: A Review of Epidemiologic and Translational Studies. Am. J. Psychiatry 167 (3). 10.1176/appi.ajp.2009.09030361
    1. Brown A. S., Schaefer C. A., Quesenberry C. P., Liu L., Babulas V. P., Susser E. S. (2005). Maternal Exposure to Toxoplasmosis and Risk of Schizophrenia in Adult Offspring. Am. J. Psychiatry 162 (4). 10.1176/appi.ajp.162.4.767
    1. Buka S. L., Cannon T. D., Torrey E. F., Yolken R. H. (2008). Maternal Exposure to Herpes Simplex Virus and Risk of Psychosis Among Adult Offspring. Biol. Psychiatry 63 (8). 10.1016/j.biopsych.2007.09.022
    1. Bull G., Shattock P., Whiteley P., Anderson R., Groundwater P. W., Lough J. W., et al. (2003). Indolyl-3-acryloylglycine (IAG) Is a Putative Diagnostic Urinary Marker for Autism Spectrum Disorders. Med. Sci. Monitor 9 (10).
    1. Bull-Larsen S., Hasan M. (2019). The Potential Influence of the Bacterial Microbiome on the Development and Progression of Adhd. Nutrients.11, 2805. 10.3390/nu11112805
    1. Bundgaard-Nielsen C., Knudsen J., Leutscher P. D. C., Lauritsen M. B., Nyegaard M., Hagstrøm S., et al. (2020). Gut Microbiota Profiles of Autism Spectrum Disorder and Attention Deficit/hyperactivity Disorder: A Systematic Literature Review. Gut Microbes 11 (5). 10.1080/19490976.2020.1748258
    1. Calderón-Garcidueñas L., Franco-Lira M., D’Angiulli A., Rodríguez-Díaz J., Blaurock-Busch E., Busch Y., et al. (2015). Mexico City normal Weight Children Exposed to High Concentrations of Ambient PM2.5 Show High Blood Leptin and Endothelin-1, Vitamin D Deficiency, and Food Reward Hormone Dysregulation versus Low Pollution Controls. Relevance for Obesity and Alzheimer Disease. Environ. Res. 140, 579–592. 10.1016/j.envres.2015.05.012
    1. Calderón-Garcidueñas L., Solt A. C., Henríquez-Roldán C., Torres-Jardón R., Nuse B., Herritt L., et al. (2008). Long-term Air Pollution Exposure Is Associated with Neuroinflammation, an Altered Innate Immune Response, Disruption of the Blood-Brain Barrier, Ultrafine Particulate Deposition, and Accumulation of Amyloid β-42 and α-synuclein in Children and Young Adults. Toxicologic Pathol. 36 (2), 289–310. 10.1177/0192623307313011
    1. Carabotti M., Scirocco A., Antonietta M., Severi C. (2015). The Gut-Brain axis: Interactions between Enteric Microbiota , central and Enteric Nervous Systems. Ann. Gastroenterol. 28, 203–209.
    1. Carrizo E., Fernández V., Quintero J., Connell L., Rodríguez Z., Mosquera M., et al. (2008). Coagulation and Inflammation Markers during Atypical or Typical Antipsychotic Treatment in Schizophrenia Patients and Drug-free First-Degree Relatives. Schizophrenia Res. 103 (1–3). 10.1016/j.schres.2008.03.004
    1. Castro-Nallar E., Bendall M. L., Pérez-Losada M., Sabuncyan S., Severance E. G., Dickerson F. B., et al. (2015). Composition, Taxonomy and Functional Diversity of the Oropharynx Microbiome in Individuals with Schizophrenia and Controls. PeerJ 2015 (8). 10.7717/peerj.1140
    1. Cerdó T., Diéguez E., Campoy C. (2020). Impact of Gut Microbiota on Neurogenesis and Neurological Diseases during Infancy. Curr. Opin. Pharmacol. 50. 10.1016/j.coph.2019.11.006
    1. Checa-Ros A., Jeréz-Calero A., Molina-Carballo A., Campoy C., Muñoz-Hoyos A. (2021). Current Evidence on the Role of the Gut Microbiome in ADHD Pathophysiology and Therapeutic Implications. Nutrients 13 (1). 10.3390/nu13010249
    1. Chen C. Y., Shih Y. C., Hung Y. F., Hsueh Y. P. (2019). Beyond Defense: Regulation of Neuronal Morphogenesis and Brain Functions via Toll-like Receptors. J. Biomed. Sci. 26 (1). 10.1186/s12929-019-0584-z
    1. Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., et al. (2018). Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 9 (6). 10.18632/oncotarget.23208
    1. Chen Y., Xu J., Chen Y. (2021). Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 13 (6). 10.3390/nu13062099
    1. Cherian K., Schatzberg A. F., Keller J. (2019). HPA axis in Psychotic Major Depression and Schizophrenia Spectrum Disorders: Cortisol, Clinical Symptomatology, and Cognition. Schizophrenia Res. 213. 10.1016/j.schres.2019.07.003
    1. Choi G. B., Yim Y. S., Wong H., Kim S., Kim H., Kim S. v., et al. (2016). The Maternal Interleukin-17a Pathway in Mice Promotes Autism-like Phenotypes in Offspring. Science 351 (6276). 10.1126/science.aad0314
    1. Choudhury Z., Lennox B. (2021). Maternal Immune Activation and Schizophrenia–Evidence for an Immune Priming Disorder. Front. Psychiatry 12. 10.3389/fpsyt.2021.585742
    1. Chrobak A. A., Nowakowski J., Dudek D. (2016). Interactions between the Gut Microbiome and the central Nervous System and Their Role in Schizophrenia, Bipolar Disorder and Depression. Arch. Psychiatry Psychotherapy 18 (2). 10.12740/APP/62962
    1. Chubb J. E., Bradshaw N. J., Soares D. C., Porteous D. J., Millar J. K. (2008). The DISC Locus in Psychiatric Illness. Mol. Psychiatry 13 (1). 10.1038/sj.mp.4002106
    1. Clapp M., Aurora N., Herrera L., Bhatia M., Wilen E., Wakefield S. (2017). Gut Microbiota’s Effect on Mental Health: The Gut-Brain Axis. Clin. Pract. 7 (4). 10.4081/cp.2017.987
    1. Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R. D., Shanahan F., et al. (2013). The Microbiome-Gut-Brain axis during Early Life Regulates the Hippocampal Serotonergic System in a Sex-dependent Manner. Mol. Psychiatry 18, 666–673. 10.1038/mp.2012.77
    1. Di Gesù C. M., Matz L. M., Buffington S. A. (2021). Diet-Induced Dysbiosis of the Maternal Gut Microbiome in Early Life Programming of Neurodevelopmental Disorders. Neuroscience Research. Elsevier Ireland Ltd. 10.1016/j.neures.2021.05.003
    1. Cohrs S., Röher C., Jordan W., Meier A., Huether G., Wuttke W., et al. (2006). The Atypical Antipsychotics Olanzapine and Quetiapine, but Not Haloperidol, Reduce ACTH and Cortisol Secretion in Healthy Subjects. Psychopharmacology 185 (1). 10.1007/s00213-005-0279-x
    1. Collado M. C., Rautava S., Aakko J., Isolauri E., Salminen S. (2016). Human Gut Colonisation May Be Initiated In Utero by Distinct Microbial Communities in the Placenta and Amniotic Fluid. Scientific Rep. 6. 10.1038/SREP23129
    1. Comer A. L., Carrier M., Tremblay M. È., Cruz-Martín A. (2020). The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors that Lead to Uncontrolled Neuroinflammation. Front. Cell Neurosci. 14. 10.3389/fncel.2020.00274
    1. Condray R., Dougherty G. G., Keshavan M. S., Reddy R. D., Haas G. L., Montrose D. M., et al. (2011). 3-Hydroxykynurenine and Clinical Symptoms in First-Episode Neuroleptic-Naive Patients with Schizophrenia. Int. J. Neuropsychopharmacol. 14 (6). 10.1017/S1461145710001689
    1. Cong X., Henderson W. A., Graf J., McGrath J. M. (2015). Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System. Adv. Neonatal. Care 15 (5), 314–E2. 10.1097/ANC.0000000000000191
    1. Cooper J. D., Ozcan S., Gardner R. M., Rustogi N., Wicks S., van Rees G. F., et al. (2017). Schizophrenia-risk and Urban Birth Are Associated with Proteomic Changes in Neonatal Dried Blood Spots. Translational Psychiatry 7 (12). 10.1038/s41398-017-0027-0
    1. Corbett B. A., Kantor A. B., Schulman H., Walker W. L., Lit L., Ashwood P., et al. (2007). A Proteomic Study of Serum from Children with Autism Showing Differential Expression of Apolipoproteins and Complement Proteins. Mol. Psychiatry 12 (3). 10.1038/sj.mp.4001943
    1. Cosacak M., Bhattarai P., Kizil C. (2020). “Alzheimer’s Disease, Neural Stem Cells and Neurogenesis: Cellular Phase at Single-Cell Level,” in Neural Regeneration Research (Mumbai: Wolters Kluwer Medknow Publications; ). 10.4103/1673-5374.268896
    1. Cowen P., Harrison P., Burns T. (2012). Shorter Oxford Textbook of Psychiatry. Oxford University Press. 10.1093/med/9780199605613.001.0001
    1. Cristofori F., Dargenio V. N., Dargenio C., Miniello V. L., Barone M., Francavilla R. (2021). Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 12, 578386. 10.3389/fimmu.2021.578386
    1. Croen L. A., Braunschweig D., Haapanen L., Yoshida C. K., Fireman B., Grether J. K., et al. (2008). Maternal Mid-pregnancy Autoantibodies to Fetal Brain Protein: The Early Markers for Autism Study. Biol. Psychiatry 64 (7). 10.1016/j.biopsych.2008.05.006
    1. Cuomo A., Maina G., Rosso G., Crescenzi B. B., Bolognesi S., Muro A. D., et al. (2018). The Microbiome: A New Target for Research and Treatment of Schizophrenia and its Resistant Presentations? A Systematic Literature Search and Review. Front. Pharmacol. 9 (10). 10.3389/fphar.2018.01040
    1. Dalman C., Allebeck P., Gunnell D., Harrison G., Kristensson K., Lewis G., et al. (2008). Infections in the CNS during Childhood and the Risk of Subsequent Psychotic Illness: A Cohort Study of More Than One Million Swedish Subjects. Am. J. Psychiatry 165 (1). 10.1176/appi.ajp.2007.07050740
    1. Daneman R. (2012). The Blood-Brain Barrier in Health and Disease. Ann. Neurol. 72 (5). 10.1002/ana.23648
    1. Daneman R., Zhou L., Kebede A., Barres B. (2010). Pericytes Are Required for Blood–Brain Barrier Integrity during Embryogenesis. Nature 468, 562–566. 10.1038/nature09513
    1. D’Arcangelo G. (2014). Reelin in the Years: Controlling Neuronal Migration and Maturation in the Mammalian Brain. Adv. Neurosci. 2014. 10.1155/2014/597395
    1. de Agüero M. G., Ganal-Vonarburg S. C., Fuhrer T., Rupp S., Uchimura Y., Li H., et al. (2016). The Maternal Microbiota Drives Early Postnatal Innate Immune Development. Science 351 (6279), 1296–1302. 10.1126/science.aad2571
    1. de Angelis M., Piccolo M., Vannini L., Siragusa S., de Giacomo A., Serrazzanetti D. I., et al. (2013). Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE 8 (10). 10.1371/journal.pone.0076993
    1. de Hert M., Dobbelaere M., Sheridan E. M., Cohen D., Correll C. U. (2011). Metabolic and Endocrine Adverse Effects of Second-Generation Antipsychotics in Children and Adolescents: A Systematic Review of Randomized, Placebo Controlled Trials and Guidelines for Clinical Practice. Eur. Psychiatry 26 (3). 10.1016/j.eurpsy.2010.09.011
    1. de Hert M., Schreurs V., Vancampfort D., van Winkel R. (2009). Metabolic Syndrome in People with Schizophrenia: A Review. World Psychiatry 8 (1). 10.1002/j.2051-5545.2009.tb00199.x
    1. de Wouters d’Oplinter A., Rastelli M., Van Hul M., Delzenne N. M., Cani P. D., Everard A. (2021). Gut Microbes Participate in Food Preference Alterations during Obesity. Gut microbes 13 (1), 1959242. 10.1080/19490976.2021.1959242
    1. Delaney S., Fallon B., Alaedini A., Yolken R., Indart A., Feng T., et al. (2019). Inflammatory Biomarkers in Psychosis and Clinical High Risk Populations. Schizophrenia Res. 206. 10.1016/j.schres.2018.10.017
    1. Derecki N. C., Cardani A. N., Yang C. H., Quinnies K. M., Crihfield A., Lynch K. R., et al. (2010). Regulation of Learning and Memory by Meningeal Immunity: a Key Role for IL-4. J. Exp. Med. 207 (5), 1067–1080. 10.1084/jem.20091419
    1. Desachy G., Croen L. A., Torres A. R., Kharrazi M., Delorenze G. N., Windham G. C., et al. (2015). Increased Female Autosomal burden of Rare Copy Number Variants in Human Populations and in Autism Families. Mol. Psychiatry 20 (2). 10.1038/mp.2014.179
    1. Desbonnet L., Clarke G., Shanahan F., Dinan T. G., Cryan J. F. (2014). Microbiota Is Essential for Social Development in the Mouse. Mol. Psychiatry 19 (2), 146–148. 10.1038/mp.2013.65
    1. Desplat-Jégo S., Johanet C., Escande A., Goetz J., Fabien N., Olsson N., et al. (2007). Update in Anti-Saccharomyces cerevisiae Antibodies, Anti-nuclear Associated Anti-neutrophil Antibodies and Antibodies to Exocrine Pancreas Detected by Indirect Immunofluorescence as Biomarkers in Chronic Inflammatory Bowel Diseases: Results of a Multicenter Study. World J. Gastroenterol. 13 (16). 10.3748/wjg.v13.i16.2312
    1. Deverman B. E., Patterson P. H. (2009). Cytokines and CNS Development. Neuron 64 (1). 10.1016/j.neuron.2009.09.002
    1. Di Gesù C. M., Matz L. M., Buffington S. A. (2021). Diet-induced Dysbiosis of the Maternal Gut Microbiome in Early Life Programming of Neurodevelopmental Disorders. Neurosci. Res. 168. 10.1016/j.neures.2021.05.003
    1. Dicksved J., Schreiber O., Willing B., Petersson J., Rang S., Phillipson M., et al. (2012). Lactobacillus Reuteri Maintains a Functional Mucosal Barrier during DSS Treatment Despite Mucus Layer Dysfunction. PLoS ONE 7 (9). 10.1371/journal.pone.0046399
    1. Dipasquale V., Cutrupi M. C., Colavita L., Manti S., Cuppari C., Salpietro C. (2017). Neuroinflammation in Autism Spectrum Disorders: Role of High Mobility Group Box 1 Protein. Int. J. Mol. Cell Med. 6 (3). 10.22088/acadpub.BUMS.6.3.148
    1. Dogra S., Sakwinska O., Soh S. E., Ngom-Bru C., Brück W. M., Berger B., et al. (2015). Rate of Establishing the Gut Microbiota in Infancy Has Consequences for Future Health. Gut Microbes 6 (5). 10.1080/19490976.2015.1078051
    1. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., et al. (2010). Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota across Multiple Body Habitats in Newborns. Proc. Natl. Acad. Sci. United States America 107 (26). 10.1073/pnas.1002601107
    1. Dotterud C. K., Avershina E., Sekelja M., Simpson M. R., Rudi K., Storrø O., et al. (2015). Does Maternal Perinatal Probiotic Supplementation Alter the Intestinal Microbiota of Mother and Child? J. Pediatr. Gastroenterol. Nutr. 61 (2). 10.1097/MPG.0000000000000781
    1. Downes J., Munson M., Wade W. G. (2003). Dialister Invisus Sp. nov., Isolated from the Human Oral Cavity. Int. J. Syst. Evol. Microbiol. 53 (6). 10.1099/ijs.0.02640-0
    1. Drtilkova I., Sery O., Theiner P., Uhrova A., Zackova M., Balastikova B., et al. (2008). Clinical and Molecular-Genetic Markers of ADHD in Children. Neuroendocrinology Lett. 29 (3).
