Fecal Microbiota Transplantation in Neurological Disorders

Karuna E W Vendrik, Rogier E Ooijevaar, Pieter R C de Jong, Jon D Laman, Bob W van Oosten, Jacobus J van Hilten, Quinten R Ducarmon, Josbert J Keller, Eduard J Kuijper, Maria Fiorella Contarino, Karuna E W Vendrik, Rogier E Ooijevaar, Pieter R C de Jong, Jon D Laman, Bob W van Oosten, Jacobus J van Hilten, Quinten R Ducarmon, Josbert J Keller, Eduard J Kuijper, Maria Fiorella Contarino

Abstract

Background: Several studies suggested an important role of the gut microbiota in the pathophysiology of neurological disorders, implying that alteration of the gut microbiota might serve as a treatment strategy. Fecal microbiota transplantation (FMT) is currently the most effective gut microbiota intervention and an accepted treatment for recurrent Clostridioides difficile infections. To evaluate indications of FMT for patients with neurological disorders, we summarized the available literature on FMT. In addition, we provide suggestions for future directions. Methods: In July 2019, five main databases were searched for studies and case descriptions on FMT in neurological disorders in humans or animal models. In addition, the ClinicalTrials.gov website was consulted for registered planned and ongoing trials. Results: Of 541 identified studies, 34 were included in the analysis. Clinical trials with FMT have been performed in patients with autism spectrum disorder and showed beneficial effects on neurological symptoms. For multiple sclerosis and Parkinson's disease, several animal studies suggested a positive effect of FMT, supported by some human case reports. For epilepsy, Tourette syndrome, and diabetic neuropathy some studies suggested a beneficial effect of FMT, but evidence was restricted to case reports and limited numbers of animal studies. For stroke, Alzheimer's disease and Guillain-Barré syndrome only studies with animal models were identified. These studies suggested a potential beneficial effect of healthy donor FMT. In contrast, one study with an animal model for stroke showed increased mortality after FMT. For Guillain-Barré only one study was identified. Whether positive findings from animal studies can be confirmed in the treatment of human diseases awaits to be seen. Several trials with FMT as treatment for the above mentioned neurological disorders are planned or ongoing, as well as for amyotrophic lateral sclerosis. Conclusions: Preliminary literature suggests that FMT may be a promising treatment option for several neurological disorders. However, available evidence is still scanty and some contrasting results were observed. A limited number of studies in humans have been performed or are ongoing, while for some disorders only animal experiments have been conducted. Large double-blinded randomized controlled trials are needed to further elucidate the effect of FMT in neurological disorders.

Keywords: Parkinson's disease; autism spectrum disorder; autoimmunity; fecal microbiota transplantation; gastrointestinal microbiome; gut-brain axis; nervous system diseases; neurodegenerative.

Copyright © 2020 Vendrik, Ooijevaar, de Jong, Laman, van Oosten, van Hilten, Ducarmon, Keller, Kuijper and Contarino.

Figures

Figure 1
Figure 1
Potential effects of FMT in patients with neurological disorders and in animal models for neurological disorders. The figure includes studies in which patients with a neurological disorder or animal models for a neurological disorder received FMT with feces from a healthy donor. Tourette syndrome was not included as this contains only one case report. Blue areas include cognitive symptoms, yellow areas include motor and sensory symptoms or effects and orange areas include other effects. The outer parts contain results from human studies and the inner parts from animal studies. Statements in bold are found by more than one study, excluding case descriptions. N: the number of studies identified per neurological disorder, subdivided in human and animal studies. *based on case reports/series only (very limited evidence). **inconsistent results.

References

    1. Aabed K., Shafi Bhat R., Moubayed N., Al-Mutiri M., Al-Marshoud M., Al-Qahtani A., et al. . (2019). Ameliorative effect of probiotics [Lactobacillus paracaseii and Protexin(R)] and prebiotics (propolis and bee pollen) on clindamycin and propionic acid-induced oxidative stress and altered gut microbiota in a rodent model of autism. Cell. Mol. Biol. 65, 1–7. 10.14715/cmb/2019.65.1.1
    1. Adams J. B., Johansen L. J., Powell L. D., Quig D., Rubin R. A. (2011). Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11:22. 10.1186/1471-230X-11-22
    1. Alonso R., Pisa D., Fernandez-Fernandez A. M., Carrasco L. (2018). Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer's disease. Front. Aging Neurosci. 10:159. 10.3389/fnagi.2018.00159
    1. An R., Wilms E., Masclee A. A. M., Smidt H., Zoetendal E. G., Jonkers D. (2018). Age-dependent changes in GI physiology and microbiota: time to reconsider? Gut 67, 2213–2222. 10.1136/gutjnl-2017-315542
    1. Ananthaswamy A. (2011). Faecal transplant eases symptoms of Parkinson's. NewScientist 209, 8–9. 10.1016/S0262-4079(11)60124-3
    1. Ang C. W., Laman J. D., Willison H. J., Wagner E. R., Endtz H. P., De Klerk M. A., et al. . (2002). Structure of Campylobacter jejuni lipopolysaccharides determines antiganglioside specificity and clinical features of Guillain-Barre and Miller Fisher patients. Infect. Immun. 70, 1202–1208. 10.1128/IAI.70.3.1202-1208.2002
    1. Angelucci F., Cechova K., Amlerova J., Hort J. (2019). Antibiotics, gut microbiota, and Alzheimer's disease. J. Neuroinflamm. 16:108. 10.1186/s12974-019-1494-4
    1. Arduini A., Zammit V. A., Bonomini M. (2019). Identification of trimethylamine N-oxide (TMAO)-producer phenotype is interesting, but is it helpful? Gut 69, 400–401. 10.1136/gutjnl-2018-318000
    1. Ashwood P., Krakowiak P., Hertz-Picciotto I., Hansen R., Pessah I., Van de Water J. (2011). Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immunity 25, 40–45. 10.1016/j.bbi.2010.08.003
    1. Backhed F., Ding H., Wang T., Hooper L. V., Koh G. Y., Nagy A., et al. . (2004). The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718–15723. 10.1073/pnas.0407076101
    1. Barrett E., Ross R. P., O'Toole P. W., Fitzgerald G. F., Stanton C. (2012). gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417. 10.1111/j.1365-2672.2012.05344.x
    1. Belcher A. M., Ferre S., Martinez P. E., Colloca L. (2018). Role of placebo effects in pain and neuropsychiatric disorders. Progress Neuro Psychopharmacol. Biol. Psychiatry 87(Pt B), 298–306. 10.1016/j.pnpbp.2017.06.003
    1. Benakis C., Brea D., Caballero S., Faraco G., Moore J., Murphy M., et al. . (2016). Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 22, 516–523. 10.1038/nm.4068
    1. Berer K., Boziki M., Krishnamoorthy G. (2014). Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease. PLoS ONE. 9:e87876. 10.1371/journal.pone.0087876
    1. Berer K., Gerdes L. A., Cekanaviciute E., Jia X., Xiao L., Xia Z., et al. . (2017). Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl. Acad. Sci. U.S.A. 114, 10719–10724. 10.1073/pnas.1711233114
    1. Berer K., Mues M., Koutrolos M., Rasbi Z. A., Boziki M., Johner C., et al. . (2011). Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541. 10.1038/nature10554
    1. Bereswill S., Fischer A., Plickert R., Haag L. M., Otto B., Kuhl A. A., et al. . (2011). Novel murine infection models provide deep insights into the menage a trois of Campylobacter jejuni, microbiota and host innate immunity. PLoS ONE 6:e20953. 10.1371/annotation/5247af81-4595-44b7-9c3f-2e45ad85abfa
    1. Biagi E., Nylund L., Candela M., Ostan R., Bucci L., Pini E., et al. . (2010). Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5:e10667. 10.1371/annotation/df45912f-d15c-44ab-8312-e7ec0607604d
    1. Borody T. L. S., Campbell J., Torres M., Nowak A. (2011). Fecal Microbiota Transplantation (FMT) in Multiple Sclerosis (MS). Am. J. Gastroenterol. 106:S352 10.14309/00000434-201110002-00942
    1. Boukthir S., Matoussi N., Belhadj A., Mammou S., Dlala S. B., Helayem M., et al. . (2010). Abnormal intestinal permeability in children with autism. La Tunisie Med. 88, 685–686.
