Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation

Martina Colicchia, Gina Perrella, Poppy Gant, Julie Rayes, Martina Colicchia, Gina Perrella, Poppy Gant, Julie Rayes

Abstract

A state-of-the-art lecture titled "novel mechanisms of thrombo-inflammation during infection" was presented at the ISTH Congress in 2022. Platelet, neutrophil, and endothelial cell activation coordinate the development, progression, and resolution of thrombo-inflammatory events during infection. Activated platelets and neutrophil extracellular traps (NETs) are frequently observed in patients with sepsis and COVID-19, and high levels of NET-derived damage-associated molecular patterns (DAMPs) correlate with thrombotic complications. NET-associated DAMPs induce direct and indirect platelet activation, which in return potentiates neutrophil activation and NET formation. These coordinated interactions involve multiple receptors and signaling pathways contributing to vascular and organ damage exacerbating disease severity. This state-of-the-art review describes the main mechanisms by which platelets support NETosis and the key mechanisms by which NET-derived DAMPs trigger platelet activation and the formation of procoagulant platelets leading to thrombosis. We report how these DAMPs act through multiple receptors and signaling pathways differentially regulating cell activation and disease outcome, focusing on histones and S100A8/A9 and their contribution to the pathogenesis of sepsis and COVID-19. We further discuss the complexity of platelet activation during NETosis and the potential benefit of targeting selective or multiple NET-associated DAMPs to limit thrombo-inflammation during infection. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.

Keywords: DAMPs; NETosis; S100A8/A9; histones; platelets.

© 2023 Published by Elsevier Inc.

Figures

Figure
Figure
Effect of NET-associated DAMPs on platelet activation. Platelet activation by pathogens or classical agonists induces platelet activation and supports platelet-dependent NETosis. Distinct receptors are involved in mice and humans and in response to different agonists in vitro, under flow conditions and in vivo. CD62P is a key driver of NETosis in mice in vitro and in vivo but not in humans in vitro. CD62P contributes to platelet-dependent vital NETosis in LPS-stimulated human platelets. Platelet HMGB1 supports NETosis through RAGE in humans and mice. GPIIb/IIIa mediates NETosis through MAC-1 in mice, whereas under flow conditions, VWF-GPIbα priming of human platelets triggers GPIIb/IIIa-dependent NETosis through SLC44A2. Platelet secretion of PF4, TxA2, RANTES, and VWF also contributes to NETosis. Multiple NET-associated DAMPs trigger platelet activation and the release of proinflammatory molecules. Cathepsin G induces platelet aggregation, and this effect is amplified by neutrophil elastase. Histones, in particular H3 and H4, induce platelet aggregation alongside with the formation of procoagulant platelets and thrombin generation, mainly through TLR2/TLR4. S100A8/A9 supports the formation of procoagulant platelets through a mechanism involving GPIb-IX-V and induces platelet pyroptosis through TLR4 with the subsequent release of oxidized mitochondrial DNA (ox-mtDNA) supporting NETosis and amplifying thrombo-inflammation.

References

    1. Denny M.F., Yalavarthi S., Zhao W., Thacker SET ALG, Anderson M., Sandy A.R., et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol. 2010;184:3284–3297. doi: 10.4049/jimmunol.0902199.
    1. Morisaki T., Goya T., Ishimitsu T., Torisu M. The increase of low density subpopulations and CD10 (CALLA) negative neutrophils in severely infected patients. Surg Today. 1992;22:322–327. doi: 10.1007/BF00308740.
    1. Cabrera L.E., Pekkarinen P.T., Alander M., Nowlan K.H.A., Nguyen N.A., Jokiranta S., et al. Characterization of low-density granulocytes in COVID-19. PLOS Pathog. 2021;17 doi: 10.1371/journal.ppat.1009721.
    1. Blanco-Camarillo C., Alemán O.R., Rosales C. Low-density neutrophils in healthy individuals display a mature primed phenotype. Front Immunol. 2021;12 doi: 10.3389/fimmu.2021.672520.
    1. Morrissey S.M., Geller A.E., Hu X., Tieri D., Ding C., Klaes C.K., et al. A specific low-density neutrophil population correlated with hypercoagulation and disease severity in hospitalized COVID-19 patients. J.C.I. Insight. 2021;6 doi: 10.1172/jci.insight.148435.
    1. Sun R., Huang J., Yang Y., Liu L., Shao Y., Li L., et al. Dysfunction of low-density neutrophils in peripheral circulation in patients with sepsis. Sci Rep. 2022;12:685.
    1. Cohen T.S., Takahashi V., Bonnell J., Tovchigrechko A., Chaerkady R., Yu W., et al. Staphylococcus aureus drives the expansion of low-density neutrophils in diabetic mice. J Clin Invest. 2019;129:2133–2144. doi: 10.1172/JCI126938.
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Urban C.F., Ermert D., Schmid M., Abu-Abed U., Goosmann C., Nacken W., et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLOS Pathog. 2009;5 doi: 10.1371/journal.ppat.1000639.
    1. Kenny E.F., Herzig A., Krüger R., Muth A., Mondal S., Thompson P.R., et al. Diverse stimuli engage different neutrophil extracellular trap pathways. eLife. 2017;6 doi: 10.7554/eLife.24437.
