A Potential Biomarker of Brain Activity in Autism Spectrum Disorders: A Pilot fNIRS Study in Female Preschoolers

Elena Scaffei, Raffaele Mazziotti, Eugenia Conti, Valeria Costanzo, Sara Calderoni, Andrea Stoccoro, Claudia Carmassi, Raffaella Tancredi, Laura Baroncelli, Roberta Battini, Elena Scaffei, Raffaele Mazziotti, Eugenia Conti, Valeria Costanzo, Sara Calderoni, Andrea Stoccoro, Claudia Carmassi, Raffaella Tancredi, Laura Baroncelli, Roberta Battini

Abstract

Autism spectrum disorder (ASD) refers to a neurodevelopmental condition whose detection still remains challenging in young females due to the heterogeneity of the behavioral phenotype and the capacity of camouflage. The availability of quantitative biomarkers to assess brain function may support in the assessment of ASD. Functional Near-infrared Spectroscopy (fNIRS) is a non-invasive and flexible tool that quantifies cortical hemodynamic responses (HDR) that can be easily employed to describe brain activity. Since the study of the visual phenotype is a paradigmatic model to evaluate cerebral processing in many neurodevelopmental conditions, we hypothesized that visually-evoked HDR (vHDR) might represent a potential biomarker in ASD females. We performed a case-control study comparing vHDR in a cohort of high-functioning preschooler females with ASD (fASD) and sex/age matched peers. We demonstrated the feasibility of visual fNIRS measurements in fASD, and the possibility to discriminate between fASD and typical subjects using different signal features, such as the amplitude and lateralization of vHDR. Moreover, the level of response lateralization was correlated to the severity of autistic traits. These results corroborate the cruciality of sensory symptoms in ASD, paving the way for the validation of the fNIRS analytical tool for diagnosis and treatment outcome monitoring in the ASD population.

Keywords: autism; biomarker; fNIRS; female; preschoolers; visual physiology.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
vHDR was reliably detected in TD and fASD participants: average across channels. In all panels, the values in the y-axis are multiplied by 105. (AC) On the left, the average time course for THb (A), OHb (B), and DHb (C) in response to the radial stimulus (Stim, green line) or the mock stimulus (Mock, grey line) are shown for TD participants. The plots on the right depict the average peak response to Stim vs. Mock across all the subjects. The stimulus-driven signal was significantly higher with respect to the mock condition for all of the metrics (t-test, p < 0.001 for all comparisons). (DF) The same plots as above for the fASD subjects. The stimulus-evoked vHDR was significantly higher with respect to the mock condition (t-test, p < 0.001 for THb and OHb, p < 0.01 for DHb). The orange lines are the Hb responses to the stimulus in fASD plots. The data are expressed as mean ± sem. ** p < 0.01, *** p < 0.001.
Figure 2
Figure 2
vHDR was reliably detected in TD and fASD participants: best channel. In all panels, values in the y-axis are multiplied by 104. (AC) On the left, the average time course for THb (A), OHb (B), and DHb (C) in response to the radial stimulus (Stim, green line) or the mock stimulus (Mock, grey line) are shown for TD participants. Plots on the right depict the average peak response to Stim vs. Mock across all of the subjects. The stimulus-driven signal was significantly higher with respect to the mock condition for all the metrics (t-test, p < 0.001 for all comparisons). (DF) The same plots as above, for fASD subjects. The stimulus-evoked vHDR was also significantly higher with respect to the mock condition in this case (t-test, p < 0.001 for THb and OHb, p < 0.01 for DHb). The orange lines are the Hb responses to the stimulus in fASD plots. The data are expressed as mean ± sem. ** p < 0.01, *** p < 0.001.