    1. Braak H., Rub U., Gai W. P., Del Tredici K. (2003). Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Trans. 110, 517–536. 10.1007/s00702-002-0808-2
    1. Brooks P. T., Bell J. A., Bejcek C. E., Malik A., Mansfield L. S. (2019). An antibiotic depleted microbiome drives severe Campylobacter jejuni-mediated Type 1/17 colitis, Type 2 autoimmunity and neurologic sequelae in a mouse model. J. Neuroimmunol. 337:577048. 10.1016/j.jneuroim.2019.577048
    1. Brooks P. T., Brakel K. A., Bell J. A., Bejcek C. E., Gilpin T., Brudvig J. M., et al. . (2017). Transplanted human fecal microbiota enhanced Guillain Barre syndrome autoantibody responses after Campylobacter jejuni infection in C57BL/6 mice. Microbiome 5:92. 10.1186/s40168-017-0284-4
    1. Brooks P. T., Mansfield L. S. (2017). Effects of antibiotic resistance (AR) and microbiota shifts on Campylobacter jejuni-mediated diseases. Anim. Health. Res. Rev. 18, 99–111. 10.1017/S1466252318000014
    1. Browne T. C., McQuillan K., McManus R. M., O'Reilly J. A., Mills K. H., Lynch M. A. (2013). IFN-gamma Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease. J. Immunol. 190, 2241–2251. 10.4049/jimmunol.1200947
    1. Budman C., Coffey B., Dure L., Gilbert D., Juncos J., Kaplan E., et al. (2005). Regarding antibiotic prophylaxis with azithromycin or penicillin for childhood-onset neuropsychiatric disorders. Biol. Psychiatry 58:917; author reply 8–9. 10.1016/j.biopsych.2005.08.005
    1. Cabanlit M., Wills S., Goines P., Ashwood P., Van de Water J. (2007). Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann. N. Y. Acad. Sci. 1107, 92–103. 10.1196/annals.1381.010
    1. Cai T. T., Ye X. L., Yong H. J., Song B., Zheng X. L., Cui B. T., et al. . (2018). Fecal microbiota transplantation relieve painful diabetic neuropathy: a case report. Medicine 97:e13543. 10.1097/MD.0000000000013543
    1. Cai Z., Hussain M. D., Yan L. J. (2014). Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int. J. Neurosci. 124, 307–321. 10.3109/00207454.2013.833510
    1. Calsolaro V., Edison P. (2016). Neuroinflammation in Alzheimer's disease: current evidence and future directions. Alzheimer's Dement. 12, 719–732. 10.1016/j.jalz.2016.02.010
    1. Camara-Lemarroy C. R., Ibarra-Yruegas B. E., Gongora-Rivera F. (2014). Gastrointestinal complications after ischemic stroke. J. Neurol. Sci. 346, 20–25. 10.1016/j.jns.2014.08.027
    1. Caso J. R., Hurtado O., Pereira M. P., Garcia-Bueno B., Menchen L., Alou L., et al. . (2009). Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am. J. Physiol. Regul. Integr. Compar. Physiol. 296, R979–R985. 10.1152/ajpregu.90825.2008
    1. Castelli V., Palumbo P., d'Angelo M., Moorthy N. K., Antonosante A., Catanesi M., et al. . (2018). Probiotic DSF counteracts chemotherapy induced neuropathic pain. Oncotarget 9, 27998–28008. 10.18632/oncotarget.25524
    1. Cattaneo A., Cattane N., Galluzzi S., Provasi S., Lopizzo N., Festari C., et al. . (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 49, 60–68. 10.1016/j.neurobiolaging.2016.08.019
    1. Cekanaviciute E., Yoo B. B., Runia T. F., Debelius J. W., Singh S., Nelson C. A., et al. . (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc. Natl. Acad. Sci. U.S.A. 114, 10713–10718. 10.1073/pnas.1711235114
    1. Cermak S. A., Curtin C., Bandini L. G. (2010). Food selectivity and sensory sensitivity in children with autism spectrum disorders. J. Am. Dietetic Assoc. 110, 238–246. 10.1016/j.jada.2009.10.032
    1. Chang C., Miller J. F. (2006). Campylobacter jejuni colonization of mice with limited enteric flora. Infect. Immun. 74, 5261–5271. 10.1128/IAI.01094-05
    1. Chen J., Chia N., Kalari K. R., Yao J. Z., Novotna M., Paz Soldan M. M., et al. . (2016). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 6:28484. 10.1038/srep28484
    1. Chen R., Wu P., Cai Z., Fang Y., Zhou H., Lasanajak Y., et al. . (2019). Puerariae Lobatae Radix with chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain-gut barriers. J. Nutr. Biochem. 65, 101–114. 10.1016/j.jnutbio.2018.12.004
    1. Collins H. L., Drazul-Schrader D., Sulpizio A. C., Koster P. D., Williamson Y., Adelman S. J., et al. . (2016). L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(-/-) transgenic mice expressing CETP. Atherosclerosis 244, 29–37. 10.1016/j.atherosclerosis.2015.10.108
    1. Connolly A. M., Chez M., Streif E. M., Keeling R. M., Golumbek P. T., Kwon J. M., et al. . (2006). Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biol. Psychiatry 59, 354–363. 10.1016/j.biopsych.2005.07.004
    1. Cosorich I., Dalla-Costa G., Sorini C., Ferrarese R., Messina M. J., Dolpady J., et al. . (2017). High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci. Adv. 3:e1700492. 10.1126/sciadv.1700492
    1. Cree B. A., Spencer C. M., Varrin-Doyer M., Baranzini S. E., Zamvil S. S. (2016). Gut microbiome analysis in neuromyelitis optica reveals overabundance of Clostridium perfringens. Ann. Neurol. 80, 443–447. 10.1002/ana.24718
    1. Cui B., Su D., Li W., She X., Zhang M., Wang R., et al. . (2018). Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer's disease. J. Neuroinflamm. 15:190. 10.1186/s12974-018-1223-4
    1. Dahlin M., Prast-Nielsen S. (2019). The gut microbiome and epilepsy. EBioMedicine 44, 741–746. 10.1016/j.ebiom.2019.05.024
    1. Dansokho C., Ait Ahmed D., Aid S., Toly-Ndour C., Chaigneau T., Calle V., et al. . (2016). Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain J. Neurol. 139(Pt 4), 1237–1251. 10.1093/brain/awv408
    1. Davari S., Talaei S. A., Alaei H., Salami M. (2013). Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 240, 287–296. 10.1016/j.neuroscience.2013.02.055
    1. David L. A., Maurice C. F., Carmody R. N., Gootenberg D. B., Button J. E., Wolfe B. E., et al. . (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563. 10.1038/nature12820
    1. De Angelis M., Francavilla R., Piccolo M., De Giacomo A., Gobbetti M. (2015). Autism spectrum disorders and intestinal microbiota. Gut Microbes 6, 207–213. 10.1080/19490976.2015.1035855
    1. De Angelis M., Piccolo M., Vannini L., Siragusa S., De Giacomo A., Serrazzanetti D. I., et al. (2013). Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS. ONE 8:e76993 10.1371/journal.pone.0076993
    1. de Magistris L., Familiari V., Pascotto A., Sapone A., Frolli A., Iardino P., et al. . (2010). Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatric Gastroenterol. Nutr. 51, 418–424. 10.1097/MPG.0b013e3181dcc4a5
