Lactation and neonatal nutrition: defining and refining the critical questions

Margaret C Neville, Steven M Anderson, James L McManaman, Thomas M Badger, Maya Bunik, Nikhat Contractor, Tessa Crume, Dana Dabelea, Sharon M Donovan, Nicole Forman, Daniel N Frank, Jacob E Friedman, J Bruce German, Armond Goldman, Darryl Hadsell, Michael Hambidge, Katie Hinde, Nelson D Horseman, Russell C Hovey, Edward Janoff, Nancy F Krebs, Carlito B Lebrilla, Danielle G Lemay, Paul S MacLean, Paula Meier, Ardythe L Morrow, Josef Neu, Laurie A Nommsen-Rivers, Daniel J Raiten, Monique Rijnkels, Victoria Seewaldt, Barry D Shur, Joshua VanHouten, Peter Williamson, Margaret C Neville, Steven M Anderson, James L McManaman, Thomas M Badger, Maya Bunik, Nikhat Contractor, Tessa Crume, Dana Dabelea, Sharon M Donovan, Nicole Forman, Daniel N Frank, Jacob E Friedman, J Bruce German, Armond Goldman, Darryl Hadsell, Michael Hambidge, Katie Hinde, Nelson D Horseman, Russell C Hovey, Edward Janoff, Nancy F Krebs, Carlito B Lebrilla, Danielle G Lemay, Paul S MacLean, Paula Meier, Ardythe L Morrow, Josef Neu, Laurie A Nommsen-Rivers, Daniel J Raiten, Monique Rijnkels, Victoria Seewaldt, Barry D Shur, Joshua VanHouten, Peter Williamson

Abstract

This paper resulted from a conference entitled "Lactation and Milk: Defining and refining the critical questions" held at the University of Colorado School of Medicine from January 18-20, 2012. The mission of the conference was to identify unresolved questions and set future goals for research into human milk composition, mammary development and lactation. We first outline the unanswered questions regarding the composition of human milk (Section I) and the mechanisms by which milk components affect neonatal development, growth and health and recommend models for future research. Emerging questions about how milk components affect cognitive development and behavioral phenotype of the offspring are presented in Section II. In Section III we outline the important unanswered questions about regulation of mammary gland development, the heritability of defects, the effects of maternal nutrition, disease, metabolic status, and therapeutic drugs upon the subsequent lactation. Questions surrounding breastfeeding practice are also highlighted. In Section IV we describe the specific nutritional challenges faced by three different populations, namely preterm infants, infants born to obese mothers who may or may not have gestational diabetes, and infants born to undernourished mothers. The recognition that multidisciplinary training is critical to advancing the field led us to formulate specific training recommendations in Section V. Our recommendations for research emphasis are summarized in Section VI. In sum, we present a roadmap for multidisciplinary research into all aspects of human lactation, milk and its role in infant nutrition for the next decade and beyond.

Figures

Fig. 1
Fig. 1
The first 1,000 days. The crucial periods in infant metabolic and cognitive development are thought to occur during the first 1,000 days of fetal/infant life and can be divided into three phases: pregnancy, breast (or formula) feeding, and a period of increasing complementary feeding. General maternal/fetal and maternal/infant interactions are indicated for each phase
Fig. 2
Fig. 2
Development of the microbiome in the human infant. Figure modified from references 41 and 42
Fig. 3
Fig. 3
Interactions of components influencing the behavioral phenotype. Adapted from reference 68

References

    1. Eudeknab AJ, Schanler RJ. Breastfeeding and the use of human milk. Pediatrics 2012;129:e827-841.
    1. CDC. Breastfeeding promotion. 2010.
    1. WHO. Infant and Young Child Nutrition: Global Strategy on infant and young child feeding. 2012;.
    1. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010. doi:10.1152/ajpregu.00310.2010.
    1. Dabelea D, Crume T. Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes. 2011;60:1849–1855. doi: 10.2337/db11-0400.
    1. Wiedmeier JE, Joss-Moore LA, Lane RH, Neu J. Early postnatal nutrition and programming of the preterm neonate. Nutr Rev. 2011;69:76–82. doi: 10.1111/j.1753-4887.2010.00370.x.
    1. Martinez JA, Cordero P, Campion J, Milagro FI. Interplay of early-life nutritional programming on obesity, inflammation and epigenetic outcomes. Proc Nutr Soc 2012;7:1–8.
    1. Victora CG. Nutrition in early life: a global priority. Lancet. 2009;374:1123–1125. doi: 10.1016/S0140-6736(09)61725-6.
    1. Wahlig JL, Bales ES, Jackman MR, Johnson GC, McManaman JL, Maclean PS. Impact of High-fat diet and obesity on energy balance and fuel utilization during the metabolic challenge of lactation. Obesity (Silver Spring). 2011. doi:10.1038/oby.2011.196.
    1. Hammond RA, Levine R. The economic impact of obesity in the United States. Diabetes Metab Syndr Obes. 2010;3:285–295. doi: 10.2147/DMSOTT.S7384.