Figure 3
Figure 3
Comparison of vHDR between TD and fASD participants. In panels (AC), values in the y-axis are multiplied by 105; in panels (DF), values in the y-axis are multiplied by 104. (AC) Average peak responses across all channels of THb (A), OHb (B) and DHb (C) in TD (green lines) and fASD participants (orange lines). An amplitude analysis revealed that the OHb peak was significantly lower in the fASD population than in controls (t-test, p < 0.05). (DF) Peak response of THb (D), OHb (E) and DHb (F) in the best channel for TD (green lines) and fASD subjects (orange lines). The OHb peak was significantly lower in the fASD population than in the controls (t-test, p < 0.01). Data are expressed as mean ± sem. * p < 0.05, ** p < 0.01.
Figure 4
Figure 4
Atypical lateralization in visual processing in fASD children. (A) Average time course of OHb response in the left (dashed lines) and the right (solid lines) hemispheres for TD (green) and fASD subjects (orange line). The y-axis values are multiplied by 105. (B) A comparison between the amplitude of the OHb signal in the left and the right hemisphere showed a significant reduction of right responses in the fASD group (a Two-Way mixed model ANOVA, p < 0.01). The y-axis values are multiplied by 105. (C) The laterality index, indicating a lower rightward asymmetry of visual processing in fASD subjects compared to TD children (t-test, p < 0.05). (D) A scatterplot illustrating the distribution of average OHb amplitudes recorded in the right and the left hemisphere in TD and fASD subjects, showing a pronounced rightward bias only in TD children. (E) A linear regression analysis shows a significant correlation in the amplitude of average OHb responses evoked in the right and the left hemispheres for TD participants (Spearman correlation, p < 0.001). This correlation is absent in ASD patients (p = 0.965). The ρ (rho) index indicates the Spearman correlation value. In panels (D,E), the y-axis and x-axis values are multiplied by 105. Levels of statistical significance are shown as ** p < 0.01; *** p < 0.001.
Figure 5
Figure 5
Correlation between the laterality index and clinical scores in fASD children. The ρ (rho) index in each plot indicates the Spearman correlation value. The correlation between Laterality Index (LI) and AQ score (A), VABS score (B), ADOS score (C) and non-verbal IQ score (D). A positive correlation between variables was detected for the AQ score (Spearman correlation, * p < 0.05).

References

    1. Mangun G.R., Luck S.J., Plager R., Loftus W., Hillyard S.A., Handy T., Clark V.P., Gazzaniga M.S. Monitoring the Visual World: Hemispheric Asymmetries and Subcortical Processes in Attention. J. Cogn. Neurosci. 1994;6:267–275. doi: 10.1162/jocn.1994.6.3.267.
    1. Zeidan J., Fombonne E., Scorah J., Ibrahim A., Durkin M.S., Saxena S., Yusuf A., Shih A., Elsabbagh M. Global Prevalence of Autism: A Systematic Review Update. Autism Res. 2022;15:778–790. doi: 10.1002/aur.2696.
    1. Narzisi A., Posada M., Barbieri F., Chericoni N., Ciuffolini D., Pinzino M., Romano R., Scattoni M.L., Tancredi R., Calderoni S., et al. Prevalence of Autism Spectrum Disorder in a Large Italian Catchment Area: A School-Based Population Study within the ASDEU Project. Epidemiol. Psychiatr. Sci. 2020;29:e5. doi: 10.1017/S2045796018000483.
    1. Dawson G., Rogers S., Munson J., Smith M., Winter J., Greenson J., Donaldson A., Varley J. Randomized, Controlled Trial of an Intervention for Toddlers with Autism: The Early Start Denver Model. Pediatrics. 2010;125:e17–e23. doi: 10.1542/peds.2009-0958.
    1. Hyman S.L., Levy S.E., Myers S.M., Council on Children with Disabilities, Section on Developmental and Behavioral Pediatrics Identification, Evaluation, and Management of Children with Autism Spectrum Disorder. Pediatrics. 2020;145:e20193447. doi: 10.1542/peds.2019-3447.
