Postcontractile blood oxygenation level-dependent (BOLD) response in Duchenne muscular dystrophy

Christopher Lopez, Tanja Taivassalo, Maria G Berru, Andres Saavedra, Hannah C Rasmussen, Abhinandan Batra, Harneet Arora, Alex M Roetzheim, Glenn A Walter, Krista Vandenborne, Sean C Forbes, Christopher Lopez, Tanja Taivassalo, Maria G Berru, Andres Saavedra, Hannah C Rasmussen, Abhinandan Batra, Harneet Arora, Alex M Roetzheim, Glenn A Walter, Krista Vandenborne, Sean C Forbes

Abstract

Duchenne muscular dystrophy (DMD) is characterized by a progressive replacement of muscle by fat and fibrous tissue, muscle weakness, and loss of functional abilities. Impaired vasodilatory and blood flow responses to muscle activation have also been observed in DMD and associated with mislocalization of neuronal nitric oxide synthase mu (nNOSμ) from the sarcolemma. The objective of this study was to determine whether the postcontractile blood oxygen level-dependent (BOLD) MRI response is impaired in DMD and correlated with established markers of disease severity in DMD, including MRI muscle fat fraction (FF) and clinical functional measures. Young boys with DMD (n = 16, 5-14 yr) and unaffected controls (n = 16, 5-14 yr) were evaluated using postcontractile BOLD, FF, and functional assessments. The BOLD response was measured following five brief (2 s) maximal voluntary dorsiflexion contractions, each separated by 1 min of rest. FFs from the anterior compartment lower leg muscles were quantified via chemical shift-encoded imaging. Functional abilities were assessed using the 10 m walk/run and the 6-min walk distance (6MWD). The peak BOLD responses in the tibialis anterior and extensor digitorum longus were reduced (P < 0.001) in DMD compared with controls. Furthermore, the anterior compartment peak BOLD response correlated with function (6MWD ρ = 0.87, P < 0.0001; 10 m walk/run time ρ = -0.78, P < 0.001) and FF (ρ = -0.52, P = 0.05). The reduced postcontractile BOLD response in DMD may reflect impaired microvascular function. The relationship observed between the postcontractile peak BOLD response and functional measures and FF suggests that the BOLD response is altered with disease severity in DMD.NEW & NOTEWORTHY This study examined the postcontractile blood oxygen level-dependent (BOLD) response in boys with Duchenne muscular dystrophy (DMD) and unaffected controls, and correlated this measure to markers of disease severity. Our findings indicate that the postcontractile BOLD response is impaired in DMD after brief muscle contractions, is correlated to disease severity, and may be valuable to implement in future studies to evaluate treatments targeting microvascular function in DMD.

Keywords: Duchenne muscular dystrophy; blood oxygenation level dependent; magnetic resonance imaging; microvascular; skeletal muscle.

Conflict of interest statement

No conflicts of interest, financial or otherwise, are declared by the authors.