    1. Duncan I. D., Watters J. J. (2019). “Remyelination and the Gut−brain axis,” in Proceedings of the National Academy of Sciences of the United States of America (Washington, DC: National Academy of Science; ). 10.1073/pnas.1918897116
    1. Dunn G. A., Nigg J. T., Sullivan E. L. (2019). Neuroinflammation as a Risk Factor for Attention Deficit Hyperactivity Disorder. Pharmacol. Biochem. Behav. 182. 10.1016/j.pbb.2019.05.005
    1. Dunphy-Doherty F., O'Mahony S. M., Peterson V. L., O'Sullivan O., Crispie F., Cotter P. D., et al. (2018). Post-weaning Social Isolation of Rats Leads to Long-Term Disruption of the Gut Microbiota-Immune-Brain axis. Brain Behav. Immun. 68, 261–273. 10.1016/j.bbi.2017.10.024
    1. Eftekharian M. M., Ghafouri-Fard S., Noroozi R., Omrani M. D., Arsang-jang S., Ganji M., et al. (2018). Cytokine Profile in Autistic Patients. Cytokine 108. 10.1016/j.cyto.2018.03.034
    1. Eissa N., Sadeq A., Sasse A., Sadek B. (2020). Role of Neuroinflammation in Autism Spectrum Disorder and the Emergence of Brain Histaminergic System. Lessons Also for BPSD? Front. Pharmacol. 11. 10.3389/fphar.2020.00886
    1. El-Zayat S. R., Sibaii H., Mannaa F. A. (2019). Toll-like Receptors Activation, Signaling, and Targeting: an Overview. Bull. Natl. Res. Centre 43 (1). 10.1186/s42269-019-0227-2
    1. Ellman L. M., Deicken R. F., Vinogradov S., Kremen W. S., Poole J. H., Kern D. M., et al. (2010). Structural Brain Alterations in Schizophrenia Following Fetal Exposure to the Inflammatory Cytokine Interleukin-8. Schizophrenia Res. 121 (1–3). 10.1016/j.schres.2010.05.014
    1. Erhardt S., Schwieler L., Imbeault S., Engberg G. (2017). The Kynurenine Pathway in Schizophrenia and Bipolar Disorder. Neuropharmacology 112. 10.1016/j.neuropharm.2016.05.020
    1. Ernesto Martínez-González A., Andreo-Martínez P. (2019). The Role of Gut Microbiota in Gastrointestinal Symptoms of Children with ASD. Medicina 55 (8), 408. 10.3390/medicina55080408
    1. Erny D., De Angelis A. L. H., Jaitin D., Wieghofer P., Staszewski O., David E., et al. (2015). Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS. Nat. Neurosci. 18 (7), 965–977. 10.1038/nn.4030
    1. Esen-Danaci A., Sarandöl A., Taneli F., Yurtsever F., Özlen N. (2008). Effects of Second Generation Antipsychotics on Leptin and Ghrelin. Prog. Neuro-Psychopharmacology Biol. Psychiatry 32 (6). 10.1016/j.pnpbp.2008.03.015
    1. Faraone S. v., Perlis R. H., Doyle A. E., Smoller J. W., Goralnick J. J., Holmgren M. A., et al. (2005). Molecular Genetics of Attention-Deficit/hyperactivity Disorder. Biol. Psychiatry 57 (11). 10.1016/j.biopsych.2004.11.024
    1. Fasano A. (2012). Zonulin, Regulation of Tight Junctions, and Autoimmune Diseases. Ann. N Y Acad. Sci. 1258 (1). 10.1111/j.1749-6632.2012.06538.x
    1. Fawzi M. H., Fawzi M. M., Fawzi M. M., Said N. S. (2011). C-reactive Protein Serum Level in Drug-free Male Egyptian Patients with Schizophrenia. Psychiatry Res. 190 (1). 10.1016/j.psychres.2011.05.010
    1. Filiano A., Xu Y., Tustison N., Marsh R. (2016). Unexpected Role of Interferon-γ in Regulating Neuronal Connectivity and Social Behaviour. Nature 535, 425–429. 10.1038/nature18626
    1. Fineberg A. M., Ellman L. M. (2013). Inflammatory Cytokines and Neurological and Neurocognitive Alterations in the Course of Schizophrenia. Biol. Psychiatry 73 (10). 10.1016/j.biopsych.2013.01.001
    1. Finegold S. M., Dowd S. E., Gontcharova V., Liu C., Henley K. E., Wolcott R. D., et al. (2010). Pyrosequencing Study of Fecal Microflora of Autistic and Control Children. Anaerobe 16 (4). 10.1016/j.anaerobe.2010.06.008
    1. Finegold S. M., Downes J., Summanen P. H. (2012a). Microbiology of Regressive Autism. Anaerobe 18 (2). 10.1016/j.anaerobe.2011.12.018
    1. Finegold S. M., Downes J., Summanen P. H. (2012b). Pathogenesis and Toxins Microbiology of Regressive Autism. Anaerobe 18. 10.1016/j.anaerobe.2011.12.018
    1. Finegold S. M., Molitoris D., Song Y., Liu C., Vaisanen M. L., Bolte E., et al. (2002). Gastrointestinal Microflora Studies in Late-Onset Autism. Clin. Infect. Dis. 35. 10.1086/341914
    1. Fiorentino M., Sapone A., Senger S., Camhi S. S., Kadzielski S. M., Buie T. M., et al. (2016). Blood-brain Barrier and Intestinal Epithelial Barrier Alterations in Autism Spectrum Disorders. Mol. Autism 7 (1). 10.1186/s13229-016-0110-z
    1. Flowers S. A., Evans S. J., Ward K. M., McInnis M. G., Ellingrod V. L. (2017). Interaction between Atypical Antipsychotics and the Gut Microbiome in a Bipolar Disease Cohort. Pharmacotherapy 37 (3). 10.1002/phar.1890
    1. Föcking M., Dicker P., Lopez L. M., Cannon M., Schäfer M. R., McGorry P. D., et al. (2016). Differential Expression of the Inflammation Marker IL12p40 in the At-Risk Mental State for Psychosis: A Predictor of Transition to Psychotic Disorder? BMC Psychiatry 16 (1). 10.1186/s12888-016-1039-7
    1. Fond G., Lançon C., Korchia T., Auquier P., Boyer L. (2020). The Role of Inflammation in the Treatment of Schizophrenia. Front. Psychiatry 11. 10.3389/fpsyt.2020.00160
    1. Fortier M. È., Sengupta S. M., Grizenko N., Choudhry Z., Thakur G., Joober R. (2013). Genetic Evidence for the Association of the Hypothalamic-Pituitary-Adrenal (HPA) axis with ADHD and Methylphenidate Treatment Response. NeuroMolecular Med. 15 (1). 10.1007/s12017-012-8202-1
    1. Fraguas D., Díaz-Caneja C. M., Ayora M., Hernández-Álvarez F., Rodríguez-Quiroga A., Recio S., et al. (2019). Oxidative Stress and Inflammation in First-Episode Psychosis: A Systematic Review and Meta-Analysis. Schizophrenia Bull. 45 (4). 10.1093/schbul/sby125
    1. Frémont M., Coomans D., Massart S., de Meirleir K. (2013). High-throughput 16S rRNA Gene Sequencing Reveals Alterations of Intestinal Microbiota in Myalgic Encephalomyelitis/chronic Fatigue Syndrome Patients. Anaerobe 22. 10.1016/j.anaerobe.2013.06.002
    1. Franke B., Faraone S. V., Asherson P., Buitelaar J., Bau C. H. D., Ramos-Quiroga J. A., et al. (2012). The Genetics of Attention Deficit/Hyperactivity Disorder in Adults, a Review. Molecular Psychiatry. 10.1038/mp.2011.138
    1. Frydecka D., Misiak B., Pawlak-Adamska E., Karabon L., Tomkiewicz A., Sedlaczek P., et al. (2015). Interleukin-6: the Missing Element of the Neurocognitive Deterioration in Schizophrenia? the Focus on Genetic Underpinnings, Cognitive Impairment and Clinical Manifestation. Eur. Arch. Psychiatry Clin. Neurosci. 265 (6). 10.1007/s00406-014-0533-5
    1. Gacias M., Gaspari S., Santos P. M. G., Tamburini S., Andrade M., Zhang F., et al. (2016). Microbiota-driven Transcriptional Changes in Prefrontal Cortex Override Genetic Differences in Social Behavior. ELife 5. 10.7554/eLife.13442
    1. Gage F. H. (2019). Adult Neurogenesis in Mammals Neurogenesis in Adulthood Has Implications for Sense of Self, Memory, and Disease. Am. Assoc. Adv. Sci. 364, 827–828. 10.1126/science.aav6885
    1. Gao L., Li Z., Chang S., Wang J. (2014). Association of Interleukin-10 Polymorphisms with Schizophrenia: A Meta-Analysis. PLoS ONE 9 (3). 10.1371/journal.pone.0090407
    1. Gaonkar P. (2021). “Safety and Potential Risks with Fecal Microbiota Transplantation,” in Contemporary Topics in Patient Safety - Volume 1 [Working Title] (London: IntechOpen; ). 10.5772/intechopen.95907
    1. Garakani A., Win T., Virk S., Gupta S., Kaplan D., Masand P. S. (2003). Comorbidity of Irritable Bowel Syndrome in Psychiatric Patients: a Review. Am. J. Ther. 10 (1). 10.1097/00045391-200301000-00014
    1. Garay P. A., McAllister A. K. (2010). Novel Roles for Immune Molecules in Neural Development: Implications for Neurodevelopmental Disorders. Front. Synaptic Neurosci. 1 (9). 10.3389/fnsyn.2010.00136
    1. García-Bueno B., Gassó P., MacDowell K. S., Callado L. F., Mas S., Bernardo M., et al. (2016). Evidence of Activation of the Toll-like Receptor-4 Proinflammatory Pathway in Patients with Schizophrenia. J. Psychiatry Neurosci. 41 (3). 10.1503/jpn.150195
    1. Gattaz W. F., Abrahão A. L., Foccacia R. (2004). Childhood Meningitis, Brain Maturation and the Risk of Psychosis. Eur. Arch. Psychiatry Clin. Neurosci. 254 (1). 10.1007/s00406-004-0431-3
    1. Gaughran F., O’Neill E., Cole M., Collins K., Daly R. J., Shanahan F. (1998). Increased Soluble Interleukin 2 Receptor Levels in Schizophrenia. Schizophrenia Res. 29 (3). 10.1016/S0920-9964(97)00099-6
    1. Gaughran F., O’Neill E., Sham P., Daly R. J., Shanahan F. (2002). Soluble Interleukin 2 Receptor Levels in Families of People with Schizophrenia. Schizophrenia Res. 56 (3). 10.1016/S0920-9964(01)00275-4
    1. Genc S., Zadeoglulari Z., Fuss S. H., Genc K. (2012). The Adverse Effects of Air Pollution on the Nervous System. J. Toxicol. 2012. 10.1155/2012/782462
    1. Gensollen T., Iyer S. S., Kasper D. L., Blumberg R. S. (2016). How Colonization by Microbiota in Early Life Shapes the Immune System. Science 352 (6285). 10.1126/science.aad9378
    1. Gerritsen J., Fuentes S., Grievink W., van Niftrik L., Tindall B. J., Timmerman H. M., et al. (2014). Characterization of Romboutsia Ilealis Gen. nov., Sp. nov., Isolated from the Gastro-Intestinal Tract of a Rat, and Proposal for the Reclassification of Five Closely Related Members of the Genus Clostridium into the Genera Romboutsia Gen. nov., Intestinibacter Gen. nov., Terrisporobacter Gen. Nov. And Asaccharospora Gen. Nov. Int. J. Syst. Evol. Microbiol. 64 (5). 10.1099/ijs.0.059543-0
    1. Ginhoux F., Lim S., Hoeffel G., Low D., Huber T. (2013). Origin and Differentiation of Microglia. Front. Cell Neurosci. 7 (3). 10.3389/fncel.2013.00045
    1. Girgis R. R., Kumar S. S., Brown A. S. (2014). The Cytokine Model of Schizophrenia: Emerging Therapeutic Strategies. Biol. Psychiatry 75 (4). 10.1016/j.biopsych.2013.12.002
    1. Glibert J. A., Krajmalnik-Brown R., Porazinska D. L., Weiss S. J., Knight R. (2013). Towards Effective Probiotics for Autism and Other Mental Disorders? Cell 155 (7). 10.1016/j.cell.2013.11.035
    1. Goines P. E., Ashwood P. (2013). Cytokine Dysregulation in Autism Spectrum Disorders (ASD): Possible Role of the Environment. Neurotoxicology and Teratology 36. 10.1016/j.ntt.2012.07.006
    1. Goldsmith D. R., Haroon E., Miller A. H., Addington J., Bearden C., Cadenhead K., et al. (2019). Association of Baseline Inflammatory Markers and the Development of Negative Symptoms in Individuals at Clinical High Risk for Psychosis. Brain Behav. Immun. 76. 10.1016/j.bbi.2018.11.315