    1. Miller L.E., Dai Y.G., Fein D.A., Robins D.L. Characteristics of Toddlers with Early versus Later Diagnosis of Autism Spectrum Disorder. Autism. 2021;25:416–428. doi: 10.1177/1362361320959507.
    1. Landa R.J. Diagnosis of Autism Spectrum Disorders in the First 3 Years of Life. Nat. Clin. Pract. Neurol. 2008;4:138–147. doi: 10.1038/ncpneuro0731.
    1. Wolfers T., Floris D.L., Dinga R., van Rooij D., Isakoglou C., Kia S.M., Zabihi M., Llera A., Chowdanayaka R., Kumar V.J., et al. From Pattern Classification to Stratification: Towards Conceptualizing the Heterogeneity of Autism Spectrum Disorder. Neurosci. Biobehav. Rev. 2019;104:240–254. doi: 10.1016/j.neubiorev.2019.07.010.
    1. Shulman C., Esler A., Morrier M.J., Rice C.E. Diagnosis of Autism Spectrum Disorder Across the Lifespan. Psychiatr. Clin. N. Am. 2020;43:583–603. doi: 10.1016/j.psc.2020.08.001.
    1. Shen L., Zhao Y., Zhang H., Feng C., Gao Y., Zhao D., Xia S., Hong Q., Iqbal J., Liu X.K., et al. Advances in Biomarker Studies in Autism Spectrum Disorders. Adv. Exp. Med. Biol. 2019;1118:207–233.
    1. Dworzynski K., Ronald A., Bolton P., Happé F. How Different Are Girls and Boys above and below the Diagnostic Threshold for Autism Spectrum Disorders? J. Am. Acad. Child Adolesc. Psychiatry. 2012;51:788–797. doi: 10.1016/j.jaac.2012.05.018.
    1. Van Wijngaarden-Cremers P.J.M., van Eeten E., Groen W.B., Van Deurzen P.A., Oosterling I.J., Van der Gaag R.J. Gender and Age Differences in the Core Triad of Impairments in Autism Spectrum Disorders: A Systematic Review and Meta-Analysis. J. Autism Dev. Disord. 2014;44:627–635. doi: 10.1007/s10803-013-1913-9.
    1. Lai M.-C., Baron-Cohen S., Buxbaum J.D. Understanding Autism in the Light of Sex/gender. Mol. Autism. 2015;6:24. doi: 10.1186/s13229-015-0021-4.
    1. Dean M., Harwood R., Kasari C. The Art of Camouflage: Gender Differences in the Social Behaviors of Girls and Boys with Autism Spectrum Disorder. Autism. 2017;21:678–689. doi: 10.1177/1362361316671845.
    1. Green R.M., Travers A.M., Howe Y., McDougle C.J. Women and Autism Spectrum Disorder: Diagnosis and Implications for Treatment of Adolescents and Adults. Curr. Psychiatry Rep. 2019;21:22. doi: 10.1007/s11920-019-1006-3.
    1. Calderoni S. Sex/gender Differences in Children with Autism Spectrum Disorder: A Brief Overview on Epidemiology, Symptom Profile, and Neuroanatomy. J. Neurosci. Res. 2022;101:739–750. doi: 10.1002/jnr.25000.
    1. Billeci L., Callara A.L., Guiducci L., Prosperi M., Morales M.A., Calderoni S., Muratori F., Santocchi E. A Randomized Controlled Trial into the Effects of Probiotics on Electroencephalography in Preschoolers with Autism. Autism. 2023;27:117–132. doi: 10.1177/13623613221082710.
    1. Frye R.E., Vassall S., Kaur G., Lewis C., Karim M., Rossignol D. Emerging Biomarkers in Autism Spectrum Disorder: A Systematic Review. Ann. Transl. Med. 2019;7:792. doi: 10.21037/atm.2019.11.53.
    1. Ayoub M.J., Keegan L., Tager-Flusberg H., Gill S.V. Neuroimaging Techniques as Descriptive and Diagnostic Tools for Infants at Risk for Autism Spectrum Disorder: A Systematic Review. Brain Sci. 2022;12:602. doi: 10.3390/brainsci12050602.