Figures

Figure 1.
Figure 1.
Representative high-resolution water Dixon image used for drawing of region of interest (ROI) for blood oxygen level-dependent analysis (BOLD), and corresponding echo planar image (image 1/360) acquired to measure dynamic BOLD response in a control (A) and a participant with Duchenne muscular dystrophy (DMD; B). EDL, extensor digitorum longus; TA, tibialis anterior.
Figure 2.
Figure 2.
Example force (control: A; DMD: B) and postcontractile blood oxygen level-dependent (BOLD) responses in a control and in a participant with Duchenne muscular dystrophy (DMD) of the tibialis anterior (control: C; DMD: D) and extensor digitorum longus (control: E; DMD: F). Five isometric maximal voluntary dorsiflexion contractions were performed separated by 1 min of rest.
Figure 3.
Figure 3.
Postcontractile BOLD responses of each contraction and the responses are averaged for an overall average BOLD response of the tibialis anterior (control: A; DMD: B) and extensor digitorum longus (control: C; DMD: D). Contraction artifacts were omitted from the BOLD analysis. The peak BOLD response, time to peak, and half-recovery time were evaluated after fitting the postcontractile BOLD response using a polynomial fitting algorithm. BOLD, blood oxygen level-dependent; DMD, Duchenne muscular dystrophy.
Figure 4.
Figure 4.
Parameters of the postcontractile blood oxygen level-dependent (BOLD) response were compared between unaffected controls (n = 15) and participants with Duchenne muscular dystrophy (DMD; n = 15), including the peak BOLD response (A), time to peak (B), and the half recovery time (C) for the tibialis anterior and the peak BOLD response (D), time to peak (E), and half recovery time (F) for the extensor digitorum longus. Welch’s unpaired two-tailed t test was used to compare DMD and unaffected controls. Box and whisker plots represent median, 10/90 percentile, and minimum/maximum. *P < 0.05, **P < 0.001.
Figure 5.
Figure 5.
A: correlation plot with initial (x-axis) and repeated (y-axis) of BOLD responses of the tibialis anterior muscle from both control (n = 4) and Duchenne muscular dystrophy (DMD; n = 7) subjects that repeated the BOLD protocol (ICC = 0.94). B: Bland–Altman plot showing limits of agreement (±1.96SD) and bias (0.21) of the (absolute) peak BOLD response. BOLD, blood oxygen level-dependent.
Figure 6.
Figure 6.
Correlation between the postcontractile peak BOLD response of the anterior compartment (weighted average of the tibialis anterior and extensor digitorum longus) vs. the 6-min walk distance (6MWD; ρ = 0.87, P < 0.0001, n = 15; A), 10-m walk/run time (ρ = −0.78, P < 0.001, n = 15; B), and fat fraction of the anterior compartment (ρ = −0.52, P = 0.05; C) in participants with DMD. Data were analyzed using Spearman’s correlation analyses. BOLD, blood oxygen level-dependent; DMD, Duchenne muscular dystrophy.