    1. Poli V., Zanoni I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol. 2023;31:280–293.
    1. Papayannopoulos V., Metzler K.D., Hakkim A., Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677–691. doi: 10.1083/jcb.201006052.
    1. Metzler K.D., Fuchs T.A., Nauseef W.M., Reumaux D., Roesler J., Schulze I., et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117:953–959. doi: 10.1182/blood-2010-06-290171.
    1. Konig M.F., Andrade F. A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front Immunol. 2016;7:461. doi: 10.3389/fimmu.2016.00461.
    1. Metzler K.D., Goosmann C., Lubojemska A., Zychlinsky A., Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8:883–896. doi: 10.1016/j.celrep.2014.06.044.
    1. Monteith A.J., Miller J.M., Maxwell C.N., Chazin W.J., Skaar E.P. Neutrophil extracellular traps enhance macrophage killing of bacterial pathogens. Sci Adv. 2021;7 doi: 10.1126/sciadv.abj2101.
    1. Clark S.R., Ma A.C., Tavener S.A., McDonald B., Goodarzi Z., Kelly M.M., et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–469. doi: 10.1038/nm1565.
    1. Pilsczek F.H., Salina D., Poon K.K.H., Fahey C., Yipp B.G., Sibley C.D., et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185:7413–7425. doi: 10.4049/jimmunol.1000675.
    1. Yipp B.G., Petri B., Salina D., Jenne C.N., Scott B.N., Zbytnuik L.D., et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18:1386–1393. doi: 10.1038/nm.2847.
    1. Yipp B.G., Kubes P. NETosis: how vital is it? Blood. 2013;122:2784–2794. doi: 10.1182/blood-2013-04-457671.
    1. Yousefi S., Mihalache C., Kozlowski E., Schmid I., Simon H.U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16:1438–1444. doi: 10.1038/cdd.2009.96.
    1. Rayes J., Bourne J.H., Brill A., Watson S.P. The dual role of platelet-innate immune cell interactions in thrombo-inflammation. Res Pract Thromb Haemost. 2020;4:23–35. doi: 10.1002/rth2.12266.
    1. Zucoloto A.Z., Jenne C.N. Platelet-neutrophil interplay: insights into neutrophil extracellular trap (NET)-driven coagulation in infection. Front Cardiovasc Med. 2019;6:85. doi: 10.3389/fcvm.2019.00085.
    1. Caudrillier A., Kessenbrock K., Gilliss B.M., Nguyen J.X., Marques M.B., Monestier M., et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest. 2012;122:2661–2671. doi: 10.1172/JCI61303.
    1. Kraemer B.F., Campbell R.A., Schwertz H., Cody M.J., Franks Z., Tolley N.D., et al. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLOS Pathog. 2011;7 doi: 10.1371/journal.ppat.1002355.
    1. Carestia A., Kaufman T., Schattner M. Platelets: new bricks in the building of neutrophil extracellular traps. Front Immunol. 2016;7:271. doi: 10.3389/fimmu.2016.00271.
    1. Etulain J., Martinod K., Wong S.L., Cifuni S.M., Schattner M., Wagner D.D. P-selectin promotes neutrophil extracellular trap formation in mice. Blood. 2015;126:242–246. doi: 10.1182/blood-2015-01-624023.
    1. Gardiner E.E., De Luca M., McNally T., Michelson A.D., Andrews R.K., Berndt M.C. Regulation of P-selectin binding to the neutrophil P-selectin counter-receptor P-selectin glycoprotein ligand-1 by neutrophil elastase and cathepsin G. Blood. 2001;98:1440–1447. doi: 10.1182/blood.v98.5.1440.
    1. Maugeri N., Campana L., Gavina M., Covino C., De Metrio M., Panciroli C., et al. Activated platelets present high mobility group box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J Thromb Haemost. 2014;12:2074–2088. doi: 10.1111/jth.12710.
    1. Carestia A., Kaufman T., Rivadeneyra L., Landoni V.I., Pozner R.G., Negrotto S., et al. Mediators and molecular pathways involved in the regulation of neutrophil extracellular trap formation mediated by activated platelets. J Leukoc Biol. 2016;99:153–162. doi: 10.1189/jlb.3A0415-161R.
    1. Perdomo J., Leung H.H.L., Ahmadi Z., Yan F., Chong J.J.H., Passam F.H., et al. Neutrophil activation and NETosis are the major drivers of thrombosis in heparin-induced thrombocytopenia. Nat Commun. 2019;10:1322. doi: 10.1038/s41467-019-09160-7.
    1. Vogel S., Bodenstein R., Chen Q., Feil S., Feil R., Rheinlaender J., et al. Platelet-derived HMGB1 is a critical mediator of thrombosis. J Clin Invest. 2015;125:4638–4654. doi: 10.1172/JCI81660.
    1. Denorme F., Portier I., Rustad J.L., Cody M.J., de Araujo C.V., Hoki C., et al. Neutrophil extracellular traps regulate ischemic stroke brain injury. J Clin Invest. 2022;132 doi: 10.1172/JCI154225.
    1. Tadie J.M., Bae H.B., Jiang S., Park D.W., Bell C.P., Yang H., et al. HMGB1 promotes neutrophil extracellular trap formation through interactions with toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol. 2013;304:L342–L349. doi: 10.1152/ajplung.00151.2012.