    1. de Theije C. G., Wu J., Koelink P. J., Korte-Bouws G. A., Borre Y., Kas M. J., et al. . (2014). Autistic-like behavioural and neurochemical changes in a mouse model of food allergy. Behavio. Brain. Res. 261, 265–274. 10.1016/j.bbr.2013.12.008
    1. Dendrou C. A., Fugger L., Friese M. A. (2015). Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 15, 545–558. 10.1038/nri3871
    1. Desbonnet L., Clarke G., Shanahan F., Dinan T. G., Cryan J. F. (2014). Microbiota is essential for social development in the mouse. Mol. Psychiatry 19, 146–148. 10.1038/mp.2013.65
    1. D'Eufemia P., Celli M., Finocchiaro R., Pacifico L., Viozzi L., Zaccagnini M., et al. . (1996). Abnormal intestinal permeability in children with autism. Acta Paediatrica 85, 1076–1079. 10.1111/j.1651-2227.1996.tb14220.x
    1. Devos D., Lebouvier T., Lardeux B., Biraud M., Rouaud T., Pouclet H., et al. . (2013). Colonic inflammation in Parkinson's disease. Neurobiol. Dis. 50, 42–48. 10.1016/j.nbd.2012.09.007
    1. Ding X., Zhang F., Li Q., Ting Z., Cui B., Li P. (2019). Selective microbiota transplantation is effective for controlling tourette's syndrome. Gastroenterology 156, S-456–S-457. 10.1016/S0016-5085(19)37992-2
    1. Dodiya H. B., Kuntz T., Shaik S. M., Baufeld C., Leibowitz J., Zhang X., et al. . (2019). Sex-specific effects of microbiome perturbations on cerebral Abeta amyloidosis and microglia phenotypes. J. Exp. Med. 216, 1542–1560. 10.1084/jem.20182386
    1. Dominy S. S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A., et al. . (2019). Porphyromonas gingivalis in Alzheimer's disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 5:eaau3333. 10.1126/sciadv.aau3333
    1. Doshi-Velez F., Avillach P., Palmer N., Bousvaros A., Ge Y., Fox K., et al. . (2015). Prevalence of inflammatory bowel disease among patients with autism spectrum disorders. Inflamm. Bowel Dis. 21, 2281–2288. 10.1097/MIB.0000000000000502
    1. Ducarmon Q. R., Zwittink R. D., Hornung B. V. H., van Schaik W., Young V. B., Kuijper E. J. (2019). Gut microbiota and colonization resistance against bacterial enteric infection. Microb. Mol. Biol. Rev. 83:e00007-19. 10.1128/MMBR.00007-19
    1. Ebino K. Y., Amao H., Suwa T., Kuwabara Y., Saito T. R., Takahashi K. W. (1987). Coprophagy in the germfree mouse. Jikken Dobutsu 36, 33–37. 10.1538/expanim1978.36.1_33
    1. Erny D., Hrabe de Angelis A. L., Jaitin D., Wieghofer P., Staszewski O., David E., et al. . (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977. 10.1038/nn.4030
    1. Fang X., Wang X., Yang S., Meng F., Wang X., Wei H., et al. . (2016). Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol. 7:1479. 10.3389/fmicb.2016.01479
    1. Fasano A., Bove F., Gabrielli M., Petracca M., Zocco M. A., Ragazzoni E., et al. . (2013). The role of small intestinal bacterial overgrowth in Parkinson's disease. Mov. Disord. 28, 1241–1249. 10.1002/mds.25522
    1. Fattorusso A., Di Genova L., Dell'Isola G. B., Mencaroni E., Esposito S. (2019). Autism spectrum disorders and the gut microbiota. Nutrients 11:521. 10.3390/nu11030521
    1. Finegold S. M., Dowd S. E., Gontcharova V., Liu C., Henley K. E., Wolcott R. D., et al. . (2010). Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16, 444–453. 10.1016/j.anaerobe.2010.06.008
    1. Finegold S. M., Molitoris D., Song Y., Liu C., Vaisanen M. L., Bolte E., et al. . (2002). Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 35(Suppl. 1), S6–s16. 10.1086/341914
    1. Forsyth C. B., Shannon K. M., Kordower J. H., Voigt R. M., Shaikh M., Jaglin J. A., et al. . (2011). Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS ONE 6:e28032. 10.1371/journal.pone.0028032
    1. Franceschi C., Bonafe M., Valensin S., Olivieri F., De Luca M., Ottaviani E., et al. . (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254. 10.1111/j.1749-6632.2000.tb06651.x
    1. Fujii Y., Nguyen T. T. T., Fujimura Y., Kameya N., Nakamura S., Arakawa K., et al. . (2019). Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer's disease. Biosci. Biotechnol. Biochem. 83, 1–9. 10.1080/09168451.2019.1644149
    1. Gabrielli M., Bonazzi P., Scarpellini E., Bendia E., Lauritano E. C., Fasano A., et al. . (2011). Prevalence of small intestinal bacterial overgrowth in Parkinson's disease. Mov. Dis. 26, 889–892. 10.1002/mds.23566
    1. Gazerani P. (2019). Probiotics for Parkinson's disease. Int. J. Mol. Sci. 20:E4121. 10.3390/ijms20174121
    1. Ghanizadeh A., Berk M. (2015). Beta-lactam antibiotics as a possible novel therapy for managing epilepsy and autism, a case report and review of literature. Iran. J. Child Neurol. 9, 99–102. 10.22037/ijcn.v9i1.5493
    1. Gomez-Eguilaz M., Ramon-Trapero J. L., Perez-Martinez L., Blanco J. R. (2018). The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Beneficial Microbes 9, 875–881. 10.3920/BM2018.0018
    1. Goverman J., Woods A., Larson L., Weiner L. P., Hood L., Zaller D. M. (1993). Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell 72, 551–560. 10.1016/0092-8674(93)90074-Z
    1. Gregory J. C., Buffa J. A., Org E., Wang Z., Levison B. S., Zhu W., et al. . (2015). Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 290, 5647–5660. 10.1074/jbc.M114.618249
    1. Gungor B., Adiguzel E., Gursel I., Yilmaz B., Gursel M. (2016). intestinal microbiota in patients with spinal cord injury. PLoS ONE 11:e0145878. 10.1371/journal.pone.0145878
    1. Guo R., Chen L. H., Xing C., Liu T. (2019). Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br. J. Anaesth. 123, 637–654. 10.1016/j.bja.2019.07.026
    1. Hallett P. J., McLean J. R., Kartunen A., Langston J. W., Isacson O. (2012). alpha-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol. Dis. 47, 258–267. 10.1016/j.nbd.2012.04.009
    1. Han L., Ji L., Chang J., Wen J., Zhao W., Shi H., et al. . (2015). Peripheral neuropathy is associated with insulin resistance independent of metabolic syndrome. Diabetol. Metab. Syndrome 7:14. 10.1186/s13098-015-0010-y
    1. Harach T., Marungruang N., Duthilleul N., Cheatham V., Mc Coy K. D., Frisoni G., et al. (2017). Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci. Rep. 7:41802 10.1038/srep46856
    1. Haran J. P., Bhattarai S. K., Foley S. E., Dutta P., Ward D. V., Bucci V., et al. . (2019). Alzheimer's disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. mBio 10:e00632-19. 10.1128/mBio.00632-19