    1. Kikuchi M., Yoshimura Y., Mutou K., Minabe Y. Magnetoencephalography in the Study of Children with Autism Spectrum Disorder. Psychiatry Clin. Neurosci. 2016;70:74–88. doi: 10.1111/pcn.12338.
    1. Amaral D.G., Schumann C.M., Nordahl C.W. Neuroanatomy of Autism. Trends Neurosci. 2008;31:137–145. doi: 10.1016/j.tins.2007.12.005.
    1. Courchesne E., Campbell K., Solso S. Brain Growth across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology. Brain Res. 2011;1380:138–145. doi: 10.1016/j.brainres.2010.09.101.
    1. Bosl W., Tierney A., Tager-Flusberg H., Nelson C. EEG Complexity as a Biomarker for Autism Spectrum Disorder Risk. BMC Med. 2011;9:18. doi: 10.1186/1741-7015-9-18.
    1. Billeci L., Sicca F., Maharatna K., Apicella F., Narzisi A., Campatelli G., Calderoni S., Pioggia G., Muratori F. On the Application of Quantitative EEG for Characterizing Autistic Brain: A Systematic Review. Front. Hum. Neurosci. 2013;7:442. doi: 10.3389/fnhum.2013.00442.
    1. O’Reilly C., Lewis J.D., Elsabbagh M. Is Functional Brain Connectivity Atypical in Autism? A Systematic Review of EEG and MEG Studies. PLoS ONE. 2017;12:e0175870. doi: 10.1371/journal.pone.0175870.
    1. Pagnozzi A.M., Conti E., Calderoni S., Fripp J., Rose S.E. A Systematic Review of Structural MRI Biomarkers in Autism Spectrum Disorder: A Machine Learning Perspective. Int. J. Dev. Neurosci. 2018;71:68–82. doi: 10.1016/j.ijdevneu.2018.08.010.
    1. van de Rijt L.P., van Wanrooij M.M., Snik A.F., Mylanus E.A., van Opstal A.J., Roye A. Measuring cortical activity during auditory processing with functional near-infrared spectroscopy. J. Hear. Sci. 2018;8:9–18. doi: 10.17430/1003278.
    1. Gervain J., Mehler J., Werker J.F., Nelson C.A., Csibra G., Lloyd-Fox S., Shukla M., Aslin R.N. Near-Infrared Spectroscopy: A Report from the McDonnell Infant Methodology Consortium. Dev. Cogn. Neurosci. 2011;1:22–46. doi: 10.1016/j.dcn.2010.07.004.
    1. Vanderwert R.E., Nelson C.A. The Use of near-Infrared Spectroscopy in the Study of Typical and Atypical Development. Pt 1Neuroimage. 2014;85:264–271. doi: 10.1016/j.neuroimage.2013.10.009.
    1. Doi H., Shinohara K. fNIRS Studies on Hemispheric Asymmetry in Atypical Neural Function in Developmental Disorders. Front. Hum. Neurosci. 2017;11:137. doi: 10.3389/fnhum.2017.00137.
    1. Zhang F., Roeyers H. Exploring Brain Functions in Autism Spectrum Disorder: A Systematic Review on Functional near-Infrared Spectroscopy (fNIRS) Studies. Int. J. Psychophysiol. 2019;137:41–53. doi: 10.1016/j.ijpsycho.2019.01.003.
    1. Conti E., Scaffei E., Bosetti C., Marchi V., Costanzo V., Dell’Oste V., Mazziotti R., Dell’Osso L., Carmassi C., Muratori F., et al. Looking for “fNIRS Signature” in Autism Spectrum: A Systematic Review Starting from Preschoolers. Front. Neurosci. 2022;16:785993. doi: 10.3389/fnins.2022.785993.