    1. Goldsmith D. R., Rapaport M. H., Miller B. J. (2016). A Meta-Analysis of Blood Cytokine Network Alterations in Psychiatric Patients: Comparisons between Schizophrenia, Bipolar Disorder and Depression. Mol. Psychiatry 21 (12). 10.1038/mp.2016.3
    1. Gotsch F., Romero R., Kusanovic J. P., Mazaki-Tovi S., Pineles B. L., Erez O., et al. (2007). The Fetal Inflammatory Response Syndrome. Clin. Obstet. Gynecol. 50 (3). 10.1097/GRF.0b013e31811ebef6
    1. Graeber M. B. (2010). Changing Face of Microglia. Science 330. 10.1126/science.1190929
    1. Graeff F. G., Guimarães F. S., de Andrade T. G. C. S., Deakin J. F. W. (1996). Role of 5-HT in Stress, Anxiety, and Depression. Pharmacol. Biochem. Behav. 54 (1). 10.1016/0091-3057(95)02135-3
    1. Grandi A., Zini I., Palese S., Giorgio C., Tognolini M., Marchesani F., et al. (2019). Targeting the Eph/ephrin System as Anti-inflammatory Strategy in IBD. Front. Pharmacol. 10 (JUN). 10.3389/fphar.2019.00691
    1. Grenham S., Clarke G., Cryan J. F., Dinan T. G. (2011). Brain-gut-microbe Communication in Health and Disease. Front. Physiol. 2. 10.3389/fphys.2011.00094
    1. Grüber L., Bunse T., Weidinger E., Reichard H., Müller N. (2014). Adjunctive Recombinant Human Interferon Gamma-1b for Treatment-Resistant Schizophrenia in 2 Patients. J. Clin. Psychiatry 75 (11). 10.4088/JCP.14l09005
    1. Gruol D. L. (2015). IL-6 Regulation of Synaptic Function in the CNS. Neuropharmacology 96. 10.1016/j.neuropharm.2014.10.023
    1. Gruzieva O., Merid S. K., Gref A., Gajulapuri A., Lemonnier N., Ballereau S., et al. (2017). Exposure to Traffic-Related Air Pollution and Serum Inflammatory Cytokines in Children. Environ. Health Perspect. 125 (6). 10.1289/EHP460
    1. Gubert C., Kong G., Uzungil V., Zeleznikow-Johnston A. M., Burrows E. L., Renoir T., et al. (2020). Microbiome Profiling Reveals Gut Dysbiosis in the Metabotropic Glutamate Receptor 5 Knockout Mouse Model of Schizophrenia. Front. Cel. Dev. Biol. 8, 1233. 10.3389/fcell.2020.582320
    1. Guma E., Bordignon P. do. C., Devenyi G. A., Gallino D., Anastassiadis C., Cvetkovska V., et al. (2021). Early or Late Gestational Exposure to Maternal Immune Activation Alters Neurodevelopmental Trajectories in Mice: An Integrated Neuroimaging, Behavioral, and Transcriptional Study. Biol. Psychiatry 90. 10.1016/j.biopsych.2021.03.017
    1. Guney E., Cetin F. H., Iseri E. (2015). “The Role of Environmental Factors in Etiology of Attention- Deficit Hyperactivity Disorder,” in ADHD - New Directions in Diagnosis and Treatment (London: IntechOpen; ). 10.5772/61025
    1. Hakansson A., Molin G. (2011). Gut Microbiota and Inflammation. Nutrients MDPI AG. 10.3390/nu3060637
    1. Hafner C., Meyer S., Langmann T., Schmitz G., Bataille F., Hagen I., et al. (2005). Ephrin-B2 Is Differentially Expressed in the Intestinal Epithelium in Crohn’s Disease and Contributes to Accelerated Epithelial Wound Healing In Vitro . World J. Gastroenterol. 11 (26). 10.3748/wjg.v11.i26.4024
    1. Han J., Zhu K., Zhang X. M., Harris R. A. (2019). Enforced Microglial Depletion and Repopulation as a Promising Strategy for the Treatment of Neurological Disorders. GLIA 67 (2). 10.1002/glia.23529
    1. Han V. X., Patel S., Jones H. F., Dale R. C. (2021). Maternal Immune Activation and Neuroinflammation in Human Neurodevelopmental Disorders. Nat. Rev. Neurol. 17 (9). 10.1038/s41582-021-00530-8
    1. Hanamsagar R., Alter M. D., Block C. S., Sullivan H., Bolton J. L., Bilbo S. D. (2017). Generation of a Microglial Developmental Index in Mice and in Humans Reveals a Sex Difference in Maturation and Immune Reactivity. GLIA 65 (9), 1504–1520. 10.1002/glia.23176
    1. Harry G. J., Kraft A. D. (2008). Neuroinflammation and Microglia: Considerations and Approaches for Neurotoxicity Assessment. Expert Opin. Drug Metab. Toxicol. 4 (10). 10.1517/17425255.4.10.1265
    1. Hashimoto M., Maekawa M., Katakura M., Hamazaki K., Matsuoka Y. (2014). Possibility of Polyunsaturated Fatty Acids for the Prevention and Treatment of Neuropsychiatric Illnesses. J. Pharmacol. Sci. 124 (3). 10.1254/jphs.13R14CP
    1. He Q., Kwok L. Y., Xi X., Zhong Z., Ma T., Xu H., et al. (2020). The Meconium Microbiota Shares More Features with the Amniotic Fluid Microbiota Than the Maternal Fecal and Vaginal Microbiota. Gut Microbes 12 (1). 10.1080/19490976.2020.1794266
    1. Heijtz R. D., Wang S., Anuar F., Qian Y., Björkholm B., Samuelsson A., et al. (2011). Normal Gut Microbiota Modulates Brain Development and Behavior. Proc. Natl. Acad. Sci. United States America 108 (7). 10.1073/pnas.1010529108
    1. Helmut K., Hanisch U. K., Noda M., Verkhratsky A. (2011). Physiology of Microglia. Physiol. Rev. 91 (2). 10.1152/physrev.00011.2010
    1. Hiergeist A., Gessner J., Gessner A. (2020). Current Limitations for the Assessment of the Role of the Gut Microbiome for Attention Deficit Hyperactivity Disorder (ADHD). Front. Psychiatry 11. 10.3389/fpsyt.2020.00623
    1. Hiippala K., Kainulainen V., Suutarinen M., Heini T., Bowers J. R., Jasso-Selles D., et al. (2020). Isolation of Anti-inflammatory and Epithelium Reinforcing bacteroides and parabacteroides Spp. From a Healthy Fecal Donor. Nutrients 12 (4). 10.3390/nu12040935
    1. Hoban A. E., Stilling R. M., Ryan F. J., Shanahan F., Dinan T. G., Claesson M. J., et al. (2016). Regulation of Prefrontal Cortex Myelination by the Microbiota. Translational Psychiatry 6. 10.1038/tp.2016.42
    1. Hoen W. P., Lijmer J. G., Duran M., Wanders R. J. A., van Beveren N. J. M., de Haan L. (2013). Red Blood Cell Polyunsaturated Fatty Acids Measured in Red Blood Cells and Schizophrenia: A Meta-Analysis. Psychiatry Res. 207, 1–12. 10.1016/j.psychres.2012.09.041
    1. Hoftman G. D., Dienel S. J., Bazmi H. H., Zhang Y., Chen K., Lewis D. A. (2018). Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia. Biol. Psychiatry 83 (8). 10.1016/j.biopsych.2017.11.029
    1. Hong J., Bang M. (2020). Anti-inflammatory Strategies for Schizophrenia: A Review of Evidence for Therapeutic Applications and Drug Repurposing. Clin. Psychopharmacol. Neurosci. 18 (1). 10.9758/CPN.2020.18.1.10
    1. Hong S., Beja-Glasser V. F., Nfonoyim B. M., Frouin A., Li S., Ramakrishnan S., et al. (2016). Complement and Microglia Mediate Early Synapse Loss in Alzheimer Mouse Models. Science 352 (6286). 10.1126/science.aad8373
    1. Hoo R., Nakimuli A., Vento-Tormo R. (2020). Innate Immune Mechanisms to Protect against Infection at the Human Decidual-Placental Interface. Front. Immunol. 11. 10.3389/fimmu.2020.02070
    1. Horsdal H. T., Agerbo E., McGrath J. J., Vilhjálmsson B. J., Antonsen S., Closter A. M., et al. (2019). Association of Childhood Exposure to Nitrogen Dioxide and Polygenic Risk Score for Schizophrenia with the Risk of Developing Schizophrenia. JAMA Netw. Open 2 (11). 10.1001/jamanetworkopen.2019.14401
    1. Hsiao E. Y., Mcbride S. W., Hsien S., Sharon G., Hyde E. R., Mccue T., et al. (2013). The Microbiota Modulates Gut Physiology and Behavioral Abnormalities Associated with Autism. Cell 155 (7). 10.1016/j.cell.2013.11.024
    1. Hu J., Nomura Y., Bashir A., Fernandez-Hernandez H., Itzkowitz S., Pei Z., et al. (2013). Diversified Microbiota of Meconium Is Affected by Maternal Diabetes Status. PLoS ONE 8 (11). 10.1371/journal.pone.0078257
    1. Huang F., Wu X. (2021). Brain Neurotransmitter Modulation by Gut Microbiota in Anxiety and Depression. Front. Cel Dev. Biol. 9. 10.3389/fcell.2021.649103
    1. Hudson Z. D., Miller B. J. (2018). Meta-analysis of Cytokine and Chemokine Genes in Schizophrenia. Clin. Schizophrenia Relat. Psychoses 12 (3). 10.3371/CSRP.HUMI.070516
    1. Hugh Perry V. (1998). A Revised View of the Central Nervous System Microenvironment and Major Histocompatibility Complex Class II Antigen Presentation. Journal of Neuroimmunology. 10.1016/S0165-5728(98)00145-3
    1. Hughes H. K., Mills Ko E., Rose D., Ashwood P. (2018). Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front. Cell Neurosci. 12. 10.3389/fncel.2018.00405
    1. Hughes V. (2012). Microglia: The Constant Gardeners. Nature 485 (7400). 10.1038/485570a
    1. Humann J., Mann B., Gao G., Moresco P., Ramahi J., Loh L. N., et al. (2016). Bacterial Peptidoglycan Transverses the Placenta to Induce Fetal Neuroproliferation and Aberrant Postnatal Behavior. Cell Host and Microbe 19 (3). 10.1016/j.chom.2016.02.009
    1. Huo R., Zeng B., Zeng L., Cheng K., Li B., Luo Y., et al. (2017). Microbiota Modulate Anxiety-like Behavior and Endocrine Abnormalities in Hypothalamic-Pituitary-Adrenal axis. Front. Cell Infect. Microbiol. 7 (11). 10.3389/fcimb.2017.00489
    1. Iovene M. R., Bombace F., Maresca R., Sapone A., Iardino P., Picardi A., et al. (2017). Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders. Mycopathologia 182 (3–4). 10.1007/s11046-016-0068-6
    1. Jácome M. C. I., Chacòn L. M. M., Cuesta H. V., Rizo C. M., Santiesteban M. W., Hernandez L. R., et al. (2016). Peripheral Inflammatory Markers Contributing to Comorbidities in Autism. Behav. Sci. 6 (4). 10.3390/bs6040029
    1. Jacquemont S., Coe B. P., Hersch M., Duyzend M. H., Krumm N., Bergmann S., et al. (2014). A Higher Mutational burden in Females Supports a “Female Protective Model” in Neurodevelopmental Disorders. Am. J. Hum. Genet. 94 (3). 10.1016/j.ajhg.2014.02.001
    1. Jarskog L. F., Xiao H., Wilkie M. B., Lauder J. M., Gilmore J. H. (1997). Cytokine Regulation of Embryonic Rat Dopamine and Serotonin Neuronal Survival In Vitro . Int. J. Dev. Neurosci. 15 (6). 10.1016/S0736-5748(97)00029-4
    1. Jena A., Montoya C. A., Mullaney J. A., Dilger R. N., Young W., McNabb W. C., et al. (2020). Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Front. Integr. Neurosci. 14. 10.3389/fnint.2020.00044
    1. Jeste S. S. (2015). Neurodevelopmental Behavioral and Cognitive Disorders. CONTINUUM Lifelong Learn. Neurol. 21 (3). 10.1212/01.CON.0000466661.89908.3c
    1. Jiang H. Y., Zhou Y. Y., Zhou G. L., Li Y. C., Yuan J., Li X. H., et al. (2018). Gut Microbiota Profiles in Treatment-Naïve Children with Attention Deficit Hyperactivity Disorder. Behav. Brain Res. 347. 10.1016/j.bbr.2018.03.036
    1. Jiang Nona. M. (2016). The Impact of Systemic Inflammation on Neurodevelopment. Physiol. BehaviorThe 176 (1), 100–106. 10.1016/j.molmed.2018.06.008