    1. Hasegawa S., Goto S., Tsuji H., Okuno T., Asahara T., Nomoto K., et al. . (2015). Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson's disease. PLoS ONE 10:e0142164. 10.1371/journal.pone.0142164
    1. He Z., Cui B. T., Zhang T., Li P., Long C. Y., Ji G. Z., et al. . (2017). Fecal microbiota transplantation cured epilepsy in a case with Crohn's disease: the first report. World. J. Gastroenterol. 23, 3565–3568. 10.3748/wjg.v23.i19.3565
    1. Holmqvist S., Chutna O., Bousset L., Aldrin-Kirk P., Li W., Bjorklund T., et al. . (2014). Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820. 10.1007/s00401-014-1343-6
    1. Hsiao E. Y., McBride S. W., Hsien S., Sharon G., Hyde E. R., McCue T., et al. . (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463. 10.1016/j.cell.2013.11.024
    1. Hu X., Wang T., Jin F. (2016). Alzheimer's disease and gut microbiota. Sci. China Life Sci. 59, 1006–1023. 10.1007/s11427-016-5083-9
    1. Huang H., Xu H., Luo Q., He J., Li M., Chen H., et al. . (2019). Fecal microbiota transplantation to treat Parkinson's disease with constipation: a case report. Medicine 98:e16163. 10.1097/MD.0000000000016163
    1. Huang J., Zhang C., Wang J., Guo Q., Zou W. (2019). Oral Lactobacillus reuteri LR06 or Bifidobacterium BL5b supplement do not produce analgesic effects on neuropathic and inflammatory pain in rats. Brain. Behav. 9:e01260 10.1002/brb3.1260
    1. Hugenholtz F., de Vos W. M. (2018). Mouse models for human intestinal microbiota research: a critical evaluation. Cell. Mol. Life. Sci. 75, 149–160. 10.1007/s00018-017-2693-8
    1. Jacobs B. C., Hazenberg M. P., van Doorn P. A., Endtz H. P., van der Meche F. G. (1997). Cross-reactive antibodies against gangliosides and Campylobacter jejuni lipopolysaccharides in patients with Guillain-Barre or Miller Fisher syndrome. J. Infect. Dis. 175, 729–733. 10.1093/infdis/175.3.729
    1. Jamshidi P., Hasanzadeh S., Tahvildari A., Farsi Y., Arbabi M., Mota J. F., et al. . (2019). Is there any association between gut microbiota and type 1 diabetes? A systematic review. Gut. Pathog. 11:49. 10.1186/s13099-019-0332-7
    1. Jangi S., Gandhi R., Cox L. M., Li N., von Glehn F., Yan R., et al. . (2016). Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7:12015. 10.1038/ncomms12015
    1. Jiang C., Li G., Huang P., Liu Z., Zhao B. (2017). The gut microbiota and Alzheimer's disease. J. Alzheimer's. Dis. 58, 1–15. 10.3233/JAD-161141
    1. Kaluzna-Czaplinska J., Blaszczyk S. (2012). The level of arabinitol in autistic children after probiotic therapy. Nutrition 28, 124–126. 10.1016/j.nut.2011.08.002
    1. Kang D. W., Adams J. B., Coleman D. M., Pollard E. L., Maldonado J., McDonough-Means S., et al. . (2019). Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota. Sci. Rep. 9:5821. 10.1038/s41598-019-42183-0
    1. Kang D. W., Adams J. B., Gregory A. C., Borody T., Chittick L., Fasano A., et al. . (2017). Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5:10. 10.1186/s40168-016-0225-7
    1. Kang D. W., Park J. G., Ilhan Z. E., Wallstrom G., Labaer J., Adams J. B., et al. . (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 8:e68322. 10.1371/journal.pone.0068322
    1. Karlsson F. H., Fak F., Nookaew I., Tremaroli V., Fagerberg B., Petranovic D., et al. . (2012). Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3:1245. 10.1038/ncomms2266
    1. Karlsson F. H., Tremaroli V., Nookaew I., Bergstrom G., Behre C. J., Fagerberg B., et al. . (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103. 10.1038/nature12198
    1. Kelly C. R., Khoruts A., Staley C., Sadowsky M. J., Abd M., Alani M., et al. . (2016). Effect of fecal microbiota transplantation on recurrence in multiply recurrent clostridium difficile infection: a randomized trial. Ann. Int. Med. 165, 609–616. 10.7326/M16-0271
    1. Keshavarzian A., Green S. J., Engen P. A., Voigt R. M., Naqib A., Forsyth C. B., et al. . (2015). Colonic bacterial composition in Parkinson's disease. Mov. Disord. 30, 1351–1360. 10.1002/mds.26307
    1. Kim S., Kwon S. H., Kam T. I., Panicker N., Karuppagounder S. S., Lee S., et al. . (2019). Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson's disease. Neuron 103, 627–641.e7. 10.1016/j.neuron.2019.05.035
    1. Kitamura S., Sugihara K., Kuwasako M., Tatsumi K. (1997). The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J. Pharm. Pharmacol. 49, 253–256. 10.1111/j.2042-7158.1997.tb06790.x
    1. Knivsberg A. M., Reichelt K. L., Hoien T., Nodland M. (2002). A randomised, controlled study of dietary intervention in autistic syndromes. Nutr. Neurosci. 5, 251–261. 10.1080/10284150290028945
    1. Kobayashi Y., Kinoshita T., Matsumoto A., Yoshino K., Saito I., Xiao J. Z. (2019a). Bifidobacterium Breve A1 supplementation improved cognitive decline in older adults with mild cognitive impairment: an open-label, single-arm study. J. Prev. Alzheimer's. Dis. 6, 70–75. 10.14283/jpad.2018.32
    1. Kobayashi Y., Kuhara T., Oki M., Xiao J. Z. (2019b). Effects of Bifidobacterium breve A1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef. Microbes 10, 511–520. 10.3920/BM2018.0170
    1. Kobayashi Y., Sugahara H., Shimada K., Mitsuyama E., Kuhara T., Yasuoka A., et al. . (2017). Therapeutic potential of Bifidobacterium breve strain A1 for preventing cognitive impairment in Alzheimer's disease. Sci. Rep. 7:13510. 10.1038/s41598-017-13368-2
    1. Koren O., Spor A., Felin J., Fak F., Stombaugh J., Tremaroli V., et al. . (2011). Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl 1), 4592–4598. 10.1073/pnas.1011383107
    1. Kuo Y. M., Li Z., Jiao Y., Gaborit N., Pani A. K., Orrison B. M., et al. . (2010). Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Hum. Mol. Genet. 19, 1633–1650. 10.1093/hmg/ddq038
    1. Laake K., Oeksengaard A. R. (2002). D-cycloserine for Alzheimer's disease. Cochrane Database Syst. Rev. Cd003153. 10.1002/14651858.CD003153
    1. Larbi A., Pawelec G., Witkowski J. M., Schipper H. M., Derhovanessian E., Goldeck D., et al. (2009). Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer's disease. J. Alzheimer's Di. 17, 91–103. 10.3233/JAD-2009-1015
    1. Li B., He Y., Ma J., Huang P., Du J., Cao L., et al. . (2019). Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota. Alzheimer's Dement. 15, 1357–1366. 10.1016/j.jalz.2019.07.002
    1. Li N., Wang X., Sun C., Wu X., Lu M., Si Y., et al. . (2019). Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol. 19:191. 10.1186/s12866-019-1552-1