    1. Stark K., Philippi V., Stockhausen S., Busse J., Antonelli A., Miller M., et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128:2435–2449. doi: 10.1182/blood-2016-04-710632.
    1. Dyer M.R., Chen Q., Haldeman S., Yazdani H., Hoffman R., Loughran P., et al. Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep. 2018;8:2068. doi: 10.1038/s41598-018-20479-x.
    1. Constantinescu-Bercu A., Grassi L., Frontini M., Salles-Crawley, Woollard K., Crawley J.T. Activated αIIbβ3 on platelets mediates flow-dependent NETosis via SLC44A2. eLife. 2020;9 doi: 10.7554/eLife.53353.
    1. Rossaint J., Herter J.M., Van Aken H., Napirei M., Döring Y., Weber C., et al. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood. 2014;123:2573–2584. doi: 10.1182/blood-2013-07-516484.
    1. Ermert D., Urban C.F., Laube B., Goosmann C., Zychlinsky A., Brinkmann V. Mouse neutrophil extracellular traps in microbial infections. J Innate Immun. 2009;1:181–193. doi: 10.1159/000205281.
    1. Rausch P.G., Moore T.G. Granule enzymes of polymorphonuclear neutrophils: a phylogenetic comparison. Blood. 1975;46:913–919.
    1. Rowley J.W., Oler A.J., Tolley N.D., Hunter B.N., Low E.N., Nix D.A., et al. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood. 2011;118:e101–e111. doi: 10.1182/blood-2011-03-339705.
    1. Khan A.O., Reyat J.S., Hill H., Bourne J.H., Colicchia M., Newby M.L., et al. Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovasc Res. 2022;118:3085–3096. doi: 10.1093/cvr/cvac097.
    1. Gollomp K., Sarkar A., Harikumar S., Seeholzer S.H., Arepally G.M., Hudock K., et al. Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Blood. 2020;135:743–754. doi: 10.1182/blood.2019002329.
    1. McDonald B., Urrutia R., Yipp B.G., Jenne C.N., Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–333. doi: 10.1016/j.chom.2012.06.011.
    1. Pieterse E., Rother N., Yanginlar C., Hilbrands L.B., van der Vlag J. Neutrophils discriminate between lipopolysaccharides of different bacterial sources and selectively release neutrophil extracellular traps. Front Immunol. 2016;7:484. doi: 10.3389/fimmu.2016.00484.
    1. Tagai C., Morita S., Shiraishi T., Miyaji K., Iwamuro S. Antimicrobial properties of arginine- and lysine-rich histones and involvement of bacterial outer membrane protease T in their differential mode of actions. Peptides. 2011;32:2003–2009. doi: 10.1016/j.peptides.2011.09.005.
    1. Xu J., Zhang X., Monestier M., Esmon N.L., Esmon C.T. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol. 2011;187:2626–2631. doi: 10.4049/jimmunol.1003930.
    1. Huang H., Evankovich J., Yan W., Nace G., Zhang L., Ross M., et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through toll-like receptor 9 in mice. Hepatology. 2011;54:999–1008. doi: 10.1002/hep.24501.
    1. Bhaumik S.R., Smith E., Shilatifard A. Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol. 2007;14:1008–1016. doi: 10.1038/nsmb1337.
    1. Abrams S.T., Zhang N., Dart C., Wang S.S., Thachil J., Guan Y., et al. Human CRP defends against the toxicity of circulating histones. J Immunol. 2013;191:2495–2502. doi: 10.4049/jimmunol.1203181.
    1. Traby L., Kollars M., Kussmann M., Karer M., Šinkovec H., Lobmeyr E., et al. Extracellular vesicles and citrullinated histone H3 in coronavirus disease 2019 patients. Thromb Haemost. 2022;122:113–122. doi: 10.1055/a-1522-4131.
    1. Brill A., Fuchs T.A., Savchenko A.S., Thomas G.M., Martinod K., De Meyer S.F., et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10:136–144. doi: 10.1111/j.1538-7836.2011.04544.x.
    1. Yokoyama Y., Ito T., Yasuda T., Furubeppu H., Kamikokuryo C., Yamada S., et al. Circulating histone H3 levels in septic patients are associated with coagulopathy, multiple organ failure, and death: a single-center observational study. Thromb J. 2019;17:1. doi: 10.1186/s12959-018-0190-4.
    1. Kim J.E., Lee N., Gu J.Y., Yoo H.J., Kim H.K. Circulating levels of DNA-histone complex and dsDNA are independent prognostic factors of disseminated intravascular coagulation. Thromb Res. 2015;135:1064–1069. doi: 10.1016/j.thromres.2015.03.014.
    1. Shaw R.J., Abrams S.T., Austin J., Taylor J.M., Lane S., Dutt T., et al. Circulating histones play a central role in COVID-19-associated coagulopathy and mortality. Haematologica. 2021;106:2493–2498. doi: 10.3324/haematol.2021.278492.
    1. Xu J., Zhang X., Pelayo R., Monestier M., Ammollo C.T., Semeraro F., et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–1321. doi: 10.1038/nm.2053.
