The impact of freeze-drying infant fecal samples on measures of their bacterial community profiles and milk-derived oligosaccharide content

Zachery T Lewis, Jasmine C C Davis, Jennifer T Smilowitz, J Bruce German, Carlito B Lebrilla, David A Mills, Zachery T Lewis, Jasmine C C Davis, Jennifer T Smilowitz, J Bruce German, Carlito B Lebrilla, David A Mills

Abstract

Infant fecal samples are commonly studied to investigate the impacts of breastfeeding on the development of the microbiota and subsequent health effects. Comparisons of infants living in different geographic regions and environmental contexts are needed to aid our understanding of evolutionarily-selected milk adaptations. However, the preservation of fecal samples from individuals in remote locales until they can be processed can be a challenge. Freeze-drying (lyophilization) offers a cost-effective way to preserve some biological samples for transport and analysis at a later date. Currently, it is unknown what, if any, biases are introduced into various analyses by the freeze-drying process. Here, we investigated how freeze-drying affected analysis of two relevant and intertwined aspects of infant fecal samples, marker gene amplicon sequencing of the bacterial community and the fecal oligosaccharide profile (undigested human milk oligosaccharides). No differences were discovered between the fecal oligosaccharide profiles of wet and freeze-dried samples. The marker gene sequencing data showed an increase in proportional representation of Bacteriodes and a decrease in detection of bifidobacteria and members of class Bacilli after freeze-drying. This sample treatment bias may possibly be related to the cell morphology of these different taxa (Gram status). However, these effects did not overwhelm the natural variation among individuals, as the community data still strongly grouped by subject and not by freeze-drying status. We also found that compensating for sample concentration during freeze-drying, while not necessary, was also not detrimental. Freeze-drying may therefore be an acceptable method of sample preservation and mass reduction for some studies of microbial ecology and milk glycan analysis.

Keywords: Fecal microbiome; Freeze-drying; Human microbiome; Human milk oligosaccharides; Infants; Lyophilization.

Conflict of interest statement

DAM, JBG, and CBL are co-founders of Evolve Biosystems, a company focused on diet-based manipulation of the gut microbiota. Evolve Biosystems had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Figures

Figure 1. Bacterial communities of freeze-dried and…
Figure 1. Bacterial communities of freeze-dried and wet feces.
The bacterial community structures of the feces of 24 test infants. Relative abundances of each bacterial taxon are shown. Each sample is grouped together, with the two wet replicates first, followed by the two low-mass duplicates, and lastly the high-mass duplicates.
Figure 2. Comparison of fecal oligosaccharide measures…
Figure 2. Comparison of fecal oligosaccharide measures between freeze-dried and wet fecal samples.
Absolute and relative abundances of fecal oligosaccharides.
Figure 3. Cladograms representing the taxa enriched…
Figure 3. Cladograms representing the taxa enriched under various treatments.
(A) shows the differential features of wet and dry (both high- and low-mass) replicates in an all-against-all comparison (classes = wet and dry; subclasses = wet, high, and low). (B) shows the results separated by high-mass and low-mass as well (classes = wet, high, and low) in a one-against-all comparison.
Figure 4. Principle Coordinates Analysis (PCoA) plots…
Figure 4. Principle Coordinates Analysis (PCoA) plots showing the clustering of samples by various metadata.
(A) by Wet vs. Dry, (B) Wet vs. High Mass Lyophilized vs. Low Mass Lyophilized, (C) by Infant (subject).