    1. Li X., Chauhan A., Sheikh A. M., Patil S., Chauhan V., Li X. M., et al. . (2009). Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 207, 111–116. 10.1016/j.jneuroim.2008.12.002
    1. Liao J. F., Cheng Y. F., Li S. W., Lee W. T., Hsu C. C., Wu C. C., et al. . (2019). Lactobacillus plantarum PS128 ameliorates 2,5-Dimethoxy-4-iodoamphetamine-induced tic-like behaviors via its influences on the microbiota-gut-brain-axis. Brain Res. Bull. 153, 59–73. 10.1016/j.brainresbull.2019.07.027
    1. Liautard J. P. (1991). Are prions misfolded molecular chaperones? FEBS Lett. 294, 155–157. 10.1016/0014-5793(91)80657-O
    1. Lindefeldt M., Eng A., Darban H., Bjerkner A., Zetterstrom C. K., Allander T., et al. . (2019). The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 5:5. 10.1038/s41522-018-0073-2
    1. Liu P., Wu L., Peng G., Han Y., Tang R., Ge J., et al. . (2019). Altered microbiomes distinguish Alzheimer's disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav. Immun. 80, 633–643. 10.1016/j.bbi.2019.05.008
    1. Lum G. R., Olson C. A., Hsiao E. Y. (2019). Emerging roles for the intestinal microbiome in epilepsy. Neurobiol. Dis. 135:104576. 10.1016/j.nbd.2019.104576
    1. Ma B., Liang J., Dai M., Wang J., Luo J., Zhang Z., et al. . (2019). Altered gut microbiota in chinese children with autism spectrum disorders. Front. Cell. Infect. Microbiol. 9:40. 10.3389/fcimb.2019.00040
    1. MacFabe D. F., Cain D. P., Rodriguez-Capote K., Franklin A. E., Hoffman J. E., Boon F., et al. . (2007). Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders. Behav. Brain Res. 176, 149–169. 10.1016/j.bbr.2006.07.025
    1. Maini Rekdal V., Bess E. N., Bisanz J. E., Turnbaugh P. J., Balskus E. P. (2019). Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364:eaau6323. 10.1126/science.aau6323
    1. Makkawi S., Camara-Lemarroy C., Metz L. (2018). Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol. Neuroimmunol. Neuroinflamm. 5:e459. 10.1212/NXI.0000000000000459
    1. Malik A., Sharma D., St Charles J., Dybas L. A., Mansfield L. S. (2014). Contrasting immune responses mediate Campylobacter jejuni-induced colitis and autoimmunity. Mucosal Immunol. 7, 802–817. 10.1038/mi.2013.97
    1. Mangalam A., Shahi S. K., Luckey D., Karau M., Marietta E., Luo N., et al. . (2017). Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep. 20, 1269–1277. 10.1016/j.celrep.2017.07.031
    1. Maqsood R., Stone T. W. (2016). The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem. Res. 41, 2819–2835. 10.1007/s11064-016-2039-1
    1. Marques C., Meireles M., Faria A., Calhau C. (2016). High-fat diet-induced dysbiosis as a cause of neuroinflammation. Biol. Psychiatry 80, e3–4. 10.1016/j.biopsych.2015.10.027
    1. Mawanda F., Wallace R. (2013). Can infections cause Alzheimer's disease? Epidemiol. Rev. 35, 161–180. 10.1093/epirev/mxs007
    1. Mayer E. A., Padua D., Tillisch K. (2014). Altered brain-gut axis in autism: comorbidity or causative mechanisms? BioEssays. 36, 933–939. 10.1002/bies.201400075
    1. Mazurek M. O., Vasa R. A., Kalb L. G., Kanne S. M., Rosenberg D., Keefer A., et al. . (2013). Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J. Abnormal Child Psychol. 41, 165–176. 10.1007/s10802-012-9668-x
    1. Mazzini L., Mogna L., De Marchi F., Amoruso A., Pane M., Aloisio I., et al. . (2018). Potential role of gut microbiota in ALS pathogenesis and possible novel therapeutic strategies. J. Clin. Gastroenterol. 52(Suppl. 1), S68–S70. 10.1097/MCG.0000000000001042
    1. McElhanon B. O., McCracken C., Karpen S., Sharp W. G. (2014). Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133, 872–883. 10.1542/peds.2013-3995
    1. Medel-Matus J. S., Shin D., Dorfman E., Sankar R., Mazarati A. (2018). Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open 3, 290–294. 10.1002/epi4.12114
    1. Meisel C., Schwab J. M., Prass K., Meisel A., Dirnagl U. (2005). Central nervous system injury-induced immune deficiency syndrome. Nat. Rev. Neurosci. 6, 775–786. 10.1038/nrn1765
    1. Miyake S., Kim S., Suda W., Oshima K., Nakamura M., Matsuoka T., et al. . (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS ONE 10:e0137429. 10.1371/journal.pone.0137429
    1. Moir R. D., Lathe R., Tanzi R. E. (2018). The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimer's Dement. 14, 1602–1614. 10.1016/j.jalz.2018.06.3040
    1. Morishita T. Y., Aye P. P., Harr B. S., Cobb C. W., Clifford J. R. (1997). Evaluation of an avian-specific probiotic to reduce the colonization and shedding of Campylobacter jejuni in broilers. Avian. Dis. 41, 850–855. 10.2307/1592338
    1. Nam H. S., Ha J., Ji D., Kwon I., Lee H. S., Han M., et al. . (2019). Elevation of the gut microbiota metabolite trimethylamine N-oxide predicts stroke outcome. J. Stroke 21, 350–352. 10.5853/jos.2019.00850
    1. Navarro F., Liu Y., Rhoads J. M. (2016). Can probiotics benefit children with autism spectrum disorders? World J. Gastroenterol. 22, 10093–10102. 10.3748/wjg.v22.i46.10093
    1. O'Loughlin J. L., Samuelson D. R., Braundmeier-Fleming A. G., White B. A., Haldorson G. J., Stone J. B., et al. . (2015). The intestinal microbiota influences Campylobacter jejuni colonization and extraintestinal dissemination in mice. Appl. Environ. Microbiol. 81, 4642–4650. 10.1128/AEM.00281-15
    1. Olson C. A., Vuong H. E., Yano J. M., Liang Q. Y., Nusbaum D. J., Hsiao E. Y. (2018). The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 173, 1728–1741. 10.1016/j.cell.2018.04.027
    1. Olsson T., Barcellos L. F., Alfredsson L. (2017). Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 13, 25–36. 10.1038/nrneurol.2016.187
    1. Pakkenberg B., Moller A., Gundersen H. J., Mouritzen Dam A., Pakkenberg H. (1991). The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson's disease estimated with an unbiased stereological method. J. Neurol. Neurosurg. Psychiatry 54, 30–33. 10.1136/jnnp.54.1.30
    1. Pan-Montojo F., Anichtchik O., Dening Y., Knels L., Pursche S., Jung R., et al. . (2010). Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE 5:e8762. 10.1371/journal.pone.0008762
    1. Park Y. D. (2003). The effects of vagus nerve stimulation therapy on patients with intractable seizures and either Landau-Kleffner syndrome or autism. Epilepsy Behav. 4, 286–290. 10.1016/S1525-5050(03)00080-5
    1. Parracho H. M. R. T., Gibson G. R., Knott F., Bosscher D., Kleerebezem M., McCartney A. (2010). A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. Int. J. Probiotics Prebiotics 5, 69–74.