    1. Kutcher M.E., Xu J., Vilardi R.F., Ho C., Esmon C.T., Cohen M.J. Extracellular histone release in response to traumatic injury: implications for a compensatory role of activated protein C. J Trauma Acute Care Surg. 2012;73:1389–1394. doi: 10.1097/TA.0b013e318270d595.
    1. Semeraro F., Ammollo C.T., Morrissey J.H., Dale G.L., Friese P., Esmon N.L., et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 2011;118:1952–1961. doi: 10.1182/blood-2011-03-343061.
    1. Carestia A., Rivadeneyra L., Romaniuk M.A., Fondevila C., Negrotto S., Schattner M. Functional responses and molecular mechanisms involved in histone-mediated platelet activation. Thromb Haemost. 2013;110:1035–1045. doi: 10.1160/TH13-02-0174.
    1. Noubouossie D.F., Whelihan M.F., Yu Y.B., Sparkenbaugh E., Pawlinski R., Monroe D.M., et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129:1021–1029. doi: 10.1182/blood-2016-06-722298.
    1. Alshehri O.M., Montague S., Watson S., Carter P., Sarker N., Manne B.K., et al. Activation of glycoprotein VI (GPVI) and C-type lectin-like receptor-2 (CLEC-2) underlies platelet activation by diesel exhaust particles and other charged/hydrophobic ligands. Biochem J. 2015;468:459–473. doi: 10.1042/BJ20150192.
    1. Vulliamy P., Gillespie S., Armstrong P.C., Allan H.E., Warner T.D., Brohi K. Histone H4 induces platelet ballooning and microparticle release during trauma hemorrhage. Proc Natl. Acad Sci U S A. 2019;116:17444–17449. doi: 10.1073/pnas.1904978116.
    1. McDonald B., Davis R.P., Kim S.J., Tse M., Esmon C.T., Kolaczkowska E., et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood. 2017;129:1357–1367. doi: 10.1182/blood-2016-09-741298.
    1. Zhang Y., Wu C., Li L., Pandeya A., Zhang G., Cui J., et al. Extracellular histones trigger disseminated intravascular coagulation by lytic cell death. Int J Mol Sci. 2022;23 doi: 10.3390/ijms23126800.
    1. Zhang Y., Guan L., Yu J., Zhao Z., Mao L., Li S., et al. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome. Respir Res. 2016;17:155. doi: 10.1186/s12931-016-0472-y.
    1. Freeman C.G., Parish C.R., Knox K.J., Blackmore J.L., Lobov S.A., King D.W., et al. The accumulation of circulating histones on heparan sulphate in the capillary glycocalyx of the lungs. Biomaterials. 2013;34:5670–5676. doi: 10.1016/j.biomaterials.2013.03.091.
    1. Lam F.W., Cruz M.A., Parikh K., Rumbaut R.E. Histones stimulate von Willebrand factor release in vitro and in vivo. Haematologica. 2016;101:e277–e279. doi: 10.3324/haematol.2015.140632.
    1. Michels A., Albánez S., Mewburn J., Nesbitt K., Gould T.J., Liaw P.C., et al. Histones link inflammation and thrombosis through the induction of Weibel-Palade body exocytosis. J Thromb Haemost. 2016;14:2274–2286. doi: 10.1111/jth.13493.
    1. Michels A., Swystun L.L., Albánez S., Mewburn J., Sponagle K., Lillicrap D. Histones induce endothelial von Willebrand factor release and subsequent platelet capture in in vitro and in vivo models. Blood. 2014;124:2768. doi: 10.1182/blood.V124.21.2768.2768.
    1. Ward C.M., Tetaz T.J., Andrews R.K., Berndt M.C. Binding of the von Willebrand factor A1 domain to histone. Thromb Res. 1997;86:469–477. doi: 10.1016/s0049-3848(97)00096-0.
    1. Gonias S.L., Pasqua J.J., Greenberg C., Pizzo S.V. Precipitation of fibrinogen, fibrinogen degradation products and fibrin monomer by histone H3. Thromb Res. 1985;39:97–116. doi: 10.1016/0049-3848(85)90125-2.
    1. Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D., et al. Extracellular DNA traps promote thrombosis. Proc Natl. Acad Sci U S A. 2010;107:15880–15885. doi: 10.1073/pnas.1005743107.
    1. Locke M., Longstaff C. Extracellular histones inhibit fibrinolysis through noncovalent and covalent interactions with fibrin. Thromb Haemost. 2021;121:464–476. doi: 10.1055/s-0040-1718760.
    1. Ammollo C.T., Semeraro F., Xu J., Esmon N.L., Esmon C.T. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost. 2011;9:1795–1803. doi: 10.1111/j.1538-7836.2011.04422.x.
    1. Kim J.E., Yoo H.J., Gu J.Y., Kim H.K.K. Histones induce the procoagulant phenotype of endothelial cells through tissue factor up-regulation and thrombomodulin down-regulation. PLOS ONE. 2016;11 doi: 10.1371/journal.pone.0156763.
    1. Gupta A.K., Joshi M.B., Philippova M., Erne P., Hasler P., Hahn S., et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. F.E.B.S. Lett. 2010;584:3193–3197. doi: 10.1016/j.febslet.2010.06.006.
    1. Lam F.W., Cruz M.A., Leung H.C.E., Parikh K.S., Smith C.W., Rumbaut R.E. Histone induced platelet aggregation is inhibited by normal albumin. Thromb Res. 2013;132:69–76. doi: 10.1016/j.thromres.2013.04.018.