References

    1. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C; DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9: 77–93, 2010. doi:10.1016/S1474-4422(09)70271-6.
    1. Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919–928, 1987. doi:10.1016/0092-8674(87)90579-4.
    1. Adams ME, Odom GL, Kim MJ, Chamberlain JS, Froehner SC. Syntrophin binds directly to multiple spectrin-like repeats in dystrophin and mediates binding of nNOS to repeats 16-17. Hum Mol Genet 27: 2978–2985, 2018. doi:10.1093/hmg/ddy197.
    1. Heydemann A, McNally E. NO more muscle fatigue. J Clin Invest 119: 448–450, 2009. doi:10.1172/jci38618.
    1. Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119: 624–635, 2009. doi:10.1172/JCI36612.
    1. Percival JM. Perspective: spectrin-like repeats in dystrophin have unique binding preferences for syntrophin adaptors that explain the mystery of how nNOSμ localizes to the sarcolemma. Front Physiol 9: 1369, 2018. doi:10.3389/fphys.2018.01369.
    1. Thomas GD, Sander M, Lau KS, Huang PL, Stull JT, Victor RG. Impaired metabolic modulation of alpha-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc Natl Acad Sci USA 95: 15090–15095, 1998. doi:10.1073/pnas.95.25.15090.
    1. Nelson MD, Rader F, Tang X, Tavyev J, Nelson SF, Miceli MC, Elashoff RM, Sweeney HL, Victor RG. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology 82: 2085–2091, 2014. doi:10.1212/WNL.0000000000000498.
    1. Sander M, Chavoshan B, Harris SA, Iannaccone ST, Stull JT, Thomas GD, Victor RG. Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci USA 97: 13818–13823, 2000. doi:10.1073/pnas.250379497.
    1. Rando TA. Role of nitric oxide in the pathogenesis of muscular dystrophies: a “two hit” hypothesis of the cause of muscle necrosis. Microsc Res Tech 55: 223–235, 2001. doi:10.1002/jemt.1172.
    1. Asai A, Sahani N, Kaneki M, Ouchi Y, Martyn JAJ, Yasuhara SE. Primary role of functional ischemia, quantitative evidence for the two-hit mechanism, and phosphodiesterase-5 inhibitor therapy in mouse muscular dystrophy. PLoS One 2: e806, 2007. doi:10.1371/journal.pone.0000806.
    1. Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, Parikh SV, Weiss RM, Chamberlain JS, Moore SA, Campbell KP. Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456: 511–515, 2008. doi:10.1038/nature07414.
    1. Zhang Y, Yue Y, Li L, Hakim CH, Zhang K, Thomas GD, Duan D. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy. Hum Mol Genet 22: 3720–3729, 2013. doi:10.1093/hmg/ddt224.
    1. Hurley DM, Williams ER, Cross JM, Riedinger BR, Meyer RA, Abela GS, Slade JM. Aerobic exercise improves microvascular function in older adults. Med Sci Sports Exerc 51: 773–781, 2019. doi:10.1249/MSS.0000000000001854.
    1. Meyer RA, Towse TF, Reid RW, Jayaraman RC, Wiseman RW, McCully KK. BOLD MRI mapping of transient hyperemia in skeletal muscle after single contractions. NMR Biomed 17: 392–398, 2004. doi:10.1002/nbm.893.
    1. Sanchez OA, Copenhaver EA, Chance MA, Fowler MJ, Towse TF, Kent-Braun JA, Damon BM. Postmaximal contraction blood volume responses are blunted in obese and type 2 diabetic subjects in a muscle-specific manner. Am J Physiol Heart Circ Physiol 301: H418–H427, 2011. doi:10.1152/ajpheart.00060.2011.
    1. Tonson A, Noble KE, Meyer RA, Rozman MR, Foley KT, Slade JM. Age reduces microvascular function in the leg independent of physical activity. Med Sci Sports Exerc 49: 1623–1630, 2017. doi:10.1249/MSS.0000000000001281.
    1. Towse TF, Slade JM, Ambrose JA, DeLano MC, Meyer RA. Quantitative analysis of the postcontractile blood-oxygenation-level-dependent (BOLD) effect in skeletal muscle. J Appl Physiol (1985) 111: 27–39, 2011. doi:10.1152/japplphysiol.01054.2009.
    1. Wigmore D, Propert K, Kent-Braun J. Blood flow does not limit skeletal muscle force production during incremental isometric contractions. Eur J Appl Physiol 96: 370–379, 2006. doi:10.1007/s00421-005-0037-0.