    1. Partty A., Kalliomaki M., Wacklin P., Salminen S., Isolauri E. (2015). A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr. Res. 77, 823–828. 10.1038/pr.2015.51
    1. Peng A., Qiu X., Lai W., Li W., Zhang L., Zhu X., et al. . (2018). Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res. 147, 102–107. 10.1016/j.eplepsyres.2018.09.013
    1. Pisa D., Alonso R., Fernandez-Fernandez A. M., Rabano A., Carrasco L. (2017). Polymicrobial infections in brain tissue from Alzheimer's disease patients. Sci. Rep. 7:5559. 10.1038/s41598-017-05903-y
    1. Poewe W. (2008). Non-motor symptoms in Parkinson's disease. Eur. J. Neurol. 15(Suppl. 1), 14–20. 10.1111/j.1468-1331.2008.02056.x
    1. Postuma R. B., Aarsland D., Barone P., Burn D. J., Hawkes C. H., Oertel W., et al. . (2012). Identifying prodromal Parkinson's disease: pre-motor disorders in Parkinson's disease. Mov. Disord. 27, 617–626. 10.1002/mds.24996
    1. Qin J., Li Y., Cai Z., Li S., Zhu J., Zhang F., et al. . (2012). A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60. 10.1038/nature11450
    1. Quagliariello A., Del Chierico F., Russo A., Reddel S., Conte G., Lopetuso L. R., et al. . (2018). Gut microbiota profiling and gut-brain crosstalk in children affected by pediatric acute-onset neuropsychiatric syndrome and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Front. Microb. 9:675. 10.3389/fmicb.2018.00675
    1. Rezaei Asl Z., Sepehri G., Salami M. (2019). Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimer's disease. Behav. Brain Res. 376:112183. 10.1016/j.bbr.2019.112183
    1. Rooks M. G., Garrett W. S. (2016). Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352. 10.1038/nri.2016.42
    1. Rowin J., Xia Y., Jung B., Sun J. (2017). Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep. 5:e13443. 10.14814/phy2.13443
    1. Saji N., Niida S., Murotani K., Hisada T., Tsuduki T., Sugimoto T., et al. . (2019). Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan. Sci. Rep. 9:1008. 10.1038/s41598-018-38218-7
    1. Sampson T. R., Debelius J. W., Thron T., Janssen S., Shastri G. G., Ilhan Z. E., et al. . (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167, 1469–1480.e12. 10.1016/j.cell.2016.11.018
    1. Sandler R. H., Finegold S. M., Bolte E. R., Buchanan C. P., Maxwell A. P., Vaisanen M. L., et al. . (2000). Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol. 15, 429–435. 10.1177/088307380001500701
    1. Scheperjans F., Aho V., Pereira P. A., Koskinen K., Paulin L., Pekkonen E., et al. . (2015). Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30, 350–358. 10.1002/mds.26069
    1. Schulte-Herbruggen O., Quarcoo D., Meisel A., Meisel C. (2009). Differential affection of intestinal immune cell populations after cerebral ischemia in mice. Neuroimmunomodulation 16, 213–218. 10.1159/000205514
    1. Selkoe D. J., Hardy J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol. Med. 8, 595–608. 10.15252/emmm.201606210
    1. Sewal R. K., Modi M., Saikia U. N., Chakrabarti A., Medhi B. (2017). Increase in seizure susceptibility in sepsis like condition explained by spiking cytokines and altered adhesion molecules level with impaired blood brain barrier integrity in experimental model of rats treated with lipopolysaccharides. Epilepsy Res. 135, 176–186. 10.1016/j.eplepsyres.2017.05.012
    1. Shaaban S. Y., El Gendy Y. G., Mehanna N. S., El-Senousy W. M., El-Feki H. S. A., Saad K., et al. . (2018). The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr. Neurosci. 21, 676–681. 10.1080/1028415X.2017.1347746
    1. Shannon K. M., Keshavarzian A., Dodiya H. B., Jakate S., Kordower J. H. (2012). Is alpha-synuclein in the colon a biomarker for premotor Parkinson's disease? Evidence from 3 cases. Mov. Disord. 27, 716–719. 10.1002/mds.25020
    1. Sharon G., Cruz N. J., Kang D. W., Gandal M. J., Wang B., Kim Y. M., et al. . (2019). Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 177, 1600–1618.e17. 10.1016/j.cell.2019.05.004
    1. Shen S., Lim G., You Z., Ding W., Huang P., Ran C., et al. . (2017). Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat. Neurosci. 20, 1213–1216. 10.1038/nn.4606
    1. Shults C. W. (2006). Lewy bodies. Proc. Natl. Acad. Sci. U.S.A. 103, 1661–1668. 10.1073/pnas.0509567103
    1. Silva S. C., Correia C., Fesel C., Barreto M., Coutinho A. M., Marques C., et al. . (2004). Autoantibody repertoires to brain tissue in autism nuclear families. J. Neuroimmunol. 152, 176–182. 10.1016/j.jneuroim.2004.03.015
    1. Singh V., Roth S., Llovera G., Sadler R., Garzetti D., Stecher B., et al. . (2016). Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440. 10.1523/JNEUROSCI.1114-16.2016