    1. Molinari CE, Casadio YS, Hartmann BT, Livk A, Bringans S, Arthur PG, et al. Proteome mapping of human skim milk proteins in term and preterm milk. J Proteome Res. 2012;11:1696–1714. doi: 10.1021/pr2008797.
    1. Walker A. Breast milk as the gold standard for protective nutrients. J Pediatr. 2010;156:S3–S7. doi: 10.1016/j.jpeds.2009.11.021.
    1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–336. doi: 10.1038/nature10213.
    1. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4653–4658. doi: 10.1073/pnas.1000083107.
    1. Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res. 2011;10:856–868. doi: 10.1021/pr101006u.
    1. Wickramasinghe S, Hua S, Rincon G, Islas-Trejo A, German JB, Lebrilla CB, et al. Transcriptome profiling of bovine milk oligosaccharide metabolism genes using RNA-sequencing. PLoS One. 2011;6:e18895. doi: 10.1371/journal.pone.0018895.
    1. Tao N, Wu S, Kim J, An HJ, Hinde K, Power ML, et al. Evolutionary glycomics: characterization of milk oligosaccharides in primates. J Proteome Res. 2011;10:1548–1557. doi: 10.1021/pr1009367.
    1. Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, et al. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics. 2009;37:12–22. doi: 10.1152/physiolgenomics.90341.2008.
    1. Donovan S. Role of human milk components in gastrointestinal development: current knowledge and future needs. J Pediatr. 2006;149(supp):49–61.
    1. Goldman AS. Modulation of the gastrointestinal tract of infants by human milk. Interfaces and interactions. An evolutionary perspective. J Nutr. 2000;130:426S–431S.
    1. Moore S, Ide M, Randhawa M, Walker JJ, Reid JG, Simpson NA. An investigation into the association among preterm birth, cytokine gene polymorphisms and periodontal disease. Bjog. 2004;111:125–132.
    1. Chapkin RS, Zhao C, Ivanov I, Davidson LA, Goldsby JS, Lupton JR, et al. Noninvasive stool-based detection of infant gastrointestinal development using gene expression profiles from exfoliated epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2010;298:G582–G589. doi: 10.1152/ajpgi.00004.2010.
    1. Monaco MH, Kashtanov DO, Wang M, Walker DC, Rai D, Jouni ZE, et al. Addition of polydextrose and galactooligosaccharide to formula does not affect bacterial translocation in the neonatal piglet. J Pediatr Gastroenterol Nutr. 2011;52:210–216. doi: 10.1097/MPG.0b013e3181ffcaee.
    1. Hinde K, Power ML, Oftedal OT. Rhesus macaque milk: magnitude, sources, and consequences of individual variation over lactation. Am J Phys Anthropol. 2009;138:148–157. doi: 10.1002/ajpa.20911.
    1. Neville MC, Allen JC, Archer PC, Casey CE, Seacat J, Keller RP, et al. Studies in human lactation: milk volume and nutrient composition during weaning and lactogenesis. Am J Clin Nutr. 1991;54:81–92.
    1. Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT. Immune components of bovine colostrum and milk. J Anim Sci. 2009;87:3–9. doi: 10.2527/jas.2008-1377.
    1. Neville MC, Morton J, Umemora S. Lactogenesis: the transition from pregnancy to lactation. Pediatric Clinics of North America. 2001;48:35–52. doi: 10.1016/S0031-3955(05)70284-4.
    1. Bullen JJ, Rogers HJ, Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J. 1972;1:69–75. doi: 10.1136/bmj.1.5792.69.
    1. Ellison RT, 3rd, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest. 1991;88:1080–1091. doi: 10.1172/JCI115407.
    1. Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010;1:440–464. doi: 10.4161/viru.1.5.12983.
    1. Donovan SM. Human milk oligosaccharides—the plot thickens. Br J Nutr. 2009;101:1267–1269. doi: 10.1017/S0007114508091241.
    1. Schaller JP, Kuchan MJ, Thomas DL, Cordle CT, Winship TR, Buck RH, et al. Effect of dietary ribonucleotides on infant immune status. Part 1: humoral responses. Pediatr Res. 2004;56:883–890. doi: 10.1203/01.PDR.0000145576.42115.5C.
    1. Buck RH, Thomas DL, Winship TR, Cordle CT, Kuchan MJ, Baggs GE, et al. Effect of dietary ribonucleotides on infant immune status. Part 2: immune cell development. Pediatr Res. 2004;56:891–900. doi: 10.1203/01.PDR.0000145577.03287.FA.
    1. Brundige DR, Maga EA, Klasing KC, Murray JD. Lysozyme transgenic goats’ milk influences gastrointestinal morphology in young pigs. J Nutr. 2008;138:921–926.
    1. Cerutti A, Puga I, Cols M. Innate control of B cell responses. Trends Immunol. 2011;32:202–211. doi: 10.1016/j.it.2011.02.004.