    1. Hsieh I.N., White M., Hoeksema M., Deluna X., Hartshorn K. Histone H4 potentiates neutrophil inflammatory responses to influenza A virus: down-modulation by H4 binding to C-reactive protein and surfactant protein D. PLOS ONE. 2021;16 doi: 10.1371/journal.pone.0247605.
    1. Saffarzadeh M., Juenemann C., Queisser M.A., Lochnit G., Barreto G., Galuska S.P., et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLOS ONE. 2012;7 doi: 10.1371/journal.pone.0032366.
    1. Zlatina K., Saftenberger M., Kühnle A., Galuska C.E., Gärtner U., Rebl A., et al. Polysialic acid in human plasma can compensate the cytotoxicity of histones. Int J Mol Sci. 2018;19 doi: 10.3390/ijms19061679.
    1. Nakahara M., Ito T., Kawahara K., Yamamoto M., Nagasato T., Shrestha B., et al. Recombinant thrombomodulin protects mice against histone-induced lethal thromboembolism. PLOS ONE. 2013;8 doi: 10.1371/journal.pone.0075961.
    1. Li L., Yu S., Fu S., Ma X., Li X. Unfractionated heparin inhibits histone–mediated coagulation activation and thrombosis in mice. Thromb Res. 2020;193:122–129. doi: 10.1016/j.thromres.2020.06.007.
    1. Wildhagen K.C.A.A., García de Frutos P.G., Reutelingsperger C.P., Schrijver R., Aresté C., Ortega-Gómez A., et al. Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood. 2014;123:1098–1101. doi: 10.1182/blood-2013-07-514984.
    1. ATTACC Investigators, ACTIV-4a Investigators, REMAP-CAP Investigators. Lawler P.R., Goligher E.C., Berger J.S., et al. Therapeutic anticoagulation with heparin in noncritically Ill patients with Covid-19. N Engl J Med. 2021;385:790–802. doi: 10.1056/NEJMoa2105911.
    1. Fuchs T.A., Bhandari A.A., Wagner D.D. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011;118:3708–3714. doi: 10.1182/blood-2011-01-332676.
    1. Hobbs J.A.R., May R., Tanousis K., McNeill E., Mathies M., Gebhardt C., et al. Myeloid cell function in MRP-14 (S100A9) null mice. Mol Cell Biol. 2003;23:2564–2576. doi: 10.1128/MCB.23.7.2564-2576.2003.
    1. Sprenkeler E.G.G., Zandstra J., van Kleef N.D., Goetschalckx I., Verstegen B., Aarts C.E.M., et al. S100A8/A9 is a marker for the release of neutrophil extracellular traps and induces neutrophil activation. Cells. 2022:11. doi: 10.3390/cells11020236.
    1. Pruenster M., Kurz A.R.M., Chung K.J., Cao-Ehlker X., Bieber S., Nussbaum C.F., et al. Extracellular MRP8/14 is a regulator of β2 integrin-dependent neutrophil slow rolling and adhesion. Nat Commun. 2015;6:6915. doi: 10.1038/ncomms7915.
    1. Nagareddy P.R., Murphy A.J., Stirzaker R.A., Hu Y., Yu S., Miller R.G., et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 2013;17:695–708. doi: 10.1016/j.cmet.2013.04.001.
    1. Lood C., Tydén H., Gullstrand B., Jönsen A., Källberg E., Mörgelin M., et al. Platelet-derived S100A8/A9 and cardiovascular disease in systemic lupus erythematosus. Arthritis Rheumatol. 2016;68:1970–1980. doi: 10.1002/art.39656.
    1. Joshi A., Schmidt L.E., Burnap S.A., Lu R., Chan M.V., Armstrong P.C., et al. Neutrophil-derived protein S100A8/A9 alters the platelet proteome in acute myocardial infarction and is associated with changes in platelet reactivity. Arterioscler Thromb Vasc Biol. 2022;42:49–62. doi: 10.1161/ATVBAHA.121.317113.
    1. Su M., Chen C., Li S., Li M., Zeng Z., Zhang Y., et al. Gasdermin D-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis. Nat CardioVasc Res. 2022;1:732–747. doi: 10.1038/s44161-022-00108-7.
    1. Barrett T.J., Cornwell M., Myndzar K., Rolling C.C., Xia Y., Drenkova K., et al. Platelets amplify endotheliopathy in COVID-19. Sci Adv. 2021;7:eabh2434. doi: 10.1126/sciadv.abh2434.
    1. Sreejit G., Abdel-Latif A., Athmanathan B., Annabathula R., Dhyani A., Noothi S.K., et al. Neutrophil-derived S100A8/A9 amplify granulopoiesis after myocardial infarction. Circulation. 2020;141:1080–1094. doi: 10.1161/CIRCULATIONAHA.119.043833.
    1. Manne B.K., Denorme F., Middleton E.A., Portier I., Rowley J.W., Stubben C., et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136:1317–1329. doi: 10.1182/blood.2020007214.
    1. Colicchia M., Schrottmaier W.C., Perrella G., Reyat J.S., Begum J., Slater A., et al. S100A8/A9 drives the formation of procoagulant platelets through GPIbα. Blood. 2022;140:2626–2643. doi: 10.1182/blood.2021014966.