    1. Snider L. A., Lougee L., Slattery M., Grant P., Swedo S. E. (2005). Antibiotic prophylaxis with azithromycin or penicillin for childhood-onset neuropsychiatric disorders. Biol. Psychiatry 57, 788–792. 10.1016/j.biopsych.2004.12.035
    1. Son J. S., Zheng L. J., Rowehl L. M., Tian X., Zhang Y., Zhu W., et al. . (2015). Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex collection. PLoS ONE 10:e0137725. 10.1371/journal.pone.0137725
    1. Spillantini M. G., Schmidt M. L., Lee V. M., Trojanowski J. Q., Jakes R., Goedert M. (1997). Alpha-synuclein in Lewy bodies. Nature 388, 839–840. 10.1038/42166
    1. Spychala M. S., Venna V. R., Jandzinski M., Doran S. J., Durgan D. J., Ganesh B. P., et al. . (2018). Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann. Neurol. 84, 23–36. 10.1002/ana.25250
    1. St Charles J. L., Bell J. A., Gadsden B. J., Malik A., Cooke H., Van de Grift L. K., et al. . (2017). Guillain barre syndrome is induced in non-obese diabetic (NOD) mice following Campylobacter jejuni infection and is exacerbated by antibiotics. J. Autoimmunity 77, 11–38. 10.1016/j.jaut.2016.09.003
    1. Stahl M., Ries J., Vermeulen J., Yang H., Sham H. P., Crowley S. M., et al. . (2014). A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection. PLoS. Pathog. 10:e1004264. 10.1371/journal.ppat.1004264
    1. Stepankova R., Tonar Z., Bartova J., Nedorost L., Rossman P., Poledne R., et al. . (2010). Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J. Atheroscl. Thrombosis 17, 796–804. 10.5551/jat.3285
    1. Stokholm M. G., Danielsen E. H., Hamilton-Dutoit S. J., Borghammer P. (2016). Pathological alpha-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann. Neurol. 79, 940–949. 10.1002/ana.24648
    1. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., et al. . (2016). Altered gut microbiota in Rett syndrome. Microbiome 4:41. 10.1186/s40168-016-0185-y
    1. Sun J., Wang F., Ling Z., Yu X., Chen W., Li H., et al. . (2016). Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Res. 1642, 180–188. 10.1016/j.brainres.2016.03.042
    1. Sun M. F., Zhu Y. L., Zhou Z. L., Jia X. B., Xu Y. D., Yang Q., et al. . (2018). Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: gut microbiota, glial reaction and TLR4/TNF-alpha signaling pathway. Brain Behav. Immun. 70, 48–60. 10.1016/j.bbi.2018.02.005
    1. Swidsinski A., Loening-Baucke V., Krüger M., Kirsch S. (2012). Central nervous system and the colonic bioreactor: analysis of colonic microbiota in patients with stroke unravels unknown mechanisms of the host defense after brain injury. Intestinal Res. 10, 332–342. 10.5217/ir.2012.10.4.332
    1. Tamtaji O. R., Heidari-Soureshjani R., Mirhosseini N., Kouchaki E., Bahmani F., Aghadavod E., et al. . (2019). Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: a randomized, double-blind, controlled trial. Clin. Nutr. 38, 2569–2575. 10.1016/j.clnu.2018.11.034
    1. Tan A. H., Chong C. W., Song S. L., Teh C. S. J., Yap I. K. S., Loke M. F., et al. . (2018). Altered gut microbiome and metabolome in patients with multiple system atrophy. Mov. Disord. 33, 174–176. 10.1002/mds.27203
    1. Tan A. H., Mahadeva S., Thalha A. M., Gibson P. R., Kiew C. K., Yeat C. M., et al. . (2014). Small intestinal bacterial overgrowth in Parkinson's disease. Parkinsonism Relat. Disord. 20, 535–540. 10.1016/j.parkreldis.2014.02.019
    1. Thompson A. J., Baranzini S. E., Geurts J., Hemmer B., Ciccarelli O. (2018). Multiple sclerosis. Lancet 391, 1622–1636. 10.1016/S0140-6736(18)30481-1
    1. Todd R. D., Hickok J. M., Anderson G. M., Cohen D. J. (1988). Antibrain antibodies in infantile autism. Biol. Psychiatry 23, 644–647. 10.1016/0006-3223(88)90012-1
    1. Torres-Fuentes C., Schellekens H., Dinan T. G., Cryan J. F. (2017). The microbiota-gut-brain axis in obesity. Lancet Gastroenterol. Hepatol. 2, 747–756. 10.1016/S2468-1253(17)30147-4
    1. Tursi S. A., Tükel C. (2018). Curli-containing enteric biofilms inside and out: matrix composition, immune recognition, and disease implications. Microbiol. Mol. Biol. Rev. 82:e00028-18. 10.1128/MMBR.00028-18
    1. Ulusoy A., Rusconi R., Perez-Revuelta B. I., Musgrove R. E., Helwig M., Winzen-Reichert B., et al. . (2013). Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol. Med. 5, 1119–1127. 10.1002/emmm.201302475
    1. Unger M. M., Spiegel J., Dillmann K. U., Grundmann D., Philippeit H., Burmann J., et al. . (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat. Disord. 32, 66–72. 10.1016/j.parkreldis.2016.08.019
    1. Urbonas V., Cervinskiene J. (2018). Fecal transplantation and its role in autism spectrum disorders, in EHMSG – XXXIst International Workshop on Helicobacter and Microbiota in Inflammation and Cancer (Kaunas: Helicobacter; ), 17.