    1. Cha HR, Chang SY, Chang JH, Kim JO, Yang JY, Kim CH, et al. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J Immunol. 2010;184:6799–6806. doi: 10.4049/jimmunol.0902944.
    1. Spik G, Legrand D, Leveugle B, Mazurier J, Mikogami T, Montreuil J, et al. Characterization of two kinds of lactotransferrin (lactoferrin) receptors on different target cells. Adv Exp Med Biol. 1994;357:13–19. doi: 10.1007/978-1-4615-2548-6_2.
    1. Bode L. Human milk oligosaccharides: prebiotics and beyond. Nutr Rev. 2009;67(Suppl 2):S183–S191. doi: 10.1111/j.1753-4887.2009.00239.x.
    1. Verhasselt V, Milcent V, Cazareth J, Kanda A, Fleury S, Dombrowicz D, et al. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat Med. 2008;14:170–175. doi: 10.1038/nm1718.
    1. Misak Z. Infant nutrition and allergy. Proc Nutr Soc. 2011;70:465–471. doi: 10.1017/S0029665111003089.
    1. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:e177. doi: 10.1371/journal.pbio.0050177.
    1. Reinhardt C, Reigstad CS, Backhed F. Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr. 2009;48:249–256. doi: 10.1097/MPG.0b013e318183187c.
    1. Atarashi K, Umesaki Y, Honda K. Microbiotal influence on T cell subset development. Semin Immunol. 2011;23:146–153. doi: 10.1016/j.smim.2011.01.010.
    1. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–323. doi: 10.1038/nri2515.
    1. Marques TM, Wall R, Ross RP, Fitzgerald GF, Ryan CA, Stanton C. Programming infant gut microbiota: influence of dietary and environmental factors. Curr Opin Biotechnol. 2010;21:149–156. doi: 10.1016/j.copbio.2010.03.020.
    1. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–521. doi: 10.1542/peds.2005-2824.
    1. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A. 2008;105:18964–18969. doi: 10.1073/pnas.0809584105.
    1. Liepke C, Adermann K, Raida M, Magert HJ, Forssmann WG, Zucht HD. Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur J Biochem. 2002;269:712–718. doi: 10.1046/j.0014-2956.2001.02712.x.
    1. Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011;6:e21313. doi: 10.1371/journal.pone.0021313.
    1. Nice FJ, Luo AC. Medications and breastfeeding: current concepts. J Am Pharm Assoc (2003) 2012;52:86–94. doi: 10.1331/JAPhA.2012.10139.
    1. Mennella JA, Yourshaw LM, Morgan LK. Breastfeeding and smoking: short-term effects on infant feeding and sleep. Pediatrics. 2007;120:497–502. doi: 10.1542/peds.2007-0488.
    1. Madadi P, Shirazi F, Walter FG, Koren G. Establishing causality of CNS depression in breastfed infants following maternal codeine use. Paediatr Drugs. 2008;10:399–404. doi: 10.2165/0148581-200810060-00007.
    1. Mennella JA, Beauchamp GK. The transfer of alcohol to human milk. Effects on flavor and the infant’s behavior. N Engl J Med. 1991;325:981–985. doi: 10.1056/NEJM199110033251401.
    1. Temprano KK, Bandlamudi R, Moore TL. Antirheumatic drugs in pregnancy and lactation. Semin Arthritis Rheum. 2005;35:112–121. doi: 10.1016/j.semarthrit.2005.05.002.
    1. Chaudron LH, Giannandrea BA. ABM clinical protocol #18: use of antidepressants in nursing mothers. Breastfeed Med 2008;3:44–52.
    1. Walker SP, Chang SM, Powell CA, Simonoff E, Grantham-McGregor SM. Early childhood stunting is associated with poor psychological functioning in late adolescence and effects are reduced by psychosocial stimulation. J Nutr. 2007;137:2464–2469.
    1. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369:60–70. doi: 10.1016/S0140-6736(07)60032-4.
    1. Lapiz-Bluhm MD, Bondi CO, Doyen J, Rodriguez GA, Bedard-Arana T, Morilak DA. Behavioural assays to model cognitive and affective dimensions of depression and anxiety in rats. J Neuroendocrinol. 2008;20:1115–1137. doi: 10.1111/j.1365-2826.2008.01772.x.
    1. Neville MC, Picciano MF. Regulation of milk lipid synthesis and composition. Ann Rev Nutrition. 1997;17:159–184. doi: 10.1146/annurev.nutr.17.1.159.
    1. Meck WH, Williams CL, Cermak JM, Blusztajn JK. Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age-related dementia. Front Integr Neurosci. 2007;1:7.
    1. Wang B. Sialic acid is an essential nutrient for brain development and cognition. Annu Rev Nutr. 2009;29:177–222. doi: 10.1146/annurev.nutr.28.061807.155515.
    1. Koletzko B, Lien E, Agostoni C, Bohles H, Campoy C, Cetin I, et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations. J Perinat Med. 2008;36:5–14.