    1. Jolanta Wasilewska J., Klukowski M. (2015). Gastrointestinal Symptoms and Autism Spectrum Disorder: Links and Risks – a Possible New Overlap Syndrome. Pediatr. Health Med. Ther. 153. 10.2147/phmt.s85717
    1. Jung E., Romero R., Yeo L., Diaz-Primera R., Marin-Concha J., Para R., et al. (2020). The Fetal Inflammatory Response Syndrome: the Origins of a Concept, Pathophysiology, Diagnosis, and Obstetrical Implications. Semin. Fetal Neonatal Med. 25 (4). 10.1016/j.siny.2020.101146
    1. Kabiersch A., Furukawa H., Rey A. D., Besedovsky H. O. (1998). Administration of Interleukin-1 at Birth Affects Dopaminergic Neurons in Adult Mice. Ann. N Y Acad. Sci. 840. 10.1111/j.1749-6632.1998.tb09556.x
    1. Kahn R. S., Sommer I. E., Murray R. M., Meyer-Lindenberg A., Weinberger D. R., Cannon T. D., et al. (2015). Schizophrenia. Nat. Rev. Dis. Primers 1. 10.1038/nrdp.2015.67
    1. Kaller M. S., Lazari A., Blanco-Duque C., Sampaio-Baptista C., Johansen-Berg H. (2017). Myelin Plasticity and Behaviour — Connecting the Dots. Curr. Opin. Neurobiol. 47. 10.1016/j.conb.2017.09.014
    1. Kalmady S. V., Venkatasubramanian G., Shivakumar V., Gautham S., Subramaniam A., Jose D. A., et al. (2014). Relationship between Interleukin-6 Gene Polymorphism and Hippocampal Volume in Antipsychotic-Naïve Schizophrenia: Evidence for Differential Susceptibility? PLoS ONE 9 (5). 10.1371/journal.pone.0096021
    1. Kamitaki N., Sekar A., Handsaker R. E., de Rivera H., Tooley K., Morris D. L., et al. (2020). Complement Genes Contribute Sex-Biased Vulnerability in Diverse Disorders. Nature 582 (7813). 10.1038/s41586-020-2277-x
    1. Kandasamy S., Chattha K. S., Vlasova A. N., Rajashekara G., Saif L. J. (2015). Lactobacilli and Bifidobacteria Enhance Mucosal B Cell Responses and Differentially Modulate Systemic Antibody Responses to an Oral Human Rotavirus Vaccine in a Neonatal Gnotobiotic Pig Disease Model. Gut Microbes 5 (5). 10.4161/19490976.2014.969972
    1. Kang Dw D. W., Park J. G., Ilhan Z. E., Wallstrom G., LaBaer J., Adams J. B., et al. (2013). Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autistic Children. PLoS ONE 8 (7). 10.1371/journal.pone.0068322
    1. Kang D. W., Adams J. B., Coleman D. M., Pollard E. L., Maldonado J., McDonough-Means S., et al. (2019). Long-term Benefit of Microbiota Transfer Therapy on Autism Symptoms and Gut Microbiota. Scientific Rep. 9 (1). 10.1038/s41598-019-42183-0
    1. Kang D. W., Adams J. B., Gregory A. C., Borody T., Chittick L., Fasano A., et al. (2017). Microbiota Transfer Therapy Alters Gut Ecosystem and Improves Gastrointestinal and Autism Symptoms: An Open-Label Study. Microbiome 5 (1). 10.1186/s40168-016-0225-7
    1. Kang Ws W. S., Park J. K., Lee S. M., Kim S. K., Park H. J., Kim J. W. (2013). Association between Genetic Polymorphisms of Toll-like Receptor 2 (TLR2) and Schizophrenia in the Korean Population. Gene 526 (2). 10.1016/j.gene.2013.04.058
    1. Kany S., Vollrath J. T., Relja B. (2019). Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 20 (23). 10.3390/ijms20236008
    1. Kapoor R. (2002). Neurological, Psychiatric, and Developmental Disorders: Meeting the challenge in the Developing World. Trans. R. Soc. Trop. Med. Hyg. 96 (3). 10.1016/s0035-9203(02)90116-1
    1. Katano Y., Fujinami S., Kawakoshi A., Nakazawa H., Oji S., Iino T., et al. (2012). Complete Genome Sequence of Oscillibacter Valericigenes Sjm18-20 T (=NBRC 101213 T). Stand. Genomic Sci. 6 (3). 10.4056/sigs.2826118
    1. Katila H., Hänninen K., Hurme M. (1999). Polymorphisms of the Interleukin-1 Gene Complex in Schizophrenia. Mol. Psychiatry 4 (2). 10.1038/sj.mp.4000483
    1. Katsel P., Davis K. L., Haroutunian V. (2005). Variations in Myelin and Oligodendrocyte-Related Gene Expression across Multiple Brain Regions in Schizophrenia: a Gene Ontology Study. Schizophrenia Res. 79 (2-3), 157–173. 10.1016/j.schres.2005.06.007
    1. Katz-Barber M. W., Hollins S. L., Cuskelly A., Leong A. J., Dunn A., Harms L., et al. (2020). Investigating the Gut-Brain axis in a Neurodevelopmental Rodent Model of Schizophrenia. Brain Behav. Immunity-Health 3, 100048. 10.1016/j.bbih.2020.100048
    1. Kaul D., Habbel P., Derkow K., Krüger C., Franzoni E., Wulczyn F. G., et al. (2012). Expression of Toll-like Receptors in the Developing Brain. PLoS ONE 7 (5), e37767. 10.1371/journal.pone.0037767
    1. Kelly C. W., McEvoy J. P., Miller B. J. (2019). Total and Differential white Blood Cell Counts, Inflammatory Markers, Adipokines, and Incident Metabolic Syndrome in Phase 1 of the Clinical Antipsychotic Trials of Intervention Effectiveness Study. Schizophrenia Res. 209. 10.1016/j.schres.2019.04.021
    1. Kelly J. R., Minuto C., Cryan J. F., Clarke G., Dinan T. G. (2021). The Role of the Gut Microbiome in the Development of Schizophrenia. Schizophrenia Res. 234. 10.1016/j.schres.2020.02.010
    1. Kempermann G. (2019). Environmental Enrichment, New Neurons and the Neurobiology of Individuality. Nat. Rev. Neurosci. 20 (4). 10.1038/s41583-019-0120-x
    1. Keogh C. E., Kim D. H. J., Pusceddu M. M., Knotts T. A., Rabasa G., Sladek J. A., et al. (2021). Myelin as a Regulator of Development of the Microbiota-Gut-Brain axis. Brain Behav. Immun. 91, 437–450. 10.1016/j.bbi.2020.11.001
    1. Kesby J. P., Eyles D. W., McGrath J. J., Scott J. G. (2018). Dopamine, Psychosis and Schizophrenia: The Widening gap between Basic and Clinical Neuroscience. Translational Psychiatry 8 (1). 10.1038/s41398-017-0071-9
    1. Khandaker G. M., Pearson R. M., Zammit S., Lewis G., Jones P. B. (2014). Association of Serum Interleukin 6 and C-Reactive Protein in Childhood with Depression and Psychosis in Young Adult Life a Population-Based Longitudinal Study. JAMA Psychiatry 71 (10). 10.1001/jamapsychiatry.2014.1332
    1. Kim J. M., Kim Y. J., Cho Y. J. (2000). Synergy of bacteroides Fragilis and escherichia Coli in the Induction of KC Gene Expression in Mouse Peritoneal Tissues. Scand. J. Infect. Dis. 32 (6). 10.1080/003655400459568
    1. Kim S. H., Lord C. (2010). Restricted and Repetitive Behaviors in Toddlers and Preschoolers with Autism Spectrum Disorders Based on the Autism Diagnostic Observation Schedule (ADOS). Autism Res. 3 (4). 10.1002/aur.142
    1. Kim S. W., Jhon M., Kim J. M., Smesny S., Rice S., Berk M., et al. (2016). Relationship between Erythrocyte Fatty Acid Composition and Psychopathology in the Vienna omega-3 Study. PLoS ONE 11 (3). 10.1371/journal.pone.0151417
    1. King S., St-Hilaire A., Heidkamp D. (2010). Prenatal Factors in Schizophrenia. Curr. Dir. Psychol. Sci. 19 (4). 10.1177/0963721410378360
    1. Kingwell K. (2012). Neurodegenerative Disease: Microglia in Early Disease Stages. Nat. Rev. Neurol. 8 (9). 10.1038/nrneurol.2012.172
    1. Klimkeit E., Rinehart N., May T., Bradshaw J. (2016). Neurodevelopmental Disorders. Amsterdam: International Encyclopedia of Public Health, 223–230. 10.1016/B978-0-12-803678-5.00299-X
    1. Knuesel I., Chicha L., Britschgi M., Schobel S. A., Bodmer M., Hellings J. A., et al. (2014). Maternal Immune Activation and Abnormal Brain Development across CNS Disorders. Nat. Rev. Neurol. 10 (11). 10.1038/nrneurol.2014.187
    1. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., et al. (2011). Succession of Microbial Consortia in the Developing Infant Gut Microbiome. Proc. Natl. Acad. Sci. United States America 108 (1). 10.1073/pnas.1000081107
    1. Koponen K. K., Salosensaari A., Ruuskanen M. O., Havulinna A. S., Männistö S., Jousilahti P., et al. (2021). Associations of Healthy Food Choices with Gut Microbiota Profiles. Am. J. Clin. Nutr. 114. 10.1093/ajcn/nqab077
    1. Kraus D. M., Elliott G. S., Chute H., Horan T., Pfenninger K. H., Sanford S. D., et al. (2006). CSMD1 Is a Novel Multiple Domain Complement-Regulatory Protein Highly Expressed in the Central Nervous System and Epithelial Tissues. J. Immunol. 176 (7). 10.4049/jimmunol.176.7.4419
    1. Kroken R. A., Sommer I. E., Steen V. M., Dieset I., Johnsen E. (2019). Constructing the Immune Signature of Schizophrenia for Clinical Use and Research; an Integrative Review Translating Descriptives into Diagnostics. Front. Psychiatry 10 (1). 10.3389/fpsyt.2018.00753
    1. Kurnellas M. P., Ghosn E. E. B., Schartner J. M., Baker J., Rothbard J. J., Negrin R. S., et al. (2015). Amyloid Fibrils Activate B-1a Lymphocytes to Ameliorate Inflammatory Brain Disease. Proc. Natl. Acad. Sci. 112 (49), 15016–15023. 10.1073/pnas.1521206112
    1. Lacorte E., Gervasi G., Bacigalupo I., Vanacore N., Raucci U., Parisi P. (2019). A Systematic Review of the Microbiome in Children with Neurodevelopmental Disorders. Front. Neurol. 10. 10.3389/fneur.2019.00727
    1. Lawson L. J., Perry V. H., Dri P., Gordon S. (1990). Heterogeneity in the Distribution and Morphology of Microglia in the normal Adult Mouse Brain. Neuroscience 39 (1). 10.1016/0306-4522(90)90229-W
    1. Lebel C., Gee M., Camicioli R., Wieler M., Martin W., Beaulieu C. (2012). Diffusion Tensor Imaging of white Matter Tract Evolution over the Lifespan. NeuroImage 60 (1). 10.1016/j.neuroimage.2011.11.094
    1. Lee S. H., Gong Y. N., Ryoo E. (2017). Clostridium difficile Colonization And/or Infection during Infancy and the Risk of Childhood Allergic Diseases. Korean J. Pediatr. 60 (5). 10.3345/kjp.2017.60.5.145
    1. Lesh T. A., Careaga M., Rose D. R., McAllister A. K., van de Water J., Carter C. S., et al. (2018). Cytokine Alterations in First-Episode Schizophrenia and Bipolar Disorder: Relationships to Brain Structure and Symptoms. J. Neuroinflammation 15 (1). 10.1186/s12974-018-1197-2
    1. Leslie D. L., Kozma L., Martin A., Landeros A., Katsovich L., King R. A., et al. (2008). Neuropsychiatric Disorders Associated with Streptococcal Infection: A Case-Control Study Among Privately Insured Children. J. Am. Acad. Child Adolesc. Psychiatry 47 (10). 10.1097/CHI.0b013e3181825a3d
    1. Li W., Chen M., Feng X., Song M., Shao M., Yang Y., et al. (2021). Maternal Immune Activation Alters Adult Behavior, Intestinal Integrity, Gut Microbiota and the Gut Inflammation. Brain Behav. 11 (5). 10.1002/brb3.2133
    1. Li X., Zhang W., Lencz T., Darvasi A., Alkelai A., Lerer B., et al. (2015). Common Variants of IRF3 Conferring Risk of Schizophrenia. J. Psychiatr. Res. 64. 10.1016/j.jpsychires.2015.03.008
    1. Libowitz M. R., Nurmi E. L. (2021). The Burden of Antipsychotic-Induced Weight Gain and Metabolic Syndrome in Children. Front. Psychiatry 12. 10.3389/fpsyt.2021.623681