    1. Lloyd-Fox S., Blasi A., Elwell C.E., Charman T., Murphy D., Johnson M.H. Reduced Neural Sensitivity to Social Stimuli in Infants at Risk for Autism. Proc. Biol. Sci. 2013;280:20123026. doi: 10.1098/rspb.2012.3026.
    1. Lloyd-Fox S., Blasi A., Pasco G., Gliga T., Jones E.J.H., Murphy D.G.M., Elwell C.E., Charman T., Johnson M.H. BASIS Team Cortical Responses before 6 Months of Life Associate with Later Autism. Eur. J. Neurosci. 2018;47:736–749. doi: 10.1111/ejn.13757.
    1. Edwards L.A., Wagner J.B., Tager-Flusberg H., Nelson C.A. Differences in Neural Correlates of Speech Perception in 3 Month Olds at High and Low Risk for Autism Spectrum Disorder. J. Autism Dev. Disord. 2017;47:3125–3138. doi: 10.1007/s10803-017-3222-1.
    1. Li Y., Jia H., Yu D. Novel Analysis of fNIRS Acquired Dynamic Hemoglobin Concentrations: Application in Young Children with Autism Spectrum Disorder. Biomed. Opt. Express. 2018;9:3694–3710. doi: 10.1364/BOE.9.003694.
    1. Jia H., Li Y., Yu D. Attenuation of Long-Range Temporal Correlations of Neuronal Oscillations in Young Children with Autism Spectrum Disorder. Neuroimage Clin. 2018;20:424–432. doi: 10.1016/j.nicl.2018.08.012.
    1. Robertson C.E., Baron-Cohen S. Sensory Perception in Autism. Nat. Rev. Neurosci. 2017;18:671–684. doi: 10.1038/nrn.2017.112.
    1. Girault J.B., Donovan K., Hawks Z., Talovic M., Forsen E., Elison J.T., Shen M.D., Swanson M.R., Wolff J.J., Kim S.H., et al. Infant Visual Brain Development and Inherited Genetic Liability in Autism. Am. J. Psychiatry. 2022;179:573–585. doi: 10.1176/appi.ajp.21101002.
    1. Durand S., Patrizi A., Quast K.B., Hachigian L., Pavlyuk R., Saxena A., Carninci P., Hensch T.K., Fagiolini M. NMDA Receptor Regulation Prevents Regression of Visual Cortical Function in the Absence of Mecp2. Neuron. 2012;76:1078–1090. doi: 10.1016/j.neuron.2012.12.004.
    1. de Freitas Dotto P., Cavascan N.N., Berezovsky A., Sacai P.Y., Rocha D.M., Pereira J.M., Salomão S.R. Sweep Visually Evoked Potentials and Visual Findings in Children with West Syndrome. Eur. J. Paediatr. Neurol. 2014;18:201–210. doi: 10.1016/j.ejpn.2013.11.008.
    1. Mazziotti R., Lupori L., Sagona G., Gennaro M., Della Sala G., Putignano E., Pizzorusso T. Searching for Biomarkers of CDKL5 Disorder: Early-Onset Visual Impairment in CDKL5 Mutant Mice. Hum. Mol. Genet. 2017;26:2290–2298. doi: 10.1093/hmg/ddx119.
    1. Felgerolle C., Hébert B., Ardourel M., Meyer-Dilhet G., Menuet A., Pinto-Morais K., Bizot J.-C., Pichon J., Briault S., Perche O. Visual Behavior Impairments as an Aberrant Sensory Processing in the Mouse Model of Fragile X Syndrome. Front. Behav. Neurosci. 2019;13:228. doi: 10.3389/fnbeh.2019.00228.
    1. Mazziotti R., Cacciante F., Sagona G., Lupori L., Gennaro M., Putignano E., Alessandrì M.G., Ferrari A., Battini R., Cioni G., et al. Novel Translational Phenotypes and Biomarkers for Creatine Transporter Deficiency. Brain Commun. 2020;2:fcaa089. doi: 10.1093/braincomms/fcaa089.