    1. Campoy C, Escolano-Margarit MV, Ramos R, Parrilla-Roure M, Csabi G, Beyer J, et al. Effects of prenatal fish-oil and 5-methyltetrahydrofolate supplementation on cognitive development of children at 6.5 y of age. Am J Clin Nutr. 2011;94:1880S–1888S. doi: 10.3945/ajcn.110.001107.
    1. Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BJ, Poulton R, et al. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci U S A. 2007;104:18860–18865. doi: 10.1073/pnas.0704292104.
    1. Steer CD, Davey Smith G, Emmett PM, Hibbeln JR, Golding J. FADS2 polymorphisms modify the effect of breastfeeding on child IQ. PLoS One. 2010;5:e11570. doi: 10.1371/journal.pone.0011570.
    1. Molto-Puigmarti C, Plat J, Mensink RP, Muller A, Jansen E, Zeegers MP, et al. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am J Clin Nutr. 2010;91:1368–1376. doi: 10.3945/ajcn.2009.28789.
    1. Johnson HG, Ekman P, Friesen W. A behavioral phenotype in the de Lange syndrome. Pediatr Res. 1976;10:843–850. doi: 10.1203/00006450-197610000-00006.
    1. Hinde K. Lactational programming of infant behavioral phenotype. In: Clancy KBH, Hinde K, Rutherford JN, editors. Primate Developmental Trajectories in Proximate and Ultimate Perspectives, vol. In Press. N.Y: Springer; 2012.
    1. Hinde K, Milligan LA. Primate milk: proximate mechanisms and ultimate perspectives. Evol Anthropol. 2011;20:9–23. doi: 10.1002/evan.20289.
    1. Bartol FF, Bagnell CA. Lactocrine programming of female reproductive tract development: environmental connections to the reproductive continuum. Mol Cell Endocrinol. 2012;354:16–21. doi: 10.1016/j.mce.2011.10.008.
    1. Hinde K, Capitanio JP. Lactational programming? Mother’s milk energy predicts infant behavior and temperament in rhesus macaques (Macaca mulatta) Am J Primatol. 2010;72:522–529.
    1. Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL, et al. Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci. 2010;30:3826–3830. doi: 10.1523/JNEUROSCI.5560-09.2010.
    1. Lauzon-Guillain B, Wijndaele K, Clark M, Acerini CL, Hughes IA, Dunger DB, et al. Breastfeeding and infant temperament at age 3 months. PLoS One. 2012;7:e29326. doi: 10.1371/journal.pone.0029326.
    1. Glynn LM, Davis EP, Schetter CD, Chicz-Demet A, Hobel CJ, Sandman CA. Postnatal maternal cortisol levels predict temperament in healthy breastfed infants. Early Hum Dev. 2007;83:675–681. doi: 10.1016/j.earlhumdev.2007.01.003.
    1. Pivik RT, Andres A, Badger TM. Diet and gender influences on processing and discrimination of speech sounds in 3- and 6-month-old infants: a developmental ERP study. Dev Sci. 2011;14:700–712. doi: 10.1111/j.1467-7687.2010.01019.x.
    1. Li J, Dykman RA, Jing H, Gilchrist JM, Badger TM, Pivik RT. Cortical responses to speech sounds in 3- and 6-month-old infants fed breast milk, milk formula, or soy formula. Dev Neuropsychol. 2010;35:762–784. doi: 10.1080/87565641.2010.508547.
    1. Jing H, Gilchrist JM, Badger TM, Pivik RT. A longitudinal study of differences in electroencephalographic activity among breastfed, milk formula-fed, and soy formula-fed infants during the first year of life. Early Hum Dev. 2010;86:119–125. doi: 10.1016/j.earlhumdev.2010.02.001.
    1. Fairbanks LA. The developmental timing of primate play: a neural selection model. In: Parker ST, Langer S, McKinney ML, editors. Biology, brains and behavior. Oxford: James Curry, Inc; 2000. pp. 131–158.
    1. Jacobs JA, Ananyeva K, Siegford JM. Dairy cow behavior affects the availability of an automatic milking system. J Dairy Sci. 2012;95:2186–2194. doi: 10.3168/jds.2011-4749.
    1. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002;7:49–66. doi: 10.1023/A:1015770423167.
    1. Berlato C, Doppler W. Selective response to insulin versus IGF-I and IGF-II and upregulation of insulin-receptor splice variant B in the differentiated mouse mammary epithelium. Endocrinology. 2009;150:2924–2933. doi: 10.1210/en.2008-0668.
    1. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev. 1980;60:1049–1106.
    1. Cowie AT, Forsyth IA, Hart IC. Hormonal control of lactation. Monogr Endocrinol 1980:1-275.
    1. Martin CE, Hartmann P, Gooneratne A. Progesterone and corticosteroids in the initiation of lactation in the sow. Aust J Biol Sci. 1978;31:517–525.