    1. van Kessel S. P., Frye A. K., El-Gendy A. O., Castejon M., Keshavarzian A., van Dijk G., et al. . (2019). Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease. Nat. Commun. 10:310. 10.1038/s41467-019-08294-y
    1. van Nood E., Vrieze A., Nieuwdorp M., Fuentes S., Zoetendal E. G., de Vos W. M., et al. . (2013). Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415. 10.1056/NEJMoa1205037
    1. Vargas D. L., Nascimbene C., Krishnan C., Zimmerman A. W., Pardo C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 57, 67–81. 10.1002/ana.20315
    1. Vogt N. M., Kerby R. L., Dill-McFarland K. A., Harding S. J., Merluzzi A. P., Johnson S. C., et al. . (2017). Gut microbiome alterations in Alzheimer's disease. Sci. Rep. 7:13537. 10.1038/s41598-017-13601-y
    1. Vojdani A., Campbell A. W., Anyanwu E., Kashanian A., Bock K., Vojdani E. (2002). Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J. Neuroimmunol. 129, 168–177. 10.1016/S0165-5728(02)00180-7
    1. Vrieze A., Van Nood E., Holleman F., Salojarvi J., Kootte R. S., Bartelsman J. F., et al. . (2012). Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7. 10.1053/j.gastro.2012.06.031
    1. Wagner R. D., Johnson S. J., Kurniasih Rubin D. (2009). Probiotic bacteria are antagonistic to Salmonella enterica and Campylobacter jejuni and influence host lymphocyte responses in human microbiota-associated immunodeficient and immunocompetent mice. Mol. Nutr. Food Res. 53, 377–388. 10.1002/mnfr.200800101
    1. Wang L. W., Tancredi D. J., Thomas D. W. (2011). The prevalence of gastrointestinal problems in children across the United States with autism spectrum disorders from families with multiple affected members. J. Dev. Behav. Pediatrics 32, 351–360. 10.1097/DBP.0b013e31821bd06a
    1. Wang S., Xu M., Wang W., Cao X., Piao M., Khan S., et al. . (2016). Systematic review: adverse events of fecal microbiota transplantation. PLoS ONE 11:e0161174. 10.1371/journal.pone.0161174
    1. Wang Z., Klipfell E., Bennett B. J., Koeth R., Levison B. S., Dugar B., et al. . (2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63. 10.1038/nature09922
    1. Ward L., O'Grady H., Wu K., Cannon K., Workentine M., Louie T. (2016). Combined oral fecal capsules plus fecal enema as treatment of late onset autism spectrum disorder in children: report of a small case series, in IDweek (New Orleans, LA: ). Available online at:
    1. West R., Roberts E., Sichel L. S., Sichel J. (2013). Improvements in gastrointestinal symptoms among children with autism spectrum disorder receiving the delpro® probiotic and immunomodulator formulation. J. Prob. Health 1:102 10.4172/2329-8901.1000102
    1. Whiteley P., Haracopos D., Knivsberg A. M., Reichelt K. L., Parlar S., Jacobsen J., et al. . (2010). The ScanBrit randomised, controlled, single-blind study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders. Nutr. Neurosci. 13, 87–100. 10.1179/147683010X12611460763922
    1. Williams B. L., Hornig M., Buie T., Bauman M. L., Cho Paik M., Wick I., et al. . (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE 6:e24585. 10.1371/journal.pone.0024585
    1. Willis W. L., Reid L. (2008). Investigating the effects of dietary probiotic feeding regimens on broiler chicken production and Campylobacter jejuni presence. Poultry Sci. 87, 606–611. 10.3382/ps.2006-00458
    1. Willison H. J., Jacobs B. C., van Doorn P. A. (2016). Guillain-Barre syndrome. Lancet 388, 717–727. 10.1016/S0140-6736(16)00339-1
    1. Wills S., Cabanlit M., Bennett J., Ashwood P., Amaral D. G., Van de Water J. (2009). Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav. Immun. 23, 64–74. 10.1016/j.bbi.2008.07.007
    1. Wine E., Gareau M. G., Johnson-Henry K., Sherman P. M. (2009). Strain-specific probiotic (Lactobacillus helveticus) inhibition of Campylobacter jejuni invasion of human intestinal epithelial cells. FEMS Microbiol. Lett. 300, 146–152. 10.1111/j.1574-6968.2009.01781.x
    1. Winek K., Engel O., Koduah P., Heimesaat M. M., Fischer A., Bereswill S., et al. . (2016). Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke 47, 1354–1363. 10.1161/STROKEAHA.115.011800
    1. Xia G. H., You C., Gao X. X., Zeng X. L., Zhu J. J., Xu K. Y., et al. . (2019). Stroke dysbiosis index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front. Neurol. 10:397. 10.3389/fneur.2019.00397
    1. Xie G., Zhou Q., Qiu C. Z., Dai W. K., Wang H. P., Li Y. H., et al. . (2017). Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J. Gastroenterol. 23, 6164–6171. 10.3748/wjg.v23.i33.6164
    1. Yang C., Fang X., Zhan G., Huang N., Li S., Bi J., et al. . (2019). Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Transl. Psychiatry 9:57. 10.1038/s41398-019-0379-8
    1. Yang S., Li X., Yang F., Zhao R., Pan X., Liang J., et al. . (2019). gut microbiota-dependent marker TMAO in promoting cardiovascular disease: inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front. Pharmacol. 10:1360. 10.3389/fphar.2019.01360
    1. Yeom J. S., Park J. S., Kim Y. S., Kim R. B., Choi D. S., Chung J. Y., et al. . (2019). Neonatal seizures and white matter injury: Role of rotavirus infection and probiotics. Brain Dev. 41, 19–28. 10.1016/j.braindev.2018.07.001
    1. Yin J., Liao S. X., He Y., Wang S., Xia G. H., Liu F. T., et al. (2015). Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J. Am. Heart Assoc. 4:e002699 10.1161/JAHA.115.002699
    1. Yissachar N., Zhou Y., Ung L., Lai N. Y., Mohan J. F., Ehrlicher A., et al. . (2017). An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168, 1135–48.e12. 10.1016/j.cell.2017.02.009.
    1. Yu F., Han W., Zhan G., Li S., Xiang S., Zhu B., et al. . (2019). Abnormal gut microbiota composition contributes to cognitive dysfunction in streptozotocin-induced diabetic mice. Aging 11, 3262–3279. 10.18632/aging.101978
    1. Yuki N. (1997). Molecular mimicry between gangliosides and lipopolysaccharides of Campylobacter jejuni isolated from patients with Guillain-Barre syndrome and Miller Fisher syndrome. J. Infect. Dis. 176(Suppl. 2), S150–S153. 10.1086/513800
    1. Zhan G., Yang N., Li S., Huang N., Fang X., Zhang J., et al. . (2018). Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice. Aging 10, 1257–1267. 10.18632/aging.101464
    1. Zhan X., Stamova B., Jin L. W., DeCarli C., Phinney B., Sharp F. R. (2016). Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology 87, 2324–2332. 10.1212/WNL.0000000000003391
    1. Zhao H., Gao X., Xi L., Shi Y., Peng L., Wang C., et al. (2019). Fecal microbiota transplantation for children with autism spectrum disorder, in DDW 2019 ASGE Program and Abstracts, Gastrointestinal Endoscopy, ed Wallace M. B. (San Diego, CA: ), AB512–AB513.
    1. Zhao H., Shi Y., Luo X., Peng L., Yang Y., Zou L. (2017). The effect of fecal microbiota transplantation on a child with tourette syndrome. Case. reports. in. medicine. 2017:6165239. 10.1155/2017/6165239
    1. Zhao Y., Dua P., Lukiw W. J. (2015). Microbial Sources of amyloid and relevance to amyloidogenesis and Alzheimer's disease (AD). J. Alzheimer's. Dis. Parkinsonism 5:177. 10.4172/2161-0460.1000177
    1. Zhao Y., Jaber V., Lukiw W. J. (2017). Secretory products of the human GI tract microbiome and their potential impact on Alzheimer's disease (AD): detection of lipopolysaccharide (LPS) in AD hippocampus. Front. Cell. Infect. Microbiol. 7:318. 10.3389/fcimb.2017.00318
    1. Zhou Z. L., Jia X. B., Sun M. F., Zhu Y. L., Qiao C. M., Zhang B. P., et al. . (2019). Neuroprotection of fasting mimicking diet on MPTP-induced Parkinson's disease mice via gut microbiota and metabolites. Neurotherapeutics 16, 741–760. 10.1007/s13311-019-00719-2
    1. Zhu W., Gregory J. C., Org E., Buffa J. A., Gupta N., Wang Z., et al. . (2016). Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124. 10.1016/j.cell.2016.02.011
    1. Zhuang Z. Q., Shen L. L., Li W. W., Fu X., Zeng F., Gui L., et al. . (2018). Gut microbiota is altered in patients with Alzheimer's disease. J. Alzheimer's Dis. 63, 1337–1346. 10.3233/JAD-180176

Source: PubMed

3
订阅