    1. Kerkhoff C., Klempt M., Kaever V., Sorg C. The two calcium-binding proteins, S100A8 and S100A9, are involved in the metabolism of arachidonic acid in human neutrophils. J Biol Chem. 1999;274:32672–32679. doi: 10.1074/jbc.274.46.32672.
    1. Kerkhoff C., Eue I., Sorg C. The regulatory role of MRP8 (S100A8) and MRP14 (S100A9) in the transendothelial migration of human leukocytes. Pathobiology. 1999;67:230–232. doi: 10.1159/000028098.
    1. Vogl T., Ludwig S., Goebeler M., Strey A., Thorey I.S., Reichelt R., et al. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood. 2004;104:4260–4268. doi: 10.1182/blood-2004-02-0446.
    1. Corbin B.D., Seeley E.H., Raab A., Feldmann J., Miller M.R., Torres V.J., et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008;319:962–965. doi: 10.1126/science.1152449.
    1. Juttukonda L.J., Berends E.T.M., Zackular J.P., Moore J.L., Stier M.T., Zhang Y., et al. Dietary manganese promotes staphylococcal infection of the heart. Cell Host Microbe. 2017;22:531–542.e8. doi: 10.1016/j.chom.2017.08.009.
    1. Achouiti A., Vogl T., Urban C.F., Röhm M., Hommes T.J., van Zoelen M.A., et al. Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLOS Pathog. 2012;8 doi: 10.1371/journal.ppat.1002987.
    1. De Jong H.K., Achouiti A., Koh G.C.K.W., Parry C.M., Baker S., Faiz M.A., et al. Expression and function of S100A8/A9 (calprotectin) in human typhoid fever and the murine salmonella model. PLOS Negl Trop Dis. 2015;9 doi: 10.1371/journal.pntd.0003663.
    1. Hogg N., Allen C., Edgeworth J. Monoclonal antibody 5.5 reacts with p8,14, a myeloid molecule associated with some vascular endothelium. Eur J Immunol. 1989;19:1053–1061. doi: 10.1002/eji.1830190615.
    1. Robinson M.J., Tessier P., Poulsom R., Hogg N. The S100 family heterodimer, MRP-8/14, binds with high affinity to heparin and heparan sulfate glycosaminoglycans on endothelial cells. J Biol Chem. 2002;277:3658–3665. doi: 10.1074/jbc.M102950200.
    1. Ding Z., Du F., Averitt R.G., Jakobsson G., Rönnow C.F., Rahman M., et al. Targeting S100A9 Reduces Neutrophil Recruitment, Inflammation and Lung Damage in Abdominal Sepsis. Int J Mol Sci. 2021;22 doi: 10.3390/ijms222312923.
    1. Marinković G., Koenis D.S., De Camp L., Jablonowski R., Graber N., de Waard V., et al. S100A9 links inflammation and repair in myocardial infarction. Circ Res. 2020;127:664–676. doi: 10.1161/CIRCRESAHA.120.315865.
    1. Guo C.J. Immune activation kickstarts the gut microbiota. Cell Host Microbe. 2021;29:318–320. doi: 10.1016/j.chom.2021.02.012.
    1. Otsuka K, Terasaki F, Ikemoto M, Fujita S, Tsukada B, Katashima T, et al. Suppression of inflammation in rat autoimmune myocarditis by S100A8/A9 through modulation of the proinflammatory cytokine network. Eur J Heart Fail. 2009;11:229-237. 10.1093/eurjhf/hfn049
    1. Wang Y., Fang C., Gao H., Bilodeau M.L., Zhang Z., Croce K., et al. Platelet-derived S100 family member myeloid-related protein-14 regulates thrombosis. J Clin Invest. 2014;124:2160–2171. doi: 10.1172/JCI70966.
    1. Wang Y., Gao H., Kessinger C.W., Schmaier A., Jaffer F.A., Simon D.I. Myeloid-related protein-14 regulates deep vein thrombosis. J.C.I. Insight. 2017;2(11) doi: 10.1172/jci.insight.91356.
    1. Kawano T., Shimamura M., Nakagami H., Iso T., Koriyama H., Takeda S., et al. Therapeutic vaccine against S100A9 (S100 calcium-binding protein A9) inhibits thrombosis without increasing the risk of bleeding in ischemic stroke in mice. Hypertension. 2018;72:1355–1364. doi: 10.1161/HYPERTENSIONAHA.118.11316.
    1. Ehlermann P., Eggers K., Bierhaus A., Most P., Weichenhan D., Greten J., et al. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products. Cardiovasc Diabetol. 2006;5:6. doi: 10.1186/1475-2840-5-6.
    1. Viemann D., Strey A., Janning A., Jurk K., Klimmek K., Vogl T., et al. Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells. Blood. 2005;105:2955–2962. doi: 10.1182/blood-2004-07-2520.
    1. Vogl T., Stratis A., Wixler V., Völler T., Thurainayagam S., Jorch S.K., et al. Autoinhibitory regulation of S100A8/S100A9 alarmin activity locally restricts sterile inflammation. J Clin Invest. 2018;128:1852–1866. doi: 10.1172/JCI89867.