    1. Wigmore DM, Damon BM, Pober DM, Kent-Braun JA. MRI measures of perfusion-related changes in human skeletal muscle during progressive contractions. J Appl Physiol (1985) 97: 2385–2394, 2004. doi:10.1152/japplphysiol.01390.2003.
    1. Ledermann H-P, Schulte A-C, Heidecker H-G, Aschwanden M, JäGer KA, Scheffler K, Steinbrich W, Bilecen D. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation 113: 2929–2935, 2006. doi:10.1161/CIRCULATIONAHA.105.605717.
    1. Slade JM, Towse TF, Gossain VV, Meyer RA. Peripheral microvascular response to muscle contraction is unaltered by early diabetes but decreases with age. J Appl Physiol (1985) 111: 1361–1371, 2011. doi:10.1152/japplphysiol.00009.2011.
    1. Towse TF, Slade JM, Meyer RA. Effect of physical activity on MRI-measured blood oxygen level-dependent transients in skeletal muscle after brief contractions. J Appl Physiol (1985) 99: 715–722, 2005. doi:10.1152/japplphysiol.00272.2005.
    1. Batra A, Vohra RS, Chrzanowski SM, Hammers DW, Lott DJ, Vandenborne K, Walter GA, Forbes SC. Effects of PDE5 inhibition on dystrophic muscle following an acute bout of downhill running and endurance training. J Appl Physiol (1985) 126: 1737–1745, 2019. doi:10.1152/japplphysiol.00664.2018.
    1. Barnard AM, Willcocks RJ, Finanger EL, Daniels MJ, Triplett WT, Rooney WD, Lott DJ, Forbes SC, Wang D-J, Senesac CR, Harrington AT, Finkel RS, Russman BS, Byrne BJ, Tennekoon GI, Walter GA, Sweeney HL, Vandenborne K. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PloS One 13: e0194283–e0194283, 2018. doi:10.1371/journal.pone.0194283.
    1. Forbes S, Willcocks R, Triplett W, Rooney W, Lott D, Wang D, Pollaro J, Senesac C, Daniels M, Finkel R, Russman B, Byrne B, Finanger E, Tennekoon G, Walter G, Sweeney H, Vandenborne K. Magnetic resonance imaging and spectroscopy assessment of lower extremity skeletal muscles in boys with Duchenne muscular dystrophy: a multicenter cross sectional study. PLoS One 9: e106435, 2014. doi:10.1371/journal.pone.0106435.
    1. Willcocks RJ, Rooney WD, Triplett WT, Forbes SC, Lott DJ, Senesac CR, Daniels MJ, Wang D-J, Harrington AT, Tennekoon GI, Russman BS, Finanger EL, Byrne BJ, Finkel RS, Walter GA, Sweeney HL, Vandenborne K. Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large Duchenne muscular dystrophy cohort. Ann Neurol 79: 535–547, 2016. doi:10.1002/ana.24599.
    1. Triplett WT, Baligand C, Forbes SC, Willcocks RJ, Lott DJ, DeVos S, Pollaro J, Rooney WD, Sweeney HL, Bönnemann CG, Wang D-J, Vandenborne K, Walter GA. Chemical shift-based MRI to measure fat fractions in dystrophic skeletal muscle. Magn Reson Med 72: 8–19, 2014. doi:10.1002/mrm.24917.
    1. Willcocks RJ, Triplett WT, Forbes SC, Arora H, Senesac CR, Lott DJ, Nicholson TR, Rooney WD, Walter GA, Vandenborne K. Magnetic resonance imaging of the proximal upper extremity musculature in boys with Duchenne muscular dystrophy. J Neurol 264: 64–71, 2017. doi:10.1007/s00415-016-8311-0.
    1. Eggers H, Brendel B, Duijndam A, Herigault G. Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65: 96–107, 2011. doi:10.1002/mrm.22578.
    1. Towse TF, Childs BT, Sabin SA, Bush EC, Elder CP, Damon BM. Comparison of muscle BOLD responses to arterial occlusion at 3 and 7 Tesla. Magn Reson Med 75: 1333–1340, 2016. doi:10.1002/mrm.25562.
    1. Towse TF, Elder CP, Bush EC, Klockenkemper SW, Bullock JT, Dortch RD, Damon BM. Post-contractile BOLD contrast in skeletal muscle at 7T reveals inter-individual heterogeneity in the physiological responses to muscle contraction. NMR Biomed 29: 1720–1728, 2016. doi:10.1002/nbm.3593.