References

    1. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC. Low gut microbiota diversity in early infancy precedes asthma at school age. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology. 2013;44:842–850.
    1. Albertsen M, Karst SM, Ziegler AS, Kirkegaard RH, Nielsen PH. Back to basics—the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PloS ONE. 2015;10:e1612. doi: 10.1371/journal.pone.0132783.
    1. Avershina E, Ola S, Oien T, Johnsen R, Pope P, Rudi K. Major fecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiology Ecology. 2013;87:280–290. doi: 10.1111/1574-6941.12223.
    1. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, Sears MR, Becker AB, Scott JA, Korzyrskyj AL. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Canadian Medical Association Journal/Journal de l’Association Medicale Canadienne. 2013;185:385–394. doi: 10.1503/cmaj.121189.
    1. Bergström A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, Mølgaard C, Michaelsen KF, Licht TR. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Applied and Environmental Microbiology. 2014;80:2889–2900. doi: 10.1128/AEM.00342-14.
    1. Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G. Cesarean delivery may affect the early biodiversity of intestinal bacteria. Journal of Nutrition. 2008;138:1796S–1800S.
    1. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? . Nature Reviews. Microbiology. 2009;7:887–894. doi: 10.1038/nrmicro2245.
    1. Bode L. Human milk Oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–1162. doi: 10.1093/glycob/cws074.
    1. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010b;26:266–267. doi: 10.1093/bioinformatics/btp636.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010a;7:335–336. doi: 10.1038/nmeth.f.303.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:4516–4522. doi: 10.1073/pnas.1000080107.
    1. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, Alekseyenko AV, Blaser MJ. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621–626. doi: 10.1038/nature11400.
    1. Clarke KR. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology. 1993;18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x.
    1. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research. 2009;37:D141–D145. doi: 10.1093/nar/gkn879.
    1. De Leoz MLA, Kalanetra KM, Bokulich NA, Strum JS, Underwood MA, German JB, Mills DA, Lebrilla CB. Human milk glycomics and gut microbial genomics in infant feces shows correlation between human milk oligosaccharides and gut microbiota: a proof-of-concept study. Journal of Proteome Research. 2014
    1. De Leoz MLA, Wu S, Strum JS, Niñonuevo MR, Gaerlan SC, Mirmiran M, German JB, Mills DA, Lebrilla CB, Underwood MA. A quantitative and comprehensive method to analyze human milk oligosaccharide structures in the urine and feces of infants. Analytical and Bioanalytical Chemistry. 2013;405:4089–4105. doi: 10.1007/s00216-013-6817-1.
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05.
    1. Dominguez-bello MG, Blaser MJ, Ley RE, Knight R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology. 2011;140:1713–1719. doi: 10.1053/j.gastro.2011.02.011.
    1. Dominianni C, Wu J, Hayes RB, Ahn J. Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiology. 2014;14:103. doi: 10.1186/1471-2180-14-103.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461.
    1. Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, Gil A, Vieites JM, Norin E, Young D, Scott JA, Doré J, Edwards CA. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five European centres. Microbiology. 2011;157:1385–1392. doi: 10.1099/mic.0.042143-0.
    1. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic identification using skin bacterial communities. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:6477–6481. doi: 10.1073/pnas.1000162107.
    1. Ghyselinck J, Pfeiffer S, Heylen K, Sessitsch A, De Vos P. The effect of primer choice and short read sequences on the outcome of 16s rRNA gene based diversity studies. PLoS ONE. 2013;8:e1612. doi: 10.1371/journal.pone.0071360.
    1. Gianaroli L, Magli MC, Stanghellini I, Crippa A, Crivello AM, Pescatori ES, Ferraretti AP. DNA integrity is maintained after freeze-drying of human spermatozoa. Fertility and Sterility. 2012;97:1067–1073. doi: 10.1016/j.fertnstert.2012.02.014.
    1. Henrich J, Heine SJ, Norenzayan A. The weirdest people in the world? . The Behavioral and Brain Sciences. 2010;33:61–83. doi: 10.1017/S0140525X0999152X.
    1. Huda MN, Lewis ZT, Kalanetra KM, Rashid M, Ahmad SM, Raqib R, Qadri F, Underwood MA, Mills DA, Stephensen CB. Stool microbiota and vaccine responses of infants. Pediatrics. 2014;134:e362–e372. doi: 10.1542/peds.2013-3937.
    1. Jost T, Lacroix C, Braegger CP, Chassard C. New insights in gut microbiota establishment in healthy breast fed neonates. PLoS ONE. 2012;7:e1612. doi: 10.1371/journal.pone.0044595.
    1. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, Van Tassell, Maxwell L, Miller MJ, Jin Y-S, German JB, Lebrilla CB, Mills DA. Maternal Fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome. 2015;3:1–21. doi: 10.1186/s40168-014-0066-1.
    1. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology. 2005;71:8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005.
    1. Machiels BM, Ruers T, Lindhout M, Hardy K, Hlavaty T, Bang DD, Somers VAMC, Baeten C, Von Meyenfeldt M, Thunnissen FBJM. New protocol for DNA extraction of stool. Biotechniques. 2000;28:286–290.
    1. Maukonen J, Simões C, Saarela M. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiology Ecology. 2012;79:697–708. doi: 10.1111/j.1574-6941.2011.01257.x.