    1. Du F., Ding Z., Rönnow C.F., Rahman M., Schiopu A., Thorlacius H. S100A9 induces reactive oxygen species-dependent formation of neutrophil extracellular traps in abdominal sepsis. Exp Cell Res. 2022;421 doi: 10.1016/j.yexcr.2022.113405.
    1. Klebanoff S.J., Kettle A.J., Rosen H., Winterbourn C.C., Nauseef W.M. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol. 2013;93:185–198. doi: 10.1189/jlb.0712349.
    1. Clark R.A., Klebanoff S.J. Myeloperoxidase-mediated platelet release reaction. J Clin Invest. 1979;63:177–183. doi: 10.1172/JCI109287.
    1. Cheng D., Talib J., Stanley C.P., Rashid I., Michaëlsson E., Lindstedt E.L., et al. Inhibition of MPO (myeloperoxidase) attenuates endothelial dysfunction in mouse models of vascular inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2019;39:1448–1457. doi: 10.1161/ATVBAHA.119.312725.
    1. Eiserich J.P., Baldus S., Brennan M.L., Ma W., Zhang C., Tousson A., et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–2394. doi: 10.1126/science.1106830.
    1. Kolarova H., Klinke A., Kremserova S., Adam M., Pekarova M., Baldus S., et al. Myeloperoxidase induces the priming of platelets. Free Radic Biol Med. 2013;61:357–369. doi: 10.1016/j.freeradbiomed.2013.04.014.
    1. Gorudko I.V., Grigorieva D.V., Shamova E.V., Gorbunov N.P., Kokhan A.U., Kostevich V.A., et al. Structure-biological activity relationships of myeloperoxidase to effect on platelet activation. Arch Biochem Biophys. 2022;728 doi: 10.1016/j.abb.2022.109353.
    1. Bourne J.H., Colicchia M., Di Y., Martin E., Slater A., Roumenina L.T., et al. Heme induces human and mouse platelet activation through C-type-lectin-like receptor-2. Haematologica. 2021;106:626–629. doi: 10.3324/haematol.2020.246488.
    1. Oishi S., Tsukiji N., Otake S., Oishi N., Sasaki T., Shirai T., et al. Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRγ. Blood Adv. 2021;5:2017–2026. doi: 10.1182/bloodadvances.2020001698.
    1. Gorudko I.V., Sokolov A.V., Shamova E.V., Grudinina N.A., Drozd E.S., Shishlo L.M., et al. Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry. Biol Open. 2013;2:916–923. doi: 10.1242/bio.20135314.
    1. Beckmann L., Dicke C., Spath B., Lehr C., Sievers B., Klinke A., et al. Myeloperoxidase is a negative regulator of phospholipid-dependent coagulation. Thromb Haemost. 2017;117:2300–2311. doi: 10.1160/TH17-04-0266.
    1. Selak M.A., Chignard M., Smith J.B. Cathepsin G is a strong platelet agonist released by neutrophils. Biochem J. 1988;251:293–299. doi: 10.1042/bj2510293.
    1. Sørensen O.E., Clemmensen S.N., Dahl S.L., Østergaard O., Heegaard N.H., Glenthøj A., et al. Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest. 2014;124:4539–4548. doi: 10.1172/JCI76009.
    1. Batinica M., Stephan A., Steiger J., Tantcheva-Poόr I., Eming S.A., Fabri M. Stimulus-dependent NETosis by neutrophils from a Papillon-Lefèvre syndrome patient. J Eur Acad Dermatol Venereol. 2017;31:e239–e241. doi: 10.1111/jdv.14004.
    1. LaRosa C.A., Rohrer M.J., Benoit S.E., Rodino L.J., Barnard M.R., Michelson A.D. Human neutrophil cathepsin G is a potent platelet activator. J Vasc Surg. 1994;19:306–318. doi: 10.1016/s0741-5214(94)70106-7. discussion 318.
    1. Faraday N., Schunke K., Saleem S., Fu J., Wang B., Zhang J., et al. Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils. PLOS ONE. 2013;8 doi: 10.1371/journal.pone.0071447.
    1. Sambrano G.R., Huang W., Faruqi T., Mahrus S., Craik C., Coughlin S.R. Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem. 2000;275:6819–6823. doi: 10.1074/jbc.275.10.6819.
    1. Stoller M.L., Basak I., Alsobrooks J., Bray P.F., Campbell R.A., Cathepsin G. Cleavage of PAR4 generates a novel tethered ligand that induces platelet activation. Blood. 2020;136(Suppl. 1):2. doi: 10.1182/blood-2020-134931.
    1. Elaskalani O., Abdol Razak N.B., Metharom P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones. Cell Commun Signal. 2018;16:24.
    1. Evangelista V., Piccardoni P., White J.G., de Gaetano G., Cerletti C. Cathepsin G-dependent platelet stimulation by activated polymorphonuclear leukocytes and its inhibition by antiproteinases: role of P-selectin-mediated cell-cell adhesion. Blood. 1993;81:2947–2957.
    1. Selak M.A. Neutrophil elastase potentiates cathepsin G-induced platelet activation. Thromb Haemost. 1992;68:570–576. doi: 10.1055/s-0038-1646319.