    1. Ligthart S., Vaez A., Võsa U., Stathopoulou M. G., de Vries P. S., Prins B. P., et al. (2018). Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. Am. J. Hum. Genet. 103 (5). 10.1016/j.ajhg.2018.09.009
    1. Liu C., Yang S. Y., Wang L., Zhou F. (2022). The Gut Microbiome: Implications for Neurogenesis and Neurological Diseases. Neural Regen. Res. 17, 53–58. 10.4103/1673-5374.315227
    1. Lou H. (1994). Dopamine Precursors and Brain Function in Phenylalanine Hydroxylase Deficiency. Acta Pædiatrica 83. 10.1111/j.1651-2227.1994.tb13461.x
    1. Lu J., Claud E. C. (2019). Connection between Gut Microbiome and Brain Development in Preterm Infants. Developmental Psychobiology 61 (5). 10.1002/dev.21806
    1. Lu Q. R., Sun T., Zhu Z., Ma N., Garcia M., Stiles C. D., et al. (2002). Common Developmental Requirement for Olig Function Indicates a Motor Neuron/oligodendrocyte Connection. Cell 109 (1). 10.1016/S0092-8674(02)00678-5
    1. Maas J. W., Contreras S. A., Miller A. L., Bennan N., Bowden C. L., Javors M. A., et al. (1993). Studies of Catecholamine Metabolism in Schizophrenia/psychosis-I. Neuropsychopharmacology 8 (2). 10.1038/npp.1993.11
    1. MacDowell K. S., Pinacho R., Leza J. C., Costa J., Ramos B., García-Bueno B. (2017). Differential Regulation of the TLR4 Signalling Pathway in post-mortem Prefrontal Cortex and Cerebellum in Chronic Schizophrenia: Relationship with SP Transcription Factors. Prog. Neuro-Psychopharmacology Biol. Psychiatry 79. 10.1016/j.pnpbp.2017.08.005
    1. MacFabe D. F. (2012). Short-chain Fatty Acid Fermentation Products of the Gut Microbiome: Implications in Autism Spectrum Disorders. Microb. Ecol. Health Dis. 23 (0). 10.3402/mehd.v23i0.19260
    1. Machiels K., Joossens M., Sabino J., de Preter V., Arijs I., Eeckhaut V., et al. (2014). A Decrease of the Butyrate-Producing Species Roseburia Hominis and Faecalibacterium Prausnitzii Defines Dysbiosis in Patients with Ulcerative Colitis. Gut 63 (8). 10.1136/gutjnl-2013-304833
    1. Madan J. C., Salari R. C., Saxena D., Davidson L., O’Toole G. A., Moore J. H., et al. (2012). Gut Microbial Colonisation in Premature Neonates Predicts Neonatal Sepsis. Arch. Dis. Child. Fetal Neonatal Edition 97 (6). 10.1136/fetalneonatal-2011-301373
    1. Madore C., Leyrolle Q., Lacabanne C., Benmamar-Badel A., Joffre C., Nadjar A., et al. (2016). Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plasticity 2016, 3597209. 10.1155/2016/3597209
    1. Maes M., Kanchanatawan B., Sirivichayakul S., Carvalho A. F. (2019). In Schizophrenia, Increased Plasma IgM/IgA Responses to Gut Commensal Bacteria Are Associated with Negative Symptoms, Neurocognitive Impairments, and the Deficit Phenotype. Neurotoxicity Res. 35 (3). 10.1007/s12640-018-9987-y
    1. Maguire M., Maguire G. (2019). Gut Dysbiosis, Leaky Gut, and Intestinal Epithelial Proliferation in Neurological Disorders: Towards the Development of a New Therapeutic Using Amino Acids, Prebiotics, Probiotics, and Postbiotics. Rev. Neurosciences 30 (2). 10.1515/revneuro-2018-0024
    1. Mallard C. (2012). Innate Immune Regulation by Toll-like Receptors in the Brain. ISRN Neurol. 2012. 10.5402/2012/701950
    1. Marín O. (2016). Developmental Timing and Critical Windows for the Treatment of Psychiatric Disorders. Nat. Med. 22 (11). 10.1038/nm.4225
    1. Martínez-Gras I., García-Sánchez F., Guaza C., Rodríguez-Jiménez R., Andrés-Esteban E., Palomo T., et al. (2012). Altered Immune Function in Unaffected First-Degree Biological Relatives of Schizophrenia Patients. Psychiatry Res. 200 (2–3). 10.1016/j.psychres.2012.05.036
    1. McCracken (2005). Risperidone Treatment of Autistic Disorder: Longer-Term Benefits and Blinded Discontinuation after 6 Months. Am. J. Psychiatry 162 (7). 10.1176/appi.ajp.162.7.1361
    1. Meisenzahl E. M., Rujescu D., Kirner A., Giegling I., Kathmann N., Leinsinger G., et al. (2001). Association of an Interleukin-1β Genetic Polymorphism with Altered Brain Structure in Patients with Schizophrenia. Am. J. Psychiatry 158 (8). 10.1176/appi.ajp.158.8.1316
    1. Michel L., Prat A. (2016). One More Role for the Gut: Microbiota and Blood Brain Barrier. Ann. Translational Med. 4 (1). 10.3978/j.issn.2305-5839.2015.10.16
    1. Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., et al. (2017). The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 81 (4). 10.1128/mmbr.00036-17
    1. Miller Ah A. H., Haroon E., Raison C. L., Felger J. C. (2013). Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits. Depress. Anxiety 30 (4). 10.1002/da.22084
    1. Miller B B., Mellor A., Buckley P. F. (2013). Interleukin-6 and Cognition in Nonaffective Psychosis. Schizophrenia Bull. 39.
    1. Miller B., Essali N. (2019). O10.5. Meta-Analysis of Cytokine Levels and Psychopathology in Schizophrenia. Schizophrenia Bull. 45 (2). 10.1093/schbul/sbz021.253
    1. Misiak B., Stańczykiewicz B., Kotowicz K., Rybakowski J. K., Samochowiec J., Frydecka D. (2018). Cytokines and C-Reactive Protein Alterations with Respect to Cognitive Impairment in Schizophrenia and Bipolar Disorder: A Systematic Review. Schizophrenia Res. 192. 10.1016/j.schres.2017.04.015
    1. Miyazaki C., Koyama M., Ota E., Swa T., Mlunde L. B., Amiya R. M., et al. (2017). Allergic Diseases in Children with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. BMC Psychiatry 17 (1). 10.1186/s12888-017-1281-7
    1. Möhle L., Mattei D., Heimesaat M. M., Bereswill S., Fischer A., Alutis M., et al. (2016). Ly6Chi Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cel Rep. 15 (9), 1945–1956. 10.1016/j.celrep.2016.04.074
    1. Möhler H. (2012). The GABA System in Anxiety and Depression and its Therapeutic Potential. Neuropharmacology 62 (1). 10.1016/j.neuropharm.2011.08.040
    1. Moles L., Gómez M., Heilig H., Bustos G., Fuentes S., de Vos W., et al. (2013). Bacterial Diversity in Meconium of Preterm Neonates and Evolution of Their Fecal Microbiota during the First Month of Life. PLoS ONE 8 (6). 10.1371/journal.pone.0066986
    1. Mollgaard K., Saunders N. R. (1986). The Development of the Human Blood-Brain and Blood-CSF Barriers. Neuropathol. Appl. Neurobiol. 12 (4). 10.1111/j.1365-2990.1986.tb00146.x
    1. Molloy C. A., Morrow A. L., Meinzen-Derr J., Schleifer K., Dienger K., Manning-Courtney P., et al. (2006). Elevated Cytokine Levels in Children with Autism Spectrum Disorder. J. Neuroimmunology 172 (1–2). 10.1016/j.jneuroim.2005.11.007
    1. Mor G., Cardenas I. (2010). The Immune System in Pregnancy: A Unique Complexity. Am. J. Reprod. Immunol. 63 (6). 10.1111/j.1600-0897.2010.00836.x
    1. Morgan J. T., Chana G., Pardo C. A., Achim C., Semendeferi K., Buckwalter J., et al. (2010). Microglial Activation and Increased Microglial Density Observed in the Dorsolateral Prefrontal Cortex in Autism. Biol. Psychiatry 68 (4). 10.1016/j.biopsych.2010.05.024
    1. Morris P., Ali K., Merritt M., Pelletier J., Macedo L. G. (2020). A Systematic Review of the Role of Inflammatory Biomarkers in Acute, Subacute and Chronic Non-specific Low Back Pain. BMC Musculoskelet. Disord. 21 (1). 10.1186/s12891-020-3154-3
    1. Mousa A., Bakhiet M. (2013). Role of Cytokine Signaling during Nervous System Development. Int. J. Mol. Sci. 14 (7). 10.3390/ijms140713931
    1. Müller N., Krause D., Dehning S., Musil R., Schennach-Wolff R., Obermeier M., et al. (2010). Celecoxib Treatment in an Early Stage of Schizophrenia: Results of a Randomized, Double-Blind, Placebo-Controlled Trial of Celecoxib Augmentation of Amisulpride Treatment. Schizophrenia Res. 121 (1–3). 10.1016/j.schres.2010.04.015
    1. Müller N., Schwarz M. J., Dehning S., Douhe A., Cerovecki A., Goldstein-Müller B., et al. (2006). The Cyclooxygenase-2 Inhibitor Celecoxib Has Therapeutic Effects in Major Depression: Results of a Double-Blind, Randomized, Placebo Controlled, Add-On Pilot Study to Reboxetine. Mol. Psychiatry 11 (7). 10.1038/sj.mp.4001805
    1. Müller N., Schwarz M. J. (2006). Neuroimmune-endocrine Crosstalk in Schizophrenia and Mood Disorders. Expert Rev. Neurotherapeutics 6 (7). 10.1586/14737175.6.7.1017
    1. Mulligan A., Anney R., Butler L., O’Regan M., Richardson T., Tulewicz E. M., et al. (2013). Home Environment: Association with Hyperactivity/impulsivity in Children with ADHD and Their Non-ADHD Siblings. Child. Care Health Dev. 39 (2). 10.1111/j.1365-2214.2011.01345.x
    1. Munawar N., Ahsan K., Muhammad K., Ahmad A., Anwar M. A., Shah I., et al. (2021). Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics? Int. J. Mol. Sci. 22 (14). 10.3390/ijms22147671
    1. Muneer A. (2020). Kynurenine Pathway of Tryptophan Metabolism in Neuropsychiatric Disorders: Pathophysiologic and Therapeutic Considerations. Clin. Psychopharmacol. Neurosci. 18 (4). 10.9758/CPN.2020.18.4.507
    1. Myint A. M., Schwarz M. J., Verkerk R., Mueller H. H., Zach J., Scharpé S., et al. (2011). Reversal of Imbalance between Kynurenic Acid and 3-hydroxykynurenine by Antipsychotics in Medication-Naïve and Medication-free Schizophrenic Patients. Brain Behav. Immun. 25 (8). 10.1016/j.bbi.2011.05.005
    1. Na K. S., Jung H. Y., Kim Y. K. (2014). The Role of Pro-inflammatory Cytokines in the Neuroinflammation and Neurogenesis of Schizophrenia. Prog. Neuro-Psychopharmacology Biol. Psychiatry 48. 10.1016/j.pnpbp.2012.10.022
    1. Nankova B. B., Agarwal R., MacFabe D. F., la Gamma E. F. (2014). Enteric Bacterial Metabolites Propionic and Butyric Acid Modulate Gene Expression, Including CREB-dependent Catecholaminergic Neurotransmission, in PC12 Cells - Possible Relevance to Autism Spectrum Disorders. PLoS ONE 9 (8). 10.1371/journal.pone.0103740
    1. Naseribafrouei A., Hestad K., Avershina E., Sekelja M., Linløkken A., Wilson R., et al. (2014). Correlation between the Human Fecal Microbiota and Depression. Neurogastroenterology Motil. 26 (8). 10.1111/nmo.12378
    1. Neuman H., Forsythe P., Uzan A., Avni O., Koren O. (2018). Antibiotics in Early Life: Dysbiosis and the Damage Done. FEMS Microbiol. Rev. 42 (4). 10.1093/femsre/fuy018
    1. Nguyen T. T., Kosciolek T., Eyler L. T., Knight R., Jeste D. v. (2018). Overview and Systematic Review of Studies of Microbiome in Schizophrenia and Bipolar Disorder. J. Psychiatr. Res. 99. 10.1016/j.jpsychires.2018.01.013
    1. NIH (2016). Autism Spectrum Disorder: Communication Problems in Children. Bethesda: Cdc: National Institute on Deafness and Other Communication Disorders (NIDCD).