    1. Mazziotti R., Scaffei E., Conti E., Marchi V., Rizzi R., Cioni G., Battini R., Baroncelli L. The Amplitude of fNIRS Hemodynamic Response in the Visual Cortex Unmasks Autistic Traits in Typically Developing Children. Transl. Psychiatry. 2022;12:53. doi: 10.1038/s41398-022-01820-5.
    1. Lord C., Rutter M., DiLavore P.C., Risi S. Autism Diagnostic Observation Schedule–Generic. PsycTESTS Dataset; Lawrence, KS, USA: 2016.
    1. Ruta L., Mazzone D., Mazzone L., Wheelwright S., Baron-Cohen S. The Autism-Spectrum Quotient—Italian Version: A Cross-Cultural Confirmation of the Broader Autism Phenotype. J. Autism Dev. Disord. 2012;42:625–633. doi: 10.1007/s10803-011-1290-1.
    1. Freeman S. Wechsler Preschool and Primary Scale of Intelligence. Springer; Cham, Switzerland: 2013.
    1. Sparrow S.S., Cicchetti D., Balla D.A. Vineland Adaptive Behavior Scales. 2nd ed. PsycTESTS Dataset; Lawrence, KS, USA: 2012.
    1. Peirce J., Gray J.R., Simpson S., MacAskill M., Höchenberger R., Sogo H., Kastman E., Lindeløv J.K. PsychoPy2: Experiments in Behavior Made Easy. Behav. Res. Methods. 2019;51:195–203. doi: 10.3758/s13428-018-01193-y.
    1. Gollapudi S. Learn Computer Vision Using OpenCV. Apress; Berkeley, CA, USA: 2019. OpenCV with Python; pp. 31–50.
    1. Conti E., Calderoni S., Gaglianese A., Pannek K., Mazzotti S., Rose S., Scelfo D., Tosetti M., Muratori F., Cioni G., et al. Lateralization of Brain Networks and Clinical Severity in Toddlers with Autism Spectrum Disorder: A HARDI Diffusion MRI Study. Autism Res. 2016;9:382–392. doi: 10.1002/aur.1533.
    1. Hunter J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55.
    1. Mundorf A., Peterburs J., Ocklenburg S. Asymmetry in the Central Nervous System: A Clinical Neuroscience Perspective. Front. Syst. Neurosci. 2021;15:733898. doi: 10.3389/fnsys.2021.733898.
    1. Floris D.L., Wolfers T., Zabihi M., Holz N.E., Zwiers M.P., Charman T., Tillmann J., Ecker C., Dell’Acqua F., Banaschewski T., et al. Atypical Brain Asymmetry in Autism-A Candidate for Clinically Meaningful Stratification. Biol Psychiatry Cogn. Neurosci. Neuroimaging. 2021;6:802–812. doi: 10.1016/j.bpsc.2020.08.008.
    1. Postema M.C., van Rooij D., Anagnostou E., Arango C., Auzias G., Behrmann M., Filho G.B., Calderoni S., Calvo R., Daly E., et al. Altered Structural Brain Asymmetry in Autism Spectrum Disorder in a Study of 54 Datasets. Nat. Commun. 2019;10:4958. doi: 10.1038/s41467-019-13005-8.
    1. Chen L.-C., Sandmann P., Thorne J.D., Herrmann C.S., Debener S. Association of Concurrent fNIRS and EEG Signatures in Response to Auditory and Visual Stimuli. Brain Topogr. 2015;28:710–725. doi: 10.1007/s10548-015-0424-8.
    1. Lloyd-Fox S., Blasi A., Elwell C.E. Illuminating the Developing Brain: The Past, Present and Future of Functional near Infrared Spectroscopy. Neurosci. Biobehav. Rev. 2010;34:269–284. doi: 10.1016/j.neubiorev.2009.07.008.