    1. Si-Tahar M., Pidard D., Balloy V., Moniatte M., Kieffer N., Van Dorsselaer A., et al. Human neutrophil elastase proteolytically activates the platelet integrin αiibβ3 through cleavage of the carboxyl-terminus of the αiib subunit heavy chain: involvement in the potentiation of platelet aggregation. J Biol Chem. 1997;272:11636–11647. doi: 10.1074/jbc.272.17.11636.
    1. Nemmar A., Hoylaerts M.F. Neutrophil cathepsin g enhances thrombogenicity of mildly injured arteries via ADP-mediated platelet sensitization. Int J Mol Sci. 2022;23:744. doi: 10.3390/ijms23020744.
    1. Brower M.S., Levin R.I., Garry K. Human neutrophil elastase modulates platelet function by limited proteolysis of membrane glycoproteins. J Clin Invest. 1985;75:657–666. doi: 10.1172/JCI111744.
    1. Martinod K., Witsch T., Farley K., Gallant M., Remold-O’Donnell E., Wagner D.D. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis. J Thromb Haemost. 2016;14:551–558. doi: 10.1111/jth.13239.
    1. Tull S.P., Bevins A., Kuravi S.J., Satchell S.C., Al-Ani B., Young S.P., et al. PR3 and elastase alter PAR1 signaling and trigger vWF release via a calcium-independent mechanism from glomerular endothelial cells. PLOS ONE. 2012;7 doi: 10.1371/journal.pone.0043916.
    1. Mihara K., Ramachandran R., Renaux B., Saifeddine M., Hollenberg M.D. Neutrophil elastase and proteinase-3 trigger G protein-biased signaling through proteinase-activated receptor-1 (PAR1) J Biol Chem. 2013;288:32979–32990. doi: 10.1074/jbc.M113.483123.
    1. Cruz M.A., Bohinc D., Andraska E.A., Alvikas J., Raghunathan S., Masters N.A., et al. Nanomedicine platform for targeting activated neutrophils and neutrophil–platelet complexes using an α1-antitrypsin-derived peptide motif. Nat Nanotechnol. 2022;17:1004–1014. doi: 10.1038/s41565-022-01161-w.
    1. Salamah M.F., Ravishankar D., Kodji X., Moraes L.A., Williams H.F., Vallance T.M., et al. The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Adv. 2018;2:2973–2985. doi: 10.1182/bloodadvances.2018021758.
    1. Pircher J., Czermak T., Ehrlich A., Eberle C., Gaitzsch E., Margraf A., et al. Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun. 2018;9:1523. doi: 10.1038/s41467-018-03925-2.
    1. Su W., Chen Y., Wang C., Ding X., Rwibasira G., Kong Y. Human cathelicidin LL-37 inhibits platelet aggregation and thrombosis via Src/PI3K/Akt signaling. Biochem Biophys Res Commun. 2016;473:283–289. doi: 10.1016/j.bbrc.2016.03.095.
    1. Duan Z., Zhang J., Chen X., Liu M., Zhao H., Jin L., et al. Role of LL-37 in thrombotic complications in patients with COVID-19. Cell Mol Life Sci. 2022;79:309. doi: 10.1007/s00018-022-04309-y.
    1. Nagaoka I., Tamura H., Reich J. Therapeutic potential of cathelicidin peptide LL-37, an antimicrobial agent, in a murine sepsis model. Int J Mol Sci. 2020;21:5973. doi: 10.3390/ijms21175973.
    1. Martinod K., Fuchs T.A., Zitomersky N.L., Wong S.L., Demers M., Gallant M., et al. PAD4-deficiency does not affect bacteremia in polymicrobial sepsis and ameliorates endotoxemic shock. Blood. 2015;125:1948–1956. doi: 10.1182/blood-2014-07-587709.
    1. Suzuki K., Murakami T., Kuwahara-Arai K., Tamura H., Hiramatsu K., Nagaoka I. Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol. 2011;23:185–193. doi: 10.1093/intimm/dxq471.
    1. Denorme F., Portier I., Kosaka Y. Platelet HMGB1 mediates pathological NET formation in ischemic stroke. Res Pract Thromb Haemost. 2022;6:113.
    1. Denorme F., Portier I., Kosaka Y. Procoagulant platelet – neutrophil interactions exacerbate ischemic stroke. Res Pract Thromb Haemost. 2022;6:157–158.
    1. Tohidi-Esfahani I., Whittaker S., Lee C. Procoagulant platelets have a distinct transcriptome that identifies the large GTPase dynamin as a driver in their formation. Res Pract Thromb Haemost. 2022;6:161.
    1. Mai S.H.C., Khan M., Dwivedi D.J., Ross C.A., Zhou J., Gould T.J., et al. Delayed but not early treatment DNase reduces organ damage and improves outcome in a murine model of sepsis. Shock. 2015;44:166–172. doi: 10.1097/SHK.0000000000000396.
    1. Carminita E., Crescence L., Brouilly N., Altié A., Panicot-Dubois L., Dubois C. DNAse-dependent, NET-independent pathway of thrombus formation in vivo. Proc Natl. Acad Sci U S A. 2021;118 doi: 10.1073/pnas.2100561118.
    1. Hakkim A., Fürnrohr B.G., Amann K., Laube B., Abed U.A., Brinkmann V., et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl. Acad Sci U S A. 2010;107:9813–9818. doi: 10.1073/pnas.0909927107.

Source: PubMed

3
订阅