    1. Corl BA, Butler ST, Butler WR, Bauman DE. Short communication: regulation of milk fat yield and fatty acid composition by insulin. J Dairy Sci. 2006;89:4172–4175. doi: 10.3168/jds.S0022-0302(06)72462-6.
    1. Bell AW, Bauman DE. Adaptations of glucose metabolism during pregnancy and lactation. J Mammary Gland Biol Neoplasia. 1997;2:265–278. doi: 10.1023/A:1026336505343.
    1. Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Beauvais CH, Vassetzky Y, Rosen JM, et al. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia. 2010;15:85–100. doi: 10.1007/s10911-010-9170-4.
    1. Kelly PA, Bachelot A, Kedzia C, Hennighausen L, Ormandy CJ, Kopchick JJ, et al. The role of prolactin and growth hormone in mammary gland development. Mol Cell Endo. 2002;197:127–131. doi: 10.1016/S0303-7207(02)00286-1.
    1. Hadsell DL, Olea W, Lawrence N, George J, Torres D, Kadowaki T, et al. Decreased lactation capacity and altered milk composition in insulin receptor substrate null mice is associated with decreased maternal body mass and reduced insulin-dependent phosphorylation of mammary Akt. J Endocrinol. 2007;194:327–336. doi: 10.1677/JOE-07-0160.
    1. Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated Akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res. 2003;44:1100–1112. doi: 10.1194/jlr.M300045-JLR200.
    1. Lau C. Effects of stress on lactation. Pediatr Clin North Am. 2001;48:221–234. doi: 10.1016/S0031-3955(05)70296-0.
    1. Henderson JJ, Hartmann PE, Newnham JP, Simmer K. Effect of preterm birth and antenatal corticosteroid treatment on lactogenesis II in women. Pediatrics. 2008;121:e92–e100. doi: 10.1542/peds.2007-1107.
    1. Chida D, Miyoshi K, Sato T, Yoda T, Kikusui T, Iwakura Y. The role of glucocorticoids in pregnancy, parturition, lactation, and nurturing in melanocortin receptor 2-deficient mice. Endocrinology. 2011;152:1652–1660. doi: 10.1210/en.2010-0935.
    1. Sullivan EC, Hinde K, Mendoza SP, Capitanio JP. Cortisol concentrations in the milk of rhesus monkey mothers are associated with confident temperament in sons, but not daughters. Dev Psychobiol. 2011;53:96–104. doi: 10.1002/dev.20483.
    1. Tardif SD, Power ML, Ross CN, Rutherford JN, Layne-Colon DG, Paulik MA. Characterization of obese phenotypes in a small nonhuman primate, the common marmoset (Callithrix jacchus) Obesity (Silver Spring) 2009;17:1499–1505. doi: 10.1038/oby.2009.77.
    1. Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI, et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology. 2009;150:3318–3326. doi: 10.1210/en.2008-1630.
    1. Trott JF, Horigan KC, Gloviczki JM, Costa KM, Freking BA, Farmer C, et al. Tissue-specific regulation of porcine prolactin receptor expression by estrogen, progesterone, and prolactin. J Endocrinol. 2009;202:153–166. doi: 10.1677/JOE-08-0486.
    1. Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4:359–365. doi: 10.1038/nmeth1015.
    1. Wright S. The relative importance of heredity and environment in determining the piebald pattern of Guinea-pigs. Proc Natl Acad Sci U S A. 1920;6:320–332. doi: 10.1073/pnas.6.6.320.
    1. Berry DP, Buckley F, Dillon P, Evans RD, Rath M, Veerkamp RF. Genetic parameters for body condition score, body weight, milk yield, and fertility estimated using random regression models. J Dairy Sci. 2003;86:3704–3717. doi: 10.3168/jds.S0022-0302(03)73976-9.
    1. Wolf JB, Vaughn TT, Pletscher LS, Cheverud JM. Contribution of maternal effect QTL to genetic architecture of early growth in mice. Heredity (Edinb) 2002;89:300–310. doi: 10.1038/sj.hdy.6800140.
    1. Nagai J, Sarkar NK. Relationship between milk yield and mammary gland development in mice. J Dairy Sci. 1978;61:733–739. doi: 10.3168/jds.S0022-0302(78)83641-8.
    1. Hansen LB. Consequences of selection for milk yield from a geneticist’s viewpoint. J Dairy Sci. 2000;83:1145–1150. doi: 10.3168/jds.S0022-0302(00)74980-0.
    1. Turkington RW, Juergens WG, Topper YJ. Hormone-dependent synthesis of casein in vitro. Biochim Biophys Acta. 1965;111:573–576. doi: 10.1016/0304-4165(65)90077-2.
    1. Taniai H, Chen H, Ursin S. Finlay-Marks syndrome: another sporadic case and additional manifestations. Pediatr Int. 2004;46:353–355. doi: 10.1111/j.1442-200x.2004.01905.x.