    1. Forbes SC, Arora H, Willcocks RJ, Triplett WT, Rooney WD, Barnard AM, Alabasi U, Wang D-J, Lott DJ, Senesac CR, Harrington AT, Finanger EL, Tennekoon GI, Brandsema J, Daniels MJ, Sweeney HL, Walter GA, Vandenborne K. Upper and lower extremities in Duchenne muscular dystrophy evaluated with quantitative MRI and proton MR spectroscopy in a multicenter cohort. Radiology 295: 616–625, 2020. doi:10.1148/radiol.2020192210.
    1. Arpan I, Willcocks RJ, Forbes SC, Finkel RS, Lott DJ, Rooney WD, Triplett WT, Senesac CR, Daniels MJ, Byrne BJ, Finanger EL, Russman BS, Wang DJ, Tennekoon GI, Walter GA, Sweeney HL, Vandenborne K. Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology 83: 974–980, 2014. doi:10.1212/WNL.0000000000000775.
    1. Akima H, Lott D, Senesac C, Deol J, Germain S, Arpan I, Bendixen R, Lee Sweeney H, Walter G, Vandenborne K. Relationships of thigh muscle contractile and non-contractile tissue with function, strength, and age in boys with Duchenne muscular dystrophy. Neuromuscul Disord 22: 16–25, 2012. doi:10.1016/j.nmd.2011.06.750.
    1. Arpan I, Forbes SC, Lott DJ, Senesac CR, Daniels MJ, Triplett WT, Deol JK, Sweeney HL, Walter GA, Vandenborne K. T2 mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5–15-year-old boys with Duchenne muscular dystrophy. NMR Biomed 26: 320–328, 2013. doi:10.1007/s00415-016-8311-0.
    1. McDonald CM, Henricson EK, Abresch RT, Florence JM, Eagle M, Gappmaier E, Glanzman AM, Spiegel R, Barth J, Elfring G, Reha A, Peltz S; PTC124‐GD‐007‐DMD Study Group. The 6-minute walk test and other endpoints in Duchenne muscular dystrophy: longitudinal natural history observations over 48 weeks from a multicenter study. Muscle Nerve 48: 343–356, 2013. doi:10.1002/mus.23905.
    1. Jacobi B, Bongartz G, Partovi S, Schulte A-C, Aschwanden M, Lumsden AB, Davies MG, Loebe M, Noon GP, Karimi S, Lyo JK, Staub D, Huegli RW, Bilecen D. Skeletal muscle BOLD MRI: From underlying physiological concepts to its usefulness in clinical conditions. J Magn Reson Imaging 35: 1253–1265, 2012. doi:10.1002/jmri.23536.
    1. Tschakovsky ME, Rogers AM, Pyke KE, Saunders NR, Glenn N, Lee SJ, Weissgerber T, Dwyer EM. Immediate exercise hyperemia in humans is contraction intensity dependent: evidence for rapid vasodilation. J Appl Physiol (1985) 96: 639–644, 2004. doi:10.1152/japplphysiol.00769.2003.
    1. Utz W, Jordan J, Niendorf T, Stoffels M, Luft FC, Dietz R, Friedrich MG. Blood oxygen level-dependent MRI of tissue oxygenation: relation to endothelium-dependent and endothelium-independent blood flow changes. Arterioscler Thromb Vasc Biol 25: 1408–1413, 2005. doi:10.1161/01.ATV.0000170131.13683.d7.
    1. Sanchez OA, Louie EA, Copenhaver EA, Damon BM. Repeatability of a dual gradient-recalled echo MRI method for monitoring post-isometric contraction blood volume and oxygenation changes. NMR Biomed 22: 753–761, 2009. doi:10.1002/nbm.1388.
    1. Gao J-H, Liu H-L. Inflow effects on functional MRI. Neuroimage 62: 1035–1039, 2012. doi:10.1016/j.neuroimage.2011.09.088.
    1. Howseman AM, Grootoonk S, Porter DA, Ramdeen J, Holmes AP, Turner R. The effect of slice order and thickness on fMRI activation data using multislice echo-planar imaging. Neuroimage 9: 363–376, 1999. doi:10.1006/nimg.1998.0418.
    1. Dietz AR, Connolly A, Dori A, Zaidman CM. Intramuscular blood flow in Duchenne and Becker muscular dystrophy: quantitative power Doppler sonography relates to disease severity. Clin Neurophysiol 131: 1–5, 2020. doi:10.1016/j.clinph.2019.09.023.
    1. Rooney WD, Berlow YA, Triplett WT, Forbes SC, Willcocks RJ, Wang DJ, Arpan I, Arora H, Senesac C, Lott DJ, Tennekoon G, Finkel R, Russman BS, Finanger EL, Chakraborty S, O'Brien E, Moloney B, Barnard A, Sweeney HL, Daniels MJ, Walter GA, Vandenborne K. Modeling disease trajectory in Duchenne muscular dystrophy. Neurology 94: e1622–e1633, 2020. doi:10.1212/WNL.0000000000009244.
    1. Lott DJ, Forbes SC, Mathur S, Germain SA, Senesac CR, Sweeney HL, Walter GA, Vandenborne K. Assessment of intramuscular lipid and metabolites of the lower leg using magnetic resonance spectroscopy in boys with Duchenne muscular dystrophy. Neuromuscul Disord 24: 574–582, 2014. doi:10.1016/j.nmd.2014.03.013.