    1. Fox S.E., Wagner J.B., Shrock C.L., Tager-Flusberg H., Nelson C.A. Neural Processing of Facial Identity and Emotion in Infants at High-Risk for Autism Spectrum Disorders. Front. Hum. Neurosci. 2013;7:89. doi: 10.3389/fnhum.2013.00089.
    1. Bhat A.N., McDonald N.M., Eilbott J.E., Pelphrey K.A. Exploring Cortical Activation and Connectivity in Infants with and without Familial Risk for Autism during Naturalistic Social Interactions: A Preliminary Study. Infant Behav. Dev. 2019;57:101337. doi: 10.1016/j.infbeh.2019.101337.
    1. Kita Y., Gunji A., Inoue Y., Goto T., Sakihara K., Kaga M., Inagaki M., Hosokawa T. Self-Face Recognition in Children with Autism Spectrum Disorders: A near-Infrared Spectroscopy Study. Brain Dev. 2011;33:494–503. doi: 10.1016/j.braindev.2010.11.007.
    1. Kovarski K., Mennella R., Wong S.M., Dunkley B.T., Taylor M.J., Batty M. Enhanced Early Visual Responses During Implicit Emotional Faces Processing in Autism Spectrum Disorder. J. Autism Dev. Disord. 2019;49:871–886. doi: 10.1007/s10803-018-3787-3.
    1. Lewis J.D., Evans A.C., Pruett J.R., Jr., Botteron K.N., McKinstry R.C., Zwaigenbaum L., Estes A.M., Collins D.L., Kostopoulos P., Gerig G., et al. The Emergence of Network Inefficiencies in Infants With Autism Spectrum Disorder. Biol. Psychiatry. 2017;82:176–185. doi: 10.1016/j.biopsych.2017.03.006.
    1. Lockwood Estrin G., Milner V., Spain D., Happé F., Colvert E. Barriers to Autism Spectrum Disorder Diagnosis for Young Women and Girls: A Systematic Review. Rev. J. Autism Dev. Disord. 2021;8:454–470. doi: 10.1007/s40489-020-00225-8.
    1. D’Mello A.M., Frosch I.R., Li C.E., Cardinaux A.L., Gabrieli J.D.E. Exclusion of Females in Autism Research: Empirical Evidence for a “Leaky” Recruitment-to-Research Pipeline. Autism Res. 2022;15:1929–1940. doi: 10.1002/aur.2795.
    1. Peng C., Hou X. Applications of Functional near-Infrared Spectroscopy (fNIRS) in Neonates. Neurosci. Res. 2021;170:18–23. doi: 10.1016/j.neures.2020.11.003.
    1. Van der Hallen R., Evers K., Brewaeys K., Van den Noortgate W., Wagemans J. Global Processing Takes Time: A Meta-Analysis on Local-Global Visual Processing in ASD. Psychol. Bull. 2015;141:549–573. doi: 10.1037/bul0000004.
    1. Apicella F., Costanzo V., Purpura G. Are Early Visual Behavior Impairments Involved in the Onset of Autism Spectrum Disorders? Insights for Early Diagnosis and Intervention. Eur. J. Pediatr. 2020;179:225–234. doi: 10.1007/s00431-019-03562-x.
    1. Spiteri S., Crewther D. Neural Mechanisms of Visual Motion Anomalies in Autism: A Two-Decade Update and Novel Aetiology. Front. Neurosci. 2021;15:756841. doi: 10.3389/fnins.2021.756841.
    1. Jung M., Tu Y., Lang C.A., Ortiz A., Park J., Jorgenson K., Kong X.-J., Kong J. Decreased Structural Connectivity and Resting-State Brain Activity in the Lateral Occipital Cortex Is Associated with Social Communication Deficits in Boys with Autism Spectrum Disorder. Neuroimage. 2019;190:205–212. doi: 10.1016/j.neuroimage.2017.09.031.