    1. Chowanadisai W, Lonnerdal B, Kelleher SL. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. J Biol Chem. 2006;281:39699–39707. doi: 10.1074/jbc.M605821200.
    1. Qian L, Wang B, Tang N, Zhang W, Cai W. Polymorphisms of SLC30A2 and selected perinatal factors associated with low milk zinc in Chinese breastfeeding women. Early Hum Dev 2012. doi:earlhumdev2012.01.011.
    1. Liljander M, Sallstrom MA, Andersson S, Wernhoff P, Andersson A, Holmdahl R, et al. Identification of genetic regions of importance for reproductive performance in female mice. Genetics. 2006;173:901–909. doi: 10.1534/genetics.105.054049.
    1. De Amici D, Gasparoni A, Guala A, Klersy C. Does ethnicity predict lactation? A study of four ethnic communities. Eur J Epidemiol. 2001;17:357–362. doi: 10.1023/A:1012731713393.
    1. Manolio TA, Collins FS. The HapMap and genome-wide association studies in diagnosis and therapy. Annu Rev Med. 2009;60:443–456. doi: 10.1146/annurev.med.60.061907.093117.
    1. Kirby A, Kang HM, Wade CM, Cotsapas C, Kostem E, Han B, et al. Fine mapping in 94 inbred mouse strains using a high-density haplotype resource. Genetics. 2010;185:1081–1095. doi: 10.1534/genetics.110.115014.
    1. Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, et al. Sequence-based characterization of structural variation in the mouse genome. Nature. 2011;477:326–329. doi: 10.1038/nature10432.
    1. Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Clarke R, Lippman ME. Breast cancer risk in rats fed a diet high in n-6 polyunsaturated fatty acids during pregnancy. J Natl Cancer Inst. 1996;88:1821–1827. doi: 10.1093/jnci/88.24.1821.
    1. Ion G, Akinsete JA, Hardman WE. Maternal consumption of canola oil suppressed mammary gland tumorigenesis in C3(1) TAg mice offspring. BMC Cancer. 2010;10:81. doi: 10.1186/1471-2407-10-81.
    1. Blair HT, Jenkinson CM, Peterson SW, Kenyon PR, van der Linden DS, Davenport LC, et al. Dam and granddam feeding during pregnancy in sheep affects milk supply in offspring and reproductive performance in grand-offspring. J Anim Sci. 2010;88:E40–E50. doi: 10.2527/jas.2009-2523.
    1. van der Linden DS, Kenyon PR, Blair HT, Lopez-Villalobos N, Jenkinson CM, Peterson SW, et al. Effects of ewe size and nutrition on fetal mammary gland development and lactational performance of offspring at their first lactation. J Anim Sci. 2009;87:3944–3954. doi: 10.2527/jas.2009-2125.
    1. Rasmussen KM. Association of maternal obesity before conception with poor lactation performance. Annu Rev Nutr. 2007;27:103–121. doi: 10.1146/annurev.nutr.27.061406.093738.
    1. Amir LH, Donath S. A systematic review of maternal obesity and breastfeeding intention, initiation and duration. BMC Pregnancy Childbirth. 2007;7:9. doi: 10.1186/1471-2393-7-9.
    1. Flint DJ, Travers MT, Barber MC, Binart N, Kelly PA. Diet-induced obesity impairs mammary development and lactogenesis in murine mammary gland. Am J Physiol Endocrinol Metab. 2005;288:E1179–E1187. doi: 10.1152/ajpendo.00433.2004.
    1. Rasmussen KM, Hilson JA, Kjolhede CL. Obesity may impair lactogenesis II. J Nutr. 2001;131:3009–3011.
    1. Levin BE. Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci. 2006;361:1107–1121. doi: 10.1098/rstb.2006.1851.
    1. Chen DC, Nommsen-Rivers L, Dewey KG, Lonnerdal B. Stress during labor and delivery and early lactation performance. Am J Clin Nutr. 1998;68:335–344.
    1. Beilin Y, Bodian CA, Weiser J, Hossain S, Arnold I, Feierman DE, et al. Effect of labor epidural analgesia with and without fentanyl on infant breast-feeding: a prospective, randomized, double-blind study. Anesthesiology. 2005;103:1211–1217. doi: 10.1097/00000542-200512000-00016.
    1. Rasmussen KM, Kjolhede CL. Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. Pediatrics. 2004;113:e465–e471. doi: 10.1542/peds.113.5.e465.
    1. Leonard SA, Labiner-Wolfe J, Geraghty SR, Rasmussen KM. Associations between high prepregnancy body mass index, breast-milk expression, and breast-milk production and feeding. Am J Clin Nutr. 2011;93:556–563.
    1. Morton JA. The clinical usefulness of breast milk sodium in the assessment of lactogenesis. Pediatrics. 1994;93:802–806.
    1. Theil PK, Sejrsen K, Hurley WL, Labouriau R, Thomsen B, Sorensen MT. Role of suckling in regulating cell turnover and onset and maintenance of lactation in individual mammary glands of sows. J Anim Sci. 2006;84:1691–1698. doi: 10.2527/jas.2005-518.