    1. Nitta M., Kishimoto T., Müller N., Weiser M., Davidson M., Kane J. M., et al. (2013). Adjunctive Use of Nonsteroidal Anti-inflammatory Drugs for Schizophrenia: A Meta-Analytic Investigation of Randomized Controlled Trials. Schizophrenia Bull. 39 (6). 10.1093/schbul/sbt070
    1. Ntranos A., Casaccia P. (2018). The Microbiome–Gut–Behavior Axis: Crosstalk between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses. Neurotherapeutics 15 (1). 10.1007/s13311-017-0597-9
    1. Nyangahu D. D., Lennard K. S., Brown B. P., Darby M. G., Wendoh J. M., Havyarimana E., et al. (2018). Disruption of Maternal Gut Microbiota during Gestation Alters Offspring Microbiota and Immunity. Microbiome 6, 124. 10.1186/s40168-018-0511-7
    1. Oades R. D., Myint A. M., Dauvermann M. R., Schimmelmann B. G., Schwarz M. J. (2010). Attention-deficit Hyperactivity Disorder (ADHD) and Glial Integrity: An Exploration of Associations of Cytokines and Kynurenine Metabolites with Symptoms and Attention. Behav. Brain Functions 6. 10.1186/1744-9081-6-32
    1. Oades R. D. (2011). An Exploration of the Associations of Pregnancy and Perinatal Features with Cytokines and Tryptophan/Kynurenine Metabolism in Children with Attention-Deficit Hyperactivity Disorder (ADHD). ADHD Attention Deficit and Hyperactivity Disorders 3 (4), 301–318. 10.1007/s12402-011-0062-2
    1. Obermeier B., Daneman R., Ransohoff R. M. (2013). Development, Maintenance and Disruption of the Blood-Brain Barrier. Nat. Med. 19 (12). 10.1038/nm.3407
    1. O’Callaghan A., van Sinderen D. (2016). Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 7 (6). 10.3389/fmicb.2016.00925
    1. Ogbonnaya E. S., Clarke G., Shanahan F., Dinan T. G., Cryan J. F., O’Leary O. F. (2015). Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biol. Psychiatry 78 (4). 10.1016/j.biopsych.2014.12.023
    1. Ohata A., Usami M., Miyoshi M. (2005). Short-chain Fatty Acids Alter Tight junction Permeability in Intestinal Monolayer Cells via Lipoxygenase Activation. Nutrition 21 (7–8). 10.1016/j.nut.2004.12.004
    1. Olde Loohuis L. M., Mangul S., Ori A. P. S., Jospin G., Koslicki D., Yang H. T., et al. (2018). Transcriptome Analysis in Whole Blood Reveals Increased Microbial Diversity in Schizophrenia. Translational Psychiatry 8 (1). 10.1038/s41398-018-0107-9
    1. O’Leary O. F., Ogbonnaya E. S., Felice D., Levone B. R., Conroy L. C., Fitzgerald P., et al. (2018). The Vagus Nerve Modulates BDNF Expression and Neurogenesis in the hippocampus. Eur. Neuropsychopharmacol. 28 (2), 307–316. 10.1016/j.euroneuro.2017.12.004
    1. Oleskin A. v., Shenderov B. A. (2016). Neuromodulatory Effects and Targets of the SCFAs and Gasotransmitters Produced by the Human Symbiotic Microbiota. Microb. Ecol. Health Dis. 27 (0). 10.3402/mehd.v27.30971
    1. O’Mahony S. M., Clarke G., Borre Y. E., Dinan T. G., Cryan J. F. (2015). Serotonin, Tryptophan Metabolism and the Brain-Gut-Microbiome axis. Behav. Brain Res. 277. 10.1016/j.bbr.2014.07.027
    1. O’Shea T. M., Joseph R. M., Kuban K. C. K., Allred E. N., Ware J., Coster T., et al. (2014). Elevated Blood Levels of Inflammation-Related Proteins Are Associated with an Attention Problem at Age 24 Mo in Extremely Preterm Infants. Pediatr. Res. 75 (6). 10.1038/pr.2014.41
    1. Owen M. J., Sawa A., Mortensen P. B. (2016). Schizophrenia. Lancet. (London: England; ) 388 (10039), 86–97. 10.1016/S0140-6736(15)01121-6
    1. Paolicelli R. C., Bolasco G., Pagani F., Maggi L., Scianni M., Panzanelli P., et al. (2011). Synaptic Pruning by Microglia Is Necessary for normal Brain Development. Science 333 (6048), 1456–1458. 10.1126/science.1202529
    1. Park S., Miller B. J. (2020). Meta-analysis of Cytokine and C-Reactive Protein Levels in High-Risk Psychosis. Schizophrenia Res. 226. 10.1016/j.schres.2019.03.012
    1. Parker A., Fonseca S., Carding S. R. (2020). Gut Microbes and Metabolites as Modulators of Blood-Brain Barrier Integrity and Brain Health. Gut Microbes 11 (2), 135–157. 10.1080/19490976.2019.1638722
    1. Parracho H. M. R. T., Bingham M. O., Gibson G. R., McCartney A. L. (2005). Differences between the Gut Microflora of Children with Autistic Spectrum Disorders and that of Healthy Children. J. Med. Microbiol. 54 (10). 10.1099/jmm.0.46101-0
    1. Partrick K. A., Rosenhauer A. M., Auger J., Arnold A. R., Ronczkowski N. M., Jackson L. M., et al. (2021). Ingestion of Probiotic (Lactobacillus Helveticus and Bifidobacterium Longum) Alters Intestinal Microbial Structure and Behavioral Expression Following Social Defeat Stress. Scientific Rep. 11 (1). 10.1038/s41598-021-83284-z
    1. Pärtty A., Kalliomäki M., Wacklin P., Salminen S., Isolauri E. (2015). A Possible Link between Early Probiotic Intervention and the Risk of Neuropsychiatric Disorders Later in Childhood: A Randomized Trial. Pediatr. Res. 77 (6). 10.1038/pr.2015.51
    1. Patrono E., Svoboda J., Stuchlík A. (2021). Schizophrenia, the Gut Microbiota, and New Opportunities from Optogenetic Manipulations of the Gut-Brain axis. Behav. Brain Functions 17 (1). 10.1186/s12993-021-00180-2
    1. Paul-Samojedny M., Owczarek A., Suchanek R., Kowalczyk M., Fila-Danilow A., Borkowska P., et al. (2011). Association Study of Interferon Gamma (IFN-γ) +874T/A Gene Polymorphism in Patients with Paranoid Schizophrenia. J. Mol. Neurosci. 43 (3). 10.1007/s12031-010-9442-x
    1. Pearce B. D. (2001). Schizophrenia and Viral Infection during Neurodevelopment: A Focus on Mechanisms. Mol. Psychiatry 6 (6). 10.1038/sj.mp.4000956
    1. Peng L., He Z., Chen W., Holzman I. R., Lin J. (2007). Effects of Butyrate on Intestinal Barrier Function in a Caco-2 Cell Monolayer Model of Intestinal Barrier. Pediatr. Res. 61 (1). 10.1203/01.pdr.0000250014.92242.f3
    1. Peng L., Li Z. R., Green R. S., Holzman I. R., Lin J. (2009). Butyrate Enhances the Intestinal Barrier by Facilitating Tight junction Assembly via Activation of AMP-Activated Protein Kinase in Caco-2 Cell Monolayers. J. Nutr. 139 (9). 10.3945/jn.109.104638
    1. Perkins D. O., Jeffries C. D., Addington J., Bearden C. E., Cadenhead K. S., Cannon T. D., et al. (2015). Towards a Psychosis Risk Blood Diagnostic for Persons Experiencing High-Risk Symptoms: Preliminary Results from the NAPLS Project. Schizophrenia Bull. 41 (2). 10.1093/schbul/sbu099
    1. Perry V. H., Nicoll J. A. R., Holmes C. (2010). Microglia in Neurodegenerative Disease. Nat. Rev. Neurol. 6 (4). 10.1038/nrneurol.2010.17
    1. Pessa-Morikawa T., Husso A., Kärkkäinen O., Koistinen V. M. (2022). Maternal Microbiota-Derived Metabolic Profile in Fetal Murine Intestine, Brain and Placenta. BMC Microbiol. 22, 46. 10.1186/s12866-022-02457-6
    1. Peters A., Veronesi B., Calderón-Garcidueñas L., Gehr P., Chen L. C., Geiser M., et al. (2006). Translocation and Potential Neurological Effects of fine and Ultrafine Particles a Critical Update. Part. Fibre Toxicol. 3. 10.1186/1743-8977-3-13
    1. Plitman E., Iwata Y., Caravaggio F., Nakajima S., Chung J. K., Gerretsen P., et al. (2017). Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-Analysis. Schizophrenia Bull. 43 (4). 10.1093/schbul/sbw221
    1. Pope C. A., Bhatnagar A., McCracken J. P., Abplanalp W., Conklin D. J., O’Toole T. (2016). Exposure to Fine Particulate Air Pollution Is Associated with Endothelial Injury and Systemic Inflammation. Circ. Res. 119 (11). 10.1161/CIRCRESAHA.116.309279
    1. Potgieter M., Bester J., Kell D. B., Pretorius E. (2015). The Dormant Blood Microbiome in Chronic, Inflammatory Diseases. FEMS Microbiol. Rev. 39 (4). 10.1093/femsre/fuv013
    1. Potter E. D., Ling Z. D., Carvey P. M. (1999). Cytokine-induced Conversion of Mesencephalic-Derived Progenitor Cells into Dopamine Neurons. Cel Tissue Res. 296 (2). 10.1007/s004410051285
    1. Prado E. L., Dewey K. G. (2014). Nutrition and Brain Development in Early Life. Nutr. Rev. 72 (4). 10.1111/nure.12102
    1. Prata J., Santos S. G., Almeida M. I., Coelho R., Barbosa M. A. (2017). Bridging Autism Spectrum Disorders and Schizophrenia through Inflammation and Biomarkers - Pre-clinical and Clinical Investigations. J. Neuroinflammation 14 (1). 10.1186/s12974-017-0938-y
    1. Prehn-Kristensen A., Zimmermann A., Tittmann L., Lieb W., Schreiber S., Baving L., et al. (2018). Reduced Microbiome Alpha Diversity in Young Patients with ADHD. PLoS ONE 13 (7). 10.1371/journal.pone.0200728
    1. Prins B. P., Abbasi A., Wong A., Vaez A., Nolte I., Franceschini N., et al. (2016). Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Med. 13 (6). 10.1371/journal.pmed.1001976
    1. Printz D. J., Strauss D. H., Goetz R., Sadiq S., Malaspina D., Krolewski J., et al. (1999). Elevation of CD5+ B Lymphocytes in Schizophrenia. Biol. Psychiatry 46 (1), 110–118. 10.1016/S0006-3223(98)00307-2
    1. Qi F., Zuo Z., Yang J., Hu S., Yang Y., Yuan Q., et al. (2017). Combined Effect of BCG Vaccination and Enriched Environment Promote Neurogenesis and Spatial Cognition via a Shift in Meningeal Macrophage M2 Polarization. J. Neuroinflammation 14, 32. 10.1186/s12974-017-0808-7
    1. Qin H., Zhang L., Xu G., Pan X. (2013). Lack of Association between TNFα Rs1800629 Polymorphism and Schizophrenia Risk: A Meta-Analysis. Psychiatry Res. 209 (3). 10.1016/j.psychres.2013.01.019
    1. Ransohoff R. M., Schafer D., Vincent A., Blachère N. E., Bar-Or A. (2015). Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics 12 (4), 896–909. 10.1007/s13311-015-0385-3
    1. Rao A. V., Bested A. C., Beaulne T. M., Katzman M. A., Iorio C., Berardi J. M., et al. (2009). A Randomized, Double-Blind, Placebo-Controlled Pilot Study of a Probiotic in Emotional Symptoms of Chronic Fatigue Syndrome. Gut Pathog. 1 (1). 10.1186/1757-4749-1-6
    1. Rapaport M. H., Torrey E. F., McAllister C. G., Nelson D. L., Pickar D., Paul S. M. (1993). Increased Serum Soluble Interleukin-2 Receptors in Schizophrenic Monozygotic Twins. Eur. Arch. Psychiatry Clin. Neurosci. 243 (1). 10.1007/BF02191517
    1. Ratsika A., Codagnone M. C., O’mahony S., Stanton C., Cryan J. F. (2021). Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain axis. Nutrients 13 (2). 10.3390/nu13020423
    1. Ripke S., Neale B. M., Corvin A., Walters J. T., Farh K. H., Holmans P. A., et al. (2014). Biological Insights from 108 Schizophrenia-Associated Genetic Loci. Nature 511 (7510), 421. 10.1038/nature13595
    1. Rodrigues-Amorim D., Rivera-Baltanás T., Regueiro B., Spuch C., de las Heras M. E., Vázquez-Noguerol Méndez R., et al. (2018). The Role of the Gut Microbiota in Schizophrenia: Current and Future Perspectives. World J. Biol. Psychiatry 19 (8). 10.1080/15622975.2018.1433878
    1. Rodríguez N., Morer A., González-Navarro E. A., Serra-Pages C., Boloc D., Torres T., et al. (2017). Inflammatory Dysregulation of Monocytes in Pediatric Patients with Obsessive-Compulsive Disorder. J. Neuroinflammation 14 (1). 10.1186/s12974-017-1042-z
    1. Rogers G. B., Keating D. J., Young R. L., Wong M. L., Licinio J., Wesselingh S. (2016). From Gut Dysbiosis to Altered Brain Function and Mental Illness: Mechanisms and Pathways. Mol. Psychiatry 21 (6). 10.1038/mp.2016.50
    1. Rossen N. G., MacDonald J. K., de Vries E. M., D’Haens G. R., de Vos W. M., Zoetendal E. G., et al. (2015). Fecal Microbiota Transplantation as Novel Therapy in Gastroenterology: A Systematic Review. World J. Gastroenterol. 21 (17). 10.3748/wjg.v21.i17.5359
    1. Rőszer T. (2015). Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm. 2015. 10.1155/2015/816460
    1. Rowland L. M., Summerfelt A., Wijtenburg S. A., Du X., Chiappelli J. J., Krishna N., et al. (2016). Frontal Glutamate and γ-aminobutyric Acid Levels and Their Associations with Mismatch Negativity and Digit Sequencing Task Performance in Schizophrenia. JAMA Psychiatry 73 (2). 10.1001/jamapsychiatry.2015.2680
    1. Rylaarsdam L., Guemez-Gamboa A. (2019). Genetic Causes and Modifiers of Autism Spectrum Disorder. Front. Cell Neurosci. 13. 10.3389/fncel.2019.00385
    1. Salvo E., Stokes P., Keogh C. E., Brust-Mascher I., Hennessey C., Knotts T. A., et al. (2020). A Murine Model of Pediatric Inflammatory Bowel Disease Causes Microbiota-Gut-Brain axis Deficits in Adulthood. Am. J. Physiology-Gastrointestinal Liver Physiol. 319 (3), G361–G374. 10.1152/ajpgi.00177.2020