    1. Mennerat A, Sheldon BC. How to deal with PCR contamination in molecular microbial ecology. Microbial Ecology. 2014;68:834–841. doi: 10.1007/s00248-014-0453-y.
    1. Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA, Sanchez B, Martín R, Gueimonde M, Van Sinderen D, Margolles A, Ventura M. Assessing the fecal microbiota: an optimized ion torrent 16S rRNA gene-based analysis protocol. PLoS ONE. 2013;8:e1612. doi: 10.1371/journal.pone.0068739.
    1. Moro GE, Stahl B, Fanaro S, Jelinek J, Boehm G, Coppa GV. Dietary prebiotic oligosaccharides are detectable in the faeces of formula-fed infants. Acta Paediatrica (Oslo, Norway: 1992). Supplement. 2005;94:27–30. doi: 10.1080/08035320510043510.
    1. Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, German JB, Freeman SL, Killeen K, Grimm R, Lebrilla CB. A strategy for annotating the human milk glycome. Journal of Agricultural and Food Chemistry. 2006;54:7471–7480. doi: 10.1021/jf0615810.
    1. Nwosu CC, Aldredge DL, Lee H, Lerno LA, Zivkovic AM, German JB, Lebrilla CB. Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. Journal of Proteome Research. 2012;11:2912–2924. doi: 10.1021/pr300008u.
    1. Rapp D, Waller J, Brightwell G, Muirhead RW. Lyophilization prior to direct DNA extraction from bovine feces improves the quantification of Escherichia coli O157:H7 and Campylobacter jejuni. Applied and Environmental Microbiology. 2010;76:1686–1688. doi: 10.1128/AEM.01866-09.
    1. Roos S, Dicksved J, Tarasco V, Locatelli E, Ricceri F, Grandin U, Savino F. 454 pyrosequencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938. PLoS ONE. 2013;8:e1612. doi: 10.1371/journal.pone.0056710.
    1. Rubin BER, Sanders JG, Hampton-Marcell J, Owens SM, Gilbert JA, Moreau CS. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure. MicrobiologyOpen. 2014;3:910–921. doi: 10.1002/mbo3.216.
    1. Ruiz R, Rubio LA. Lyophilisation improves the extraction of PCR-quality community DNA from pig faecal samples. Journal of the Science of Food and Agriculture. 2009;89:723–727. doi: 10.1002/jsfa.3465.
    1. Sabharwal H, Nilsson B, Chester MA, Sjöblad S, Lundblad A. Blood group specific oligosaccharides from faeces of a blood group A breast-fed infant. Molecular Immunology. 1984;21:1105–1112. doi: 10.1016/0161-5890(84)90121-4.
    1. Sabharwal H, Sjoblad S, Lundblad A. Sialylated OS in human milk and feces of preterm, full term, and weaning infants˙sabharwal˙1991.pdf. Journal of Pediatric Gastroenterology and Nutrition. 1991;12:480–484. doi: 10.1097/00005176-199105000-00012.
    1. Scholtens PAMJ, Oozeer R, Martin R, Amor KB, Knol J. The early settlers: intestinal microbiology in early life. Annual Review of Food Science and Technology. 2012;3:425–447. doi: 10.1146/annurev-food-022811-101120.
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biology. 2011;12:R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL. Breast milk oligosaccharides: structure-function relationships in the neonate. Annual Review of Nutrition. 2014;34:143–169. doi: 10.1146/annurev-nutr-071813-105721.
    1. Straube D, Juen A. Storage and shipping of tissue samples for DNA analyses: a case study on earthworms. European Journal of Soil Biology. 2013;57:13–18. doi: 10.1016/j.ejsobi.2013.04.001.
    1. Subramanian S, Blanton L, Frese SA, Charbonneau M, Mills D, Gordon JI. Cultivating healthy growth and nutrition through the gut microbiota. Cell. 2015;161:36–48. doi: 10.1016/j.cell.2015.03.013.
    1. Van der Heijden I, Beijnen JH, Nuijen B. Long term stability of lyophilized plasmid DNA pDERMATT. International Journal of Pharmaceutics. 2013;453:648–650. doi: 10.1016/j.ijpharm.2013.06.010.
    1. Voigt AY, Costea PI, Kultima JR, Li SS, Zeller G, Sunagawa S, Bork P. Temporal and technical variability of human gut metagenomes. Genome Biology. 2015;16:73. doi: 10.1186/s13059-015-0639-8.
    1. Wagner-Mackenzie B, Waite DW, Taylor MW. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Frontiers in Microbiology. 2015;6:130.
    1. Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome. 2015;3:26. doi: 10.1186/s40168-015-0087-4.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07.
    1. Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS, Ivanov I, Donovan SM. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. Journal of Pediatric Gastroenterology and Nutrition. 2015;60:825–833. doi: 10.1097/MPG.0000000000000752.
    1. Wasser SK, Houston CS, Koehler GM, Cadd GG, Fain SR. Techniques for application of faecal DNA methods to field studies of Ursids. Molecular Ecology. 1997;6:1091–1097. doi: 10.1046/j.1365-294X.1997.00281.x.
    1. Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R. Tracking down the sources of experimental contamination in microbiome studies. Genome Biololgy. 2014;15:564.
    1. Wesolowska-Andersen A, Bahl MI, Carvalho V, Kristiansen K, Sicheritz-Pontén T, Gupta R, Licht TR. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome. 2014;2:19. doi: 10.1186/2049-2618-2-19.
    1. Wu S, Grimm R, German JB, Lebrilla CB. Annotation and structural analysis of sialylated human milk Oligosaccharides. Journal of Proteome Research. 2011;10:856–868. doi: 10.1021/pr101006u.
    1. Wu S, Tao N, German JB, Grimm R, Lebrilla CB. Development of an annotated library of neutral human milk Oligosaccharides. Journal of Proteome Research. 2010;9:4138–4151. doi: 10.1021/pr100362f.
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053.
    1. Zivkovic AM, Lewis ZT, German JB, Mills DA. Establishment of a milk-oriented microbiota (MOM) in early life: how babies meet their MOMs. Functional Food Reviews. 2013;5:3–12.

Source: PubMed

3
订阅