    1. Pickler RH, Best AM, Reyna BA, Gutcher G, Wetzel PA. Predictors of nutritive sucking in preterm infants. J Perinatol. 2006;26:693–699. doi: 10.1038/sj.jp.7211590.
    1. Ahmed AH. Role of the pediatric nurse practitioner in promoting breastfeeding for late preterm infants in primary care settings. J Pediatr Health Care. 2010;24:116–122. doi: 10.1016/j.pedhc.2009.03.005.
    1. Shah R, Diaz SD, Arria A, Lagasse LL, Derauf C, Newman E, et al. Prenatal methamphetamine exposure and short-term maternal and infant medical outcomes. Am J Perinatol. 2012;29:391–400. doi: 10.1055/s-0032-1304818.
    1. Ballard JL, Auer CE, Khoury JC. Ankyloglossia: assessment, incidence, and effect of frenuloplasty on the breastfeeding dyad. Pediatrics. 2002;110:e63. doi: 10.1542/peds.110.5.e63.
    1. Rowlands JC, Hakkak R, Ronis MJ, Badger TM. Altered mammary gland differentiation and progesterone receptor expression in rats fed soy and whey proteins. Toxicol Sci. 2002;70:40–45. doi: 10.1093/toxsci/70.1.40.
    1. Rahal OM, Simmen RC. Paracrine-acting adiponectin promotes mammary epithelial differentiation and synergizes with genistein to enhance transcriptional response to estrogen receptor beta signaling. Endocrinology. 2011;152:3409–3421. doi: 10.1210/en.2011-1085.
    1. Eason RR, Velarde MC, Chatman L, Jr, Till SR, Geng Y, Ferguson M, et al. Dietary exposure to whey proteins alters rat mammary gland proliferation, apoptosis, and gene expression during postnatal development. J Nutr. 2004;134:3370–3377.
    1. Dave B, Eason RR, Geng Y, Su Y, Badger TM, Simmen RC. Tp53-associated growth arrest and DNA damage repair gene expression is attenuated in mammary epithelial cells of rats fed whey proteins. J Nutr. 2006;136:1156–1160.
    1. Su Y, Eason RR, Geng Y, Till SR, Badger TM, Simmen RC. In utero exposure to maternal diets containing soy protein isolate, but not genistein alone, protects young adult rat offspring from NMU-induced mammary tumorigenesis. Carcinogenesis. 2007;28:1046–1051. doi: 10.1093/carcin/bgl240.
    1. Su Y, Shankar K, Rahal O, Simmen RC. Bidirectional signaling of mammary epithelium and stroma: implications for breast cancer–preventive actions of dietary factors. J Nutr Biochem. 2011;22:605–611. doi: 10.1016/j.jnutbio.2010.09.008.
    1. Marshall AM, Nommsen-Rivers LA, Hernandez LL, Dewey KG, Chantry CJ, Gregerson KA, et al. Serotonin transport and metabolism in the mammary gland modulates secretory activation and involution. J Clin Endocrinol Metab. 2010;95:837–846. doi: 10.1210/jc.2009-1575.
    1. Lacasse P, Lollivier V, Bruckmaier RM, Boisclair YR, Wagner GF, Boutinaud M. Effect of the prolactin-release inhibitor quinagolide on lactating dairy cows. J Dairy Sci. 2011;94:1302–1309. doi: 10.3168/jds.2010-3649.
    1. Romagnoli S, Milani C, Perin S, Ballabio R, Stelletta C, Mollo A, et al. Effect of an injectable cabergoline formulation on serum prolactin (PRL) and milk secretion in early postpartum Beagle bitches. Reprod Domest Anim. 2009;44(Suppl 2):148–151. doi: 10.1111/j.1439-0531.2009.01440.x.
    1. Henriksen C, Haugholt K, Lindgren M, Aurvag AK, Ronnestad A, Gronn M, et al. Improved cognitive development among preterm infants attributable to early supplementation of human milk with docosahexaenoic acid and arachidonic acid. Pediatrics. 2008;121:1137–1145. doi: 10.1542/peds.2007-1511.
    1. Mosconi E, Rekima A, Seitz-Polski B, Kanda A, Fleury S, Tissandie E, et al. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol. 2010;3:461–474. doi: 10.1038/mi.2010.23.
    1. Mai V, Young CM, Ukhanova M, Wang X, Sun Y, Casella G, et al. Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS One. 2011;6:e20647. doi: 10.1371/journal.pone.0020647.
    1. Meier PP, Engstrom JL, Patel AL, Jegier BJ, Bruns NE. Improving the use of human milk during and after the NICU stay. Clin Perinatol. 2011;37:217–245. doi: 10.1016/j.clp.2010.01.013.