    1. Quattrocelli M, Zelikovich AS, Salamone IM, Fischer JA, McNally EM. Mechanisms and clinical applications of glucocorticoid steroids in muscular dystrophy. J Neuromuscul Dis 8: 39–52, 2021. doi:10.3233/JND-200556.
    1. Arida A, Protogerou AD, Kitas GD, Sfikakis PP. Systemic inflammatory response and atherosclerosis: the paradigm of chronic inflammatory rheumatic diseases. Int J Mol Sci 19: 1890, 2018. doi:10.3390/ijms19071890.
    1. Walker BR. Glucocorticoids and cardiovascular disease. Eur J Endocrinol 157: 545–559, 2007. doi:10.1530/EJE-07-0455.
    1. Yang S, Zhang L. Glucocorticoids and vascular reactivity. Curr Vasc Pharmacol 2: 1–12, 2004. doi:10.2174/1570161043476483.
    1. Larsen RG, Hirata RP, Madzak A, Frøkjær JB, Graven-Nielsen T. Eccentric exercise slows in vivo microvascular reactivity during brief contractions in human skeletal muscle. J Appl Physiol (1985) 119: 1272–1281, 2015. doi:10.1152/japplphysiol.00563.2015.
    1. Kindig CA, Kelley KM, Howlett RA, Stary CM, Hogan MC. Assessment of O2 uptake dynamics in isolated single skeletal myocytes. J Appl Physiol (1985) 94: 353–357, 2003. doi:10.1152/japplphysiol.00559.2002.
    1. Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, Jeneson JAL, Kan HE, Kent J, Layec G, Prompers JJ, Reyngoudt H, Sleigh A, Valkovič L, Kemp GJ, Baligand C, Carlier PG, Chatel B, Damon B, Heskamp L, Hájek M, Jooijmans M, Krssak M, Reichenbach J, Schmid A, Slade J, Vandenborne K, Walter GA, Willis D; Experts' Working Group on PMRSoSM. 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ consensus recommendations. NMR Biomed 34: e4246–e4246, 2021. doi:10.1002/nbm.4246.
    1. Slade JM, Towse TF, Delano MC, Wiseman RW, Meyer RA. A gated 31P NMR method for the estimation of phosphocreatine recovery time and contractile ATP cost in human muscle. NMR Biomed 19: 573–580, 2006. doi:10.1002/nbm.1037.
    1. Behnke BJ, Kindig CA, McDonough P, Poole DC, Sexton WL. Dynamics of microvascular oxygen pressure during rest-contraction transition in skeletal muscle of diabetic rats. Am J Physiol Heart Circ Physiol 283: H926–H932, 2002. doi:10.1152/ajpheart.00059.2002.
    1. Latroche C, Matot B, Martins-Bach A, Briand D, Chazaud B, Wary C, Carlier PG, Chrétien F, Jouvion G. Structural and functional alterations of skeletal muscle microvasculature in dystrophin-deficient mdx mice. Am J Pathol 185: 2482–2494, 2015. doi:10.1016/j.ajpath.2015.05.009.
    1. Nguyen F, Guigand L, Goubault-Leroux I, Wyers M, Cherel Y. Microvessel density in muscles of dogs with golden retriever muscular dystrophy. Neuromuscul Disord 15: 154–163, 2005. doi:10.1016/j.nmd.2004.11.002.
    1. Chrzanowski SM, Baligand C, Willcocks RJ, Deol J, Schmalfuss I, Lott DJ, Daniels MJ, Senesac C, Walter GA, Vandenborne K. Multi-slice MRI reveals heterogeneity in disease distribution along the length of muscle in Duchenne muscular dystrophy. Acta Myol 36: 151–162, 2017.
    1. Stacy MR, Qiu M, Papademetris X, Caracciolo CM, Constable RT, Sinusas AJ. Application of BOLD magnetic resonance imaging for evaluating regional volumetric foot tissue oxygenation: a feasibility study in healthy volunteers. Eur J Vasc Endovasc Surg 51: 743–749, 2016. doi:10.1016/j.ejvs.2016.02.008.
    1. Schulte A-C, Aschwanden M, Bilecen D. Calf muscles at blood oxygen level-dependent MR imaging: aging effects at postocclusive reactive hyperemia. Radiology 247: 482–489, 2008. doi:10.1148/radiol.2472070828.
    1. Stacy MR, Caracciolo CM, Qiu M, Pal P, Varga T, Constable RT, Sinusas AJ. Comparison of regional skeletal muscle tissue oxygenation in college athletes and sedentary control subjects using quantitative. Physiol Rep 4: e12903, 2016. doi:10.14814/phy2.12903.

Source: PubMed

3
订阅