    1. Sands B. E. (2015). Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology 149 (5). 10.1053/j.gastro.2015.07.003
    1. Sarubbo F., Cavallucci V., Pani G. (2022). The Influence of Gut Microbiota on Neurogenesis: Evidence and Hopes. Cells 11 (3), 382. 10.3390/cells11030382
    1. Sasayama D., Hori H., Teraishi T., Hattori K., Ota M., Iijima Y., et al. (2011). Possible Association between Interleukin-1beta Gene and Schizophrenia in a Japanese Population. Behav. Brain Functions 7. 10.1186/1744-9081-7-35
    1. Scahill L., Jeon S., Boorin S. J., McDougle C. J., Aman M. G., Dziura J., et al. (2016). Weight Gain and Metabolic Consequences of Risperidone in Young Children with Autism Spectrum Disorder. J. Am. Acad. Child Adolesc. Psychiatry 55 (5). 10.1016/j.jaac.2016.02.016
    1. Schafer D. P., Lehrman E. K., Kautzman A. G., Koyama R., Mardinly A. R., Yamasaki R., et al. (2012). Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-dependent Manner. Neuron 74 (4). 10.1016/j.neuron.2012.03.026
    1. Schwarz E., Maukonen J., Hyytiäinen T., Kieseppä T., Orešič M., Sabunciyan S., et al. (2018). Analysis of Microbiota in First Episode Psychosis Identifies Preliminary Associations with Symptom Severity and Treatment Response. Schizophrenia Res. 192. 10.1016/j.schres.2017.04.017
    1. Sekar A., Bialas A. R., de Rivera H., Davis A., Hammond T. R., Kamitaki N., et al. (2016). Schizophrenia Risk from Complex Variation of Complement Component 4. Nature 530 (7589). 10.1038/nature16549
    1. Senn V., Bassler D., Choudhury R., Scholkmann F., Righini-Grunder F., Vuille-dit-Bile R. N., et al. (2020). Microbial Colonization from the Fetus to Early Childhood—A Comprehensive Review. Front. Cell Infect. Microbiol. 10. 10.3389/fcimb.2020.573735
    1. Sentürk A., Pfennig S., Weiss A., Burk K., Acker-Palmer A. (2011). Ephrin Bs Are Essential Components of the Reelin Pathway to Regulate Neuronal Migration. Nature 472 (7343). 10.1038/nature09874
    1. Severance E. G., Alaedini A., Yang S., Halling M., Gressitt K. L., Stallings C. R., et al. (2012). Gastrointestinal Inflammation and Associated Immune Activation in Schizophrenia. Schizophrenia Res. 138 (1). 10.1016/j.schres.2012.02.025
    1. Shah E. D., Riddle M. S., Chang C., Pimentel M. (2012). Estimating the Contribution of Acute Gastroenteritis to the Overall Prevalence of Irritable Bowel Syndrome. J. Neurogastroenterology Motil. 18 (2). 10.5056/jnm.2012.18.2.200
    1. Sharon G., Sampson T. R., Geschwind D. H., Mazmanian S. K. (2016). The Central Nervous System and the Gut Microbiome. Cell 167 (4). 10.1016/j.cell.2016.10.027
    1. Shattock P., Whiteley P. (2002). Biochemical Aspects in Autism Spectrum Disorders: Updating the Opioid-Excess Theory and Presenting New Opportunities for Biomedical Intervention. Expert Opin. Ther. Targets 6 (2). 10.1517/14728222.6.2.175
    1. Shen Y., Xu J., Li Z., Huang Y., Yuan Y., Wang J., et al. (2018). Analysis of Gut Microbiota Diversity and Auxiliary Diagnosis as a Biomarker in Patients with Schizophrenia: A Cross-Sectional Study. Schizophrenia Res. 197. 10.1016/j.schres.2018.01.002
    1. Shi J., Levinson D. F., Duan J., Sanders A. R., Zheng Y., Péer I., et al. (2009). Common Variants on Chromosome 6p22.1 Are Associated with Schizophrenia. Nature 460 (7256). 10.1038/nature08192
    1. Shibuya M., Watanabe Y., Nunokawa A., Egawa J., Kaneko N., Igeta H., et al. (2014). Interleukin 1 Beta Gene and Risk of Schizophrenia: Detailed Case-Control and Family-Based Studies and an Updated Meta-Analysis. Hum. Psychopharmacol. 29 (1). 10.1002/hup.2365
    1. Shogo T., Toshihide Y. (2018). The Role of Immune Cells in Brain Development and Neurodevelopmental Diseases. Int. Immunol. 30 (10), 437–444. 10.1093/intimm/dxy041
    1. Silva Y. P., Bernardi A., Frozza R. L. (2020). The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 11. 10.3389/fendo.2020.00025
    1. Sjögren Y. M., Tomicic S., Lundberg A., Böttcher M. F., Björkstén B., Sverremark-Ekström E., et al. (2009). Influence of Early Gut Microbiota on the Maturation of Childhood Mucosal and Systemic Immune Responses: Gut Microbiota and Immune Responses. Clin. Exp. Allergy 39 (12). 10.1111/j.1365-2222.2009.03326.x
    1. Smith S. E. P., Li J., Garbett K., Mirnics K., Patterson P. H. (2007). Maternal Immune Activation Alters Fetal Brain Development through Interleukin-6. J. Neurosci. 27 (40). 10.1523/JNEUROSCI.2178-07.2007
    1. Smith S. M., Vale W. W. (2006). The Role of the Hypothalamic-Pituitary-Adrenal axis in Neuroendocrine Responses to Stress. Dialogues Clin. Neurosci. 8 (4). 10.31887/dcns.2006.8.4/ssmith
    1. Socała K., Doboszewska U., Szopa A., Serefko A., Włodarczyk M., Zielińska A., et al. (2021). The Role of Microbiota-Gut-Brain axis in Neuropsychiatric and Neurological Disorders. Pharmacol. Res. 172. 10.1016/j.phrs.2021.105840
    1. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L. G., Gratadoux J. J., et al. (2008). Faecalibacterium Prausnitzii Is an Anti-inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. United States America 105 (43). 10.1073/pnas.0804812105
    1. Sommer I. E., de Witte L., Begemann M., Kahn R. S. (2012). Nonsteroidal Anti-inflammatory Drugs in Schizophrenia: Ready for Practice or a Good Start? A Meta-Analysis. J. Clin. Psychiatry 73 (4). 10.4088/JCP.10r06823
    1. Sørensen H. J., Mortensen E. L., Reinisch J. M., Mednick S. A. (2009). Association between Prenatal Exposure to Bacterial Infection and Risk of Schizophrenia. Schizophrenia Bull. 35 (3). 10.1093/schbul/sbn121
    1. Sotgiu S., Manca S., Gagliano A., Minutolo A., Melis M. C., Pisuttu G., et al. (2020). Immune Regulation of Neurodevelopment at the Mother–Foetus Interface: the Case of Autism. Clin. Translational Immunol. 9 (11). 10.1002/cti2.1211
    1. Spadoni I., Zagato E., Bertocchi A., Paolinelli R., Hot E., di Sabatino A., et al. (2015). A Gut-Vascular Barrier Controls the Systemic Dissemination of Bacteria. Science 350 (6262). 10.1126/science.aad0135
    1. Spangaro M., Mazza E., Poletti S., Cavallaro R., Benedetti F. (2018). Obesity Influences white Matter Integrity in Schizophrenia. Psychoneuroendocrinology 97. 10.1016/j.psyneuen.2018.07.017
    1. Srisawasdi P., Vanwong N., Hongkaew Y., Puangpetch A., Vanavanan S., Intachak B., et al. (2017). Impact of Risperidone on Leptin and Insulin in Children and Adolescents with Autistic Spectrum Disorders. Clin. Biochem. 50 (12). 10.1016/j.clinbiochem.2017.02.003
    1. St Clair D., Blackwood D., Muir W., Walker M., St Clair D., Muir W., et al. (1990). Association within a Family of a Balanced Autosomal Translocation with Major Mental Illness. The Lancet 336 (8706). 10.1016/0140-6736(90)91520-K
    1. Steiner J., Bielau H., Brisch R., Danos P., Ullrich O., Mawrin C., et al. (2008). Immunological Aspects in the Neurobiology of Suicide: Elevated Microglial Density in Schizophrenia and Depression Is Associated with Suicide. J. Psychiatr. Res. 42 (2). 10.1016/j.jpsychires.2006.10.013
    1. Steiner J., Jacobs R., Panteli B., Brauner M., Schiltz K., Bahn S., et al. (2010). Acute Schizophrenia Is Accompanied by Reduced T Cell and Increased B Cell Immunity. Eur. Arch. Psychiatry Clin. Neurosci. 260, 509–518. 10.1007/s00406-010-0098-x
    1. Stevens B., Allen N. J., Vazquez L. E., Howell G. R., Christopherson K. S., Nouri N., et al. (2007). The Classical Complement Cascade Mediates CNS Synapse Elimination. Cell 131 (6), 1164–1178. 10.1016/j.cell.2007.10.036
    1. Stinson L. F., Boyce M. C., Payne M. S., Keelan J. A. (2019). The Not-so-sterile Womb: Evidence that the Human Fetus Is Exposed to Bacteria Prior to Birth. Front. Microbiol. 10 (JUN). 10.3389/fmicb.2019.01124
    1. Strandwitz P. (2018). Neurotransmitter Modulation by the Gut Microbiota. Brain Res. 1693. 10.1016/j.brainres.2018.03.015
    1. Strati F., Cavalieri D., Albanese D., de Felice C., Donati C., Hayek J., et al. (2017). New Evidences on the Altered Gut Microbiota in Autism Spectrum Disorders. Microbiome 5 (1). 10.1186/s40168-017-0242-1
    1. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X.-N., et al. (2004). Postnatal Microbial Colonization Programs the Hypothalamic-Pituitary-Adrenal System for Stress Response in Mice. J. Physiol. 558, 263–275. 10.1113/jphysiol.2004.063388
    1. Sudo N. (2012). Role of Microbiome in Regulating the HPA axis and its Relevance to Allergy. Chem. Immunol. Allergy 98. 10.1159/00033651013
    1. Suzuki K., Matsuzaki H., Iwata K., Kameno Y., Shimmura C., Kawai S., et al. (2011). Plasma Cytokine Profiles in Subjects with High-Functioning Autism Spectrum Disorders. PLoS ONE 6 (5). 10.1371/journal.pone.0020470
    1. Teff K. L., Rickels M. R., Grudziak J., Fuller C., Nguyen H. L., Rickels K. (2013). Antipsychotic-induced Insulin Resistance and Postprandial Hormonal Dysregulation Independent of Weight Gain or Psychiatric Disease. Diabetes 62 (9). 10.2337/db13-0430
    1. Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., et al. (2015). Gastrointestinal Microbiota in Children with Autism in Slovakia. Physiol. Behav. 138. 10.1016/j.physbeh.2014.10.033
    1. Tremblay M. Ě., Lowery R. L., Majewska A. K. (2010). Microglial Interactions with Synapses Are Modulated by Visual Experience. PLoS Biol. 8 (11). 10.1371/journal.pbio.1000527
    1. Trépanier M. O., Hopperton K. E., Mizrahi R., Mechawar N., Bazinet R. P. (2016). Postmortem Evidence of Cerebral Inflammation in Schizophrenia: A Systematic Review. Mol. Psychiatry 21 (8). 10.1038/mp.2016.90
    1. Tye C., Runicles A., Whitehouse A. J. O., Alvares G. A. (2019). Corrigendum: Characterizing the Interplay between Autism Spectrum Disorder and Comorbid Medical Conditions: An Integrative Review. Front. Psychiatry 10 (6). 10.3389/fpsyt.2019.00438
    1. Ueno M., Fujita Y., Tanaka T., Nakamura Y., Kikuta J., Ishii M., et al. (2013). Layer V Cortical Neurons Require Microglial Support for Survival during Postnatal Development. Nat. Neurosci. 16, 543–551. 10.1038/nn.3358
    1. Ulluwishewa D., Anderson R. C., McNabb W. C., Moughan P. J., Wells J. M., Roy N. C. (2011). Regulation of Tight junction Permeability by Intestinal Bacteria and Dietary Components. J. Nutr. 141 (5). 10.3945/jn.110.135657
    1. Upthegrove R., Manzanares-Teson N., Barnes N. M. (2014). Cytokine Function in Medication-Naive First Episode Psychosis: A Systematic Review and Meta-Analysis. Schizophrenia Res. 155 (1–3). 10.1016/j.schres.2014.03.005
    1. van de Wouw M., Boehme M., Lyte J. M., Wiley N., Strain C., O’Sullivan O., et al. (2018). Short-chain Fatty Acids: Microbial Metabolites that Alleviate Stress-Induced Brain–Gut axis Alterations. J. Physiol. 596 (20). 10.1113/JP276431
    1. van Kesteren C. F. M. G., Gremmels H., de Witte L. D., Hol E. M., van Gool A. R., Falkai P. G., et al. (2017). Immune Involvement in the Pathogenesis of Schizophrenia: A Meta-Analysis on Postmortem Brain Studies. Translational Psychiatry 7 (3). 10.1038/tp.2017.4
    1. Van Os J., Kapur S. (2009). Schizophrenia. Lancet. London: England; 374 (9690), 635–645. 10.1016/S0140-6736(09)60995-8
    1. Vangay P., Ward T., Gerber J. S., Knights D. (2015). Antibiotics, Pediatric Dysbiosis, and Disease. Cell Host and Microbe 17 (5). 10.1016/j.chom.2015.04.006
    1. Ventriglio A., Gentile A., Stella E., Bellomo A. (2015). Metabolic Issues in Patients Affected by Schizophrenia: Clinical Characteristics and Medical Management. Front. Neurosci. 9 (9). 10.3389/fnins.2015.00297
    1. Villagomez A. N., Muñoz F. M., Peterson R. L., Colbert A. M., Gladstone M., MacDonald B., et al. (2019). Neurodevelopmental Delay: Case Definition and Guidelines for Data Collection, Analysis, and Presentation of Immunization Safety Data. Vaccine 37 (52), 7623–7641. 10.1016/j.vaccine.2019.05.027
    1. Vitale G., Barbaro F., Ianiro G., Cesario V., Gasbarrini G., Franceschi F., et al. (2011). Nutritional Aspects of Helicobacter pylori Infection. Minerva Gastroenterologica e Dietologica 57 (4).