    1. Higgins RD, Devaskar S, Hay WW, Jr, Ehrenkranz RA, Greer FR, Kennedy K, et al. Executive summary of the workshop “Nutritional challenges in the high risk infant”. J Pediatr. 2012;160:511–516. doi: 10.1016/j.jpeds.2011.12.024.
    1. Donovan SM. Promoting bifidobacteria in the human infant intestine: why, how, and which one? J Pediatr Gastroenterol Nutr. 2011;52:648–649. doi: 10.1097/MPG.0b013e31821e2799.
    1. Schanler RJ. Mother’s own milk, donor human milk, and preterm formulas in the feeding of extremely premature infants. J Pediatr Gastroenterol Nutr. 2007;45(Suppl 3):S175–S177. doi: 10.1097/01.mpg.0000302967.83244.36.
    1. Obregon M-J. Maternal obesity results in offspring prone to metabolic syndrome. Endocrinol. 2010;151:3475–3476. doi: 10.1210/en.2010-0611.
    1. Beilin L, Huang RC. Childhood obesity, hypertension, the metabolic syndrome and adult cardiovascular disease. Clin Exp Pharmacol Physiol. 2008;35:409–411. doi: 10.1111/j.1440-1681.2008.04887.x.
    1. Arenz S, Ruckerl R, Koletzko B, von Kries R. Breast-feeding and childhood obesity—a systematic review. Int J Obes Relat Metab Disord. 2004;28:1247–1256. doi: 10.1038/sj.ijo.0802758.
    1. Beyerlein A, Toschke AM, von Kries R. Breastfeeding and childhood obesity: shift of the entire BMI distribution or only the upper parts? Obesity (Silver Spring) 2008;16:2730–2733. doi: 10.1038/oby.2008.432.
    1. Crume TL, Ogden LG, Mayer-Davis EJ, Hamman RF, Norris JM, Bischoff KJ, et al. The impact of neonatal breast-feeding on growth trajectories of youth exposed and unexposed to diabetes in utero: the EPOCH Study. Int J Obes (Lond) 2012;36:529–534. doi: 10.1038/ijo.2011.254.
    1. Pettitt DJ, Knowler WC. Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care. 1998;21(Suppl 2):B138–B141.
    1. Crume TL, Ogden L, Maligie M, Sheffield S, Bischoff KJ, McDuffie R, et al. Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero. Diabetes Care. 2011;34:641–645. doi: 10.2337/dc10-1716.
    1. Mayer-Davis EJ, Rifas-Shiman SL, Zhou L, Hu FB, Colditz GA, Gillman MW. Breast-feeding and risk for childhood obesity: does maternal diabetes or obesity status matter? Diabetes Care. 2006;29:2231–2237. doi: 10.2337/dc06-0974.
    1. Li C, Kaur H, Choi WS, Huang TT, Lee RE, Ahluwalia JS. Additive interactions of maternal prepregnancy BMI and breast-feeding on childhood overweight. Obes Res. 2005;13:362–371. doi: 10.1038/oby.2005.48.
    1. Plagemann A, Harder T. Fuel-mediated teratogenesis and breastfeeding. Diabetes Care. 2011;34:779–781. doi: 10.2337/dc10-2369.
    1. Gorski JN, Dunn-Meynell AA, Hartman TG, Levin BE. Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2006;291:R768–R778. doi: 10.1152/ajpregu.00138.2006.
    1. Ventura AK, Beauchamp GK, Mennella JA. Infant regulation of intake: the effect of free glutamate content in infant formulas. Am J Clin Nutr. 2012;95:875–881. doi: 10.3945/ajcn.111.024919.
    1. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. 2008;371:340–357. doi: 10.1016/S0140-6736(07)61692-4.
    1. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371:243–260. doi: 10.1016/S0140-6736(07)61690-0.
    1. Krebs NF. Food choices to meet nutritional needs of breast-fed infants and toddlers on mixed diets. J Nutr. 2007;137:511S–517S.
    1. Krebs NF, Hambidge KM. Complementary feeding: clinically relevant factors affecting timing and composition. Am J Clin Nutr. 2007;85:639S–645S.
    1. Dewey KG. Infant feeding and growth. Adv Exp Med Biol. 2009;639:57–66. doi: 10.1007/978-1-4020-8749-3_5.
    1. Ibarra-Drendall C, Troch MM, Barry WT, Broadwater G, Petricoin EF, 3rd, Wulfkuhle J, Liotta LA, Lem S, Baker JC, Jr., Ford AC, Wilke LG, Zalles C, Kuderer NM, Hoffman AW, Shivraj M, Mehta P, Williams J, Tolbert N, Lee LW, Pilie PG, Yu D, Seewaldt VL. Pilot and feasibility study: prospective proteomic profiling of mammary epithelial cells from high-risk women provides evidence of activation of pro-survival pathways. Breast Cancer Res Treat. 2012;132:487–498.
    1. Bentley ME, Dee DL, Jensen JL. Breastfeeding among low income, African–American women: power, beliefs and decision making. J Nutr. 2003;133:305S–309S.

Source: PubMed

3
订阅