    1. Corballis P.M. Visuospatial Processing and the Right-Hemisphere Interpreter. Brain Cogn. 2003;53:171–176. doi: 10.1016/S0278-2626(03)00103-9.
    1. Jonas J., Frismand S., Vignal J.-P., Colnat-Coulbois S., Koessler L., Vespignani H., Rossion B., Maillard L. Right Hemispheric Dominance of Visual Phenomena Evoked by Intracerebral Stimulation of the Human Visual Cortex. Hum. Brain Mapp. 2014;35:3360–3371. doi: 10.1002/hbm.22407.
    1. Hougaard A., Jensen B.H., Amin F.M., Rostrup E., Hoffmann M.B., Ashina M. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation. PLoS ONE. 2015;10:e0126477. doi: 10.1371/journal.pone.0126477.
    1. Robertson C.E., Kravitz D.J., Freyberg J., Baron-Cohen S., Baker C.I. Slower Rate of Binocular Rivalry in Autism. J. Neurosci. 2013;33:16983–16991. doi: 10.1523/JNEUROSCI.0448-13.2013.
    1. Robertson C.E., Ratai E.-M., Kanwisher N. Reduced GABAergic Action in the Autistic Brain. Curr. Biol. 2016;26:80–85. doi: 10.1016/j.cub.2015.11.019.
    1. Genç E., Bergmann J., Tong F., Blake R., Singer W., Kohler A. Callosal Connections of Primary Visual Cortex Predict the Spatial Spreading of Binocular Rivalry across the Visual Hemifields. Front. Hum. Neurosci. 2011;5:161. doi: 10.3389/fnhum.2011.00161.
    1. Reynolds J.H., Chelazzi L. Attentional Modulation of Visual Processing. Annu. Rev. Neurosci. 2004;27:611–647. doi: 10.1146/annurev.neuro.26.041002.131039.
    1. Speed A., Del Rosario J., Mikail N., Haider B. Spatial Attention Enhances Network, Cellular and Subthreshold Responses in Mouse Visual Cortex. Nat. Commun. 2020;11:505. doi: 10.1038/s41467-020-14355-4.
    1. Bartolomeo P., Seidel Malkinson T. Hemispheric Lateralization of Attention Processes in the Human Brain. Curr. Opin. Psychol. 2019;29:90–96. doi: 10.1016/j.copsyc.2018.12.023.
    1. Gotham K., Pickles A., Lord C. Standardizing ADOS Scores for a Measure of Severity in Autism Spectrum Disorders. J. Autism Dev. Disord. 2009;39:693–705. doi: 10.1007/s10803-008-0674-3.
    1. Alvares G.A., Bebbington K., Cleary D., Evans K., Glasson E.J., Maybery M.T., Pillar S., Uljarević M., Varcin K., Wray J., et al. The Misnomer of “High Functioning Autism”: Intelligence Is an Imprecise Predictor of Functional Abilities at Diagnosis. Autism. 2020;24:221–232. doi: 10.1177/1362361319852831.
    1. Saulnier C.A., Klaiman C., McQueen E. Adaptive Behavior Profiles in Autism Spectrum Disorder. Curr. Psychiatry Rep. 2022;24:749–756. doi: 10.1007/s11920-022-01381-w.
    1. Corbett B.A., Schwartzman J.M., Libsack E.J., Muscatello R.A., Lerner M.D., Simmons G.L., White S.W. Camouflaging in Autism: Examining Sex-Based and Compensatory Models in Social Cognition and Communication. Autism Res. 2021;14:127–142. doi: 10.1002/aur.2440.
    1. Neuhaus E., Lowry S.J., Santhosh M., Kresse A., Edwards L.A., Keller J., Libsack E.J., Kang V.Y., Naples A., Jack A., et al. Resting State EEG in Youth with ASD: Age, Sex, and Relation to Phenotype. J. Neurodev. Disord. 2021;13:33. doi: 10.1186/s11689-021-09390-1.

Source: PubMed

3
订阅