    1. Vuksan-Ćusa B., Šagud M., Jakovljević M. (2010). C-reactive Protein and Metabolic Syndrome in Patients with Bipolar Disorder Compared to Patients with Schizophrenia. Psychiatria Danubina 22 (2).
    1. Wampach L., Heintz-Buschart A., Hogan A., Muller E. E. L., Narayanasamy S., Laczny C. C., et al. (2017). Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life. Front. Microbiol. 8 (MAY). 10.3389/fmicb.2017.00738
    1. Wang L., Christophersen C. T., Sorich M. J., Gerber J. P., Angley M. T., Conlon M. A. (2011). Low Relative Abundances of the Mucolytic Bacterium Akkermansia Muciniphila and Bifidobacterium Spp. In Feces of Children with Autism. Appl. Environ. Microbiol. 77 (18). 10.1128/AEM.05212-11
    1. Wei H., Alberts I., Li X. (2013). Brain IL-6 and Autism. Neuroscience 252. 10.1016/j.neuroscience.2013.08.025
    1. Wei H., Chadman K. K., McCloskey D. P., Sheikh A. M., Malik M., Brown W. T., et al. (2012). Brain IL-6 Elevation Causes Neuronal Circuitry Imbalances and Mediates Autism-like Behaviors. Biochim. Biophys. Acta - Mol. Basis Dis. 1822 (6). 10.1016/j.bbadis.2012.01.011
    1. Wei H., Zou H., Sheikh A. M., Malik M., Dobkin C., Brown W. T., et al. (2011). IL-6 Is Increased in the Cerebellum of Autistic Brain and Alters Neural Cell Adhesion, Migration and Synaptic Formation. J. Neuroinflammation 8. 10.1186/1742-2094-8-52
    1. White B. E. P., Getsios S. (2014). Eph Receptor and Ephrin Function in Breast, Gut, and Skin Epithelia. Cell Adhes. Migration 8 (4). 10.4161/19336918.2014.970012
    1. Wilens T. E., Spencer T. J. (2010). Understanding Attention-Deficit/hyperactivity Disorder from Childhood to Adulthood. Postgrad. Med. 122 (5). 10.3810/pgm.2010.09.2206
    1. Williams B. L., Hornig M., Parekh T., Ian Lipkin W. (2012). Application of Novel PCR-Based Methods for Detection, Quantitation, and Phylogenetic Characterization of Sutterella Species in Intestinal Biopsy Samples from Children with Autism and Gastrointestinal Disturbances. MBio 3 (1). 10.1128/mBio.00261-11
    1. Williams S., Chen L., Savignac H. M., Tzortzis G., Anthony D. C., Burnet P. W. (2016). Neonatal Prebiotic (BGOS) Supplementation Increases the Levels of Synaptophysin, GluN2A-Subunits and BDNF Proteins in the Adult Rat hippocampus. Synapse 70 (3). 10.1002/syn.21880
    1. Williamson J. M., Lyons D. A. (2018). Myelin Dynamics throughout Life: An Ever-Changing Landscape? Front. Cell Neurosci. 12. 10.3389/fncel.2018.00424
    1. Winter C., Djodari-Irani A., Sohr R., Morgenstern R., Feldon J., Juckel G., et al. (2009). Prenatal Immune Activation Leads to Multiple Changes in Basal Neurotransmitter Levels in the Adult Brain: Implications for Brain Disorders of Neurodevelopmental Origin Such as Schizophrenia. Int. J. Neuropsychopharmacol. 12 (4). 10.1017/S1461145708009206
    1. Woodward N. C., Levine M. C., Haghani A., Shirmohammadi F., Saffari A., Sioutas C., et al. (2017). Toll-like Receptor 4 in Glial Inflammatory Responses to Air Pollution In Vitro and In Vivo . J. Neuroinflammation 14 (1). 10.1186/s12974-017-0858-x
    1. Wu D., Lv P., Li F., Zhang W., Fu G., Dai J., et al. (2019). Association of Peripheral Cytokine Levels with Cerebral Structural Abnormalities in Schizophrenia. Brain Res. 1724. 10.1016/j.brainres.2019.146463
    1. Xie J., Huang L., Li X., Li H., Zhou Y., Zhu H., et al. (2017). Immunological Cytokine Profiling Identifies TNF-α as a Key Molecule Dysregulated in Autistic Children. Oncotarget 8 (47). 10.18632/oncotarget.19326
    1. Xu M., He L. (2010). Convergent Evidence Shows a Positive Association of Interleukin-1 Gene Complex Locus with Susceptibility to Schizophrenia in the Caucasian Population. Schizophrenia Res. 120 (1–3). 10.1016/j.schres.2010.02.1031
    1. Xu M., Xu X., Li J., Li F. (2019). Association between Gut Microbiota and Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Front. Psychiatry 10 (7). 10.3389/fpsyt.2019.00473
    1. Xu R., Wu B., Liang J., He F., Gu W., Li K., et al. (2020). Altered Gut Microbiota and Mucosal Immunity in Patients with Schizophrenia. Brain Behav. Immun. 85, 120–127. 10.1016/j.bbi.2019.06.039
    1. Yamamoto S., Muramatsu M., Azuma E., Ikutani M., Nagai Y., Sagara H., et al. (2017). A Subset of Cerebrovascular Pericytes Originates from Mature Macrophages in the Very Early Phase of Vascular Development in CNS. Sci. Rep. 7, 3855. 10.1038/s41598-017-03994-1
    1. Yap C. X., Henders A. K., Alvares G. A., Wood D. L. A., Krause L., Tyson G. W., et al. (2021). Autism-related Dietary Preferences Mediate Autism-Gut Microbiome Associations. Cell 184 (24), 5916–5931. e17. 10.1016/j.cell.2021.10.015
    1. Yap I. K. S., Martin F. P. (2015). “Deciphering the Gut Microbial Contribution to the Etiology of Autism Development,” in Molecular and Integrative Toxicology (Berlin/Heidelberg: Springer Science+Business Media; ), 311–322. 10.1007/978-1-4471-6539-2_14
    1. Yarandi S. S., Kulkarni S., Saha M., Sylvia K. E., Sears C. L., Pasricha P. J. (2020). Intestinal Bacteria Maintain Adult Enteric Nervous System and Nitrergic Neurons via Toll-like Receptor 2-induced Neurogenesis in Mice. Gastroenterology 159 (1), 200–213. 10.1053/j.gastro.2020.03.050
    1. Yeh T. C., Bai Y. M., Tsai S. J., Chen T. J., Liang C. S., Chen M. H. (2021). Risks of Major Mental Disorders and Irritable Bowel Syndrome Among the Offspring of Parents with Irritable Bowel Syndrome: A Nationwide Study. Int. J. Environ. Res. Public Health 18 (9). 10.3390/ijerph18094679
    1. Yilmaz Y., Gul C. B., Arabul M., Eren M. A. (2008). Helicobacter pylori: A Role in Schizophrenia? Med. Sci. Monitor 14 (7).
    1. Younge N., McCann J. R., Ballard J., Plunkett C., Akhtar S., Araújo-Pérez F., et al. (2019). Fetal Exposure to the Maternal Microbiota in Humans and Mice. JCI Insight 4 (19). 10.1172/jci.insight.127806
    1. Yuan X., Kang Y., Zhuo C., Huang X. F., Song X. (2019). The Gut Microbiota Promotes the Pathogenesis of Schizophrenia via Multiple Pathways. Biochem. Biophysical Res. Commun. 512 (2). 10.1016/j.bbrc.2019.02.152
    1. Yuan X., Zhang P., Wang Y., Liu Y., Li X., Kumar B. U., et al. (2018). Changes in Metabolism and Microbiota after 24-week Risperidone Treatment in Drug Naïve, normal Weight Patients with First Episode Schizophrenia. Schizophrenia Res. 201. 10.1016/j.schres.2018.05.017
    1. Zalcman S., Green-Johnson J. M., Murray L., Nance D. M., Dyck D., Anisman H., et al. (1994). Cytokine-specific central Monoamine Alterations Induced by Interleukin-1, - 2 and - 6. Brain Res. 643 (1–2). 10.1016/0006-8993(94)90006-X
    1. Zarrindast M. R., Khakpai F. (2015). The Modulatory Role of Dopamine in Anxiety-like Behavior. Arch. Iranian Med. 18 (9), 0151809.
    1. Zeng M., Inohara N., Nuñez G. (2017). Mechanisms of Inflammation-Driven Bacterial Dysbiosis in the Gut. Mucosal Immunol. 10, 18–26. 10.1038/mi.2016.75
    1. Zeni-Graiff M., Rizzo L. B., Mansur R. B., Maurya P. K., Sethi S., Cunha G. R., et al. (2016). Peripheral Immuno-Inflammatory Abnormalities in Ultra-high Risk of Developing Psychosis. Schizophrenia Res. 176 (2–3). 10.1016/j.schres.2016.06.031
    1. Zhang J J., Luo W., Huang P., Peng L., Huang Q. (2018). Maternal C-Reactive Protein and Cytokine Levels during Pregnancy and the Risk of Selected Neuropsychiatric Disorders in Offspring: A Systematic Review and Meta-Analysis. J. Psychiatr. Res. 105. 10.1016/j.jpsychires.2018.09.002
    1. Zhang M M., Ma W., Zhang J., He Y., Wang J. (2018). Analysis of Gut Microbiota Profiles and Microbe-Disease Associations in Children with Autism Spectrum Disorders in China. Scientific Rep. 8 (1). 10.1038/s41598-018-32219-2
    1. Zhang Y., Hodgson N. W., Trivedi M. S., Abdolmaleky H. M., Fournier M., Cuenod M., et al. (2016). Decreased Brain Levels of Vitamin B12 in Aging, Autism and Schizophrenia. PLoS ONE 11 (1). 10.1371/journal.pone.0146797
    1. Zheng P., Zeng B., Liu M., Chen J., Pan J., Han Y., et al. (2019). The Gut Microbiome from Patients with Schizophrenia Modulates the Glutamate-Glutamine-GABA Cycle and Schizophrenia-Relevant Behaviors in Mice. Sci. Adv. 5 (2). 10.1126/sciadv.aau8317
    1. Zhou D., Kusnecov A. W., Shurin M. R., Depaoli M., Rabin B. S. (1993). Exposure to Physical and Psychological Stressors Elevates Plasma Interleukin 6: Relationship to the Activation of Hypothalamic-Pituitary-Adrenal axis. Endocrinology 133 (6). 10.1210/endo.133.6.8243274
    1. Zhou Y., Xu H., Xu J., Guo X., Zhao H., Chen Y., et al. (2021). F. Prausnitzii and its Supernatant Increase SCFAs-Producing Bacteria to Restore Gut Dysbiosis in TNBS-Induced Colitis. AMB Express 11 (1). 10.1186/s13568-021-01197-6
    1. Zhu F., Guo R., Wang W., Ju Y., Wang Q., Ma Q., et al. (2020b). Transplantation of Microbiota from Drug-free Patients with Schizophrenia Causes Schizophrenia-like Abnormal Behaviors and Dysregulated Kynurenine Metabolism in Mice. Mol. Psychiatry 25, 2905–2918. 10.1038/s41380-019-0475-4
    1. Zhu F., Ju Y., Wang W., Wang Q., Guo R., Ma Q., et al. (2020a). Metagenome-wide Association of Gut Microbiome Features for Schizophrenia. Nat. Commun. 11 (1). 10.1038/s41467-020-15457-9
    1. Ziv Y., Ron N., Butovsky O., Landa G., Sudai E., Greenberg N., et al. (2006). Immune Cells Contribute to the Maintenance of Neurogenesis and Spatial Learning Abilities in Adulthood. Nat. Neurosci. 9, 268–275. 10.1038/nn1629
    1. Zuo H., Shi Z., Yuan B., Dai Y., Wu G., Hussain A. (2013). Association between Serum Leptin Concentrations and Insulin Resistance: A Population-Based Study from China. PLoS ONE 8 (1). 10.1371/journal.pone.0054615

Source: PubMed

3
订阅