The human colostrum whey proteome is altered in gestational diabetes mellitus

Dmitry Grapov, Danielle G Lemay, Darren Weber, Brett S Phinney, Ilana R Azulay Chertok, Deborah S Gho, J Bruce German, Jennifer T Smilowitz, Dmitry Grapov, Danielle G Lemay, Darren Weber, Brett S Phinney, Ilana R Azulay Chertok, Deborah S Gho, J Bruce German, Jennifer T Smilowitz

Abstract

Proteomics of human milk has been used to identify the comprehensive cargo of proteins involved in immune and cellular function. Very little is known about the effects of gestational diabetes mellitus (GDM) on lactation and breast milk components. The objective of the current study was to examine the effect of GDM on the expression of proteins in the whey fraction of human colostrum. Colostrum was collected from women who were diagnosed with (n = 6) or without (n = 12) GDM at weeks 24-28 in pregnancy. Colostral whey was analyzed for protein abundances using high-resolution, high-mass accuracy liquid chromatography tandem mass spectrometry. A total of 601 proteins were identified, of which 260 were quantified using label free spectral counting. Orthogonal partial least-squares discriminant analysis identified 27 proteins that best predict GDM. The power law global error model corrected for multiple testing was used to confirm that 10 of the 27 proteins were also statistically significantly different between women with versus without GDM. The identified changes in protein expression suggest that diabetes mellitus during pregnancy has consequences on human colostral proteins involved in immunity and nutrition.

Keywords: LC−MS/MS; gestational diabetes mellitus; human colostrum; lactation; multivariate analysis; proteome; whey.

Figures

Figure 1
Figure 1
Scores plot displaying discrimination between women with and without GDM based on 27 selected colostral whey proteins using orthogonal signal correction partial least-squares discriminant analysis. Edge width and color encode the magnitude and direction of partial correlations (P < 0.05) among all selected proteins based on O-PLS-DA. Vertex size and shape display the magnitude and direction of the fold-difference in protein expression in colostral whey from women with GDM relative to women without GDM (mean GDM/mean non-GDM). Significantly differentially expressed proteins (Power Law Global Error Model, Padj ≤ 0.05) are identified with thick black borders.
Figure 2
Figure 2
Empirical protein–protein interaction network for differentially expressed colostral whey proteins between women with and without GDM.

References

    1. Brandtzaeg P. The mucosal immune system and its integration with the mammary glands. J. Pediatr. 2010, 1562S8–S15.
    1. Lönnerdal B. Nutritional roles of lactoferrin. Curr. Opin. Clin. Nutr. Metab. Care 2009, 123293–297.
    1. Chirico G.; Marzollo R.; Cortinovis S.; Fonte C.; Gasparoni A. Antiinfective properties of human milk. J. Nutr. 2008, 13891801S–1806S.
    1. França E. L.; Calderon I. M. P.; Vieira E. L.; Morceli G.; Honorio-França A. C. Transfer of maternal immunity to newborns of diabetic mothers. Clin. Dev. Immunol. 2012, 2012.
    1. Morceli G.; França E.; Magalhães V.; Damasceno D.; Calderon I.; Honorio-França A. Diabetes induced immunological and biochemical changes in human colostrum. Acta Paediatr. 2011, 1004550–556.
    1. Diagnosis and classification of diabetes mellitus. Diabetes Care 2011, 34Suppl. 1S62–S69.
    1. Bellamy L.; Casas J. P.; Hingorani A. D.; Williams D. Type 2 diabetes mellitus after gestational diabetes: A systematic review and meta-analysis. Lancet 2009, 37396771773–1779.
    1. Clausen T. D.; Mathiesen E. R.; Hansen T.; Pedersen O.; Jensen D. M.; Lauenborg J.; Damm P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes. Diabetes Care 2008, 312340–346.
    1. See e4 in:Kumar R.; Ouyang F.; Story R. E.; Pongracic J. A.; Hong X.; Wang G.; Pearson C.; Ortiz K.; Bauchner H.; Wang X. Gestational diabetes, atopic dermatitis, and allergen sensitization in early childhood. J. Allergy Clin. Immunol. 2009, 12451031–1038.
    1. Smilowitz J. T.; Totten S. M.; Huang J.; Grapov D.; Durham H. A.; Lammi-Keefe C. J.; Lebrilla C.; German J. B. Human milk secretory immunoglobulin A and lactoferrin N-glycans are altered in women with gestational diabetes mellitus. J. Nutr. 2013, 143121906–1912jn. 113.180695.
    1. Gao X.; McMahon R. J.; Woo J. G.; Davidson B. S.; Morrow A. L.; Zhang Q. Temporal changes in milk proteomes reveal developing milk functions. J. Proteome Res. 2012, 1173897–3907.
    1. Liao Y.; Alvarado R.; Phinney B.; Lonnerdal B. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J. Proteome Res. 2011, 1083530–41.
    1. Liao Y.; Alvarado R.; Phinney B.; Lönnerdal B. Proteomic characterization of human milk whey proteins during a twelve-month lactation period. J. Proteome Res. 2011, 1041746–1754.
    1. Reinhardt T. A.; Lippolis J. D. Developmental changes in the milk fat globule membrane proteome during the transition from colostrum to milk. J. Dairy Sci. 2008, 9162307–18.
    1. Boehmer J. L.; DeGrasse J. A.; McFarland M. A.; Tall E. A.; Shefcheck K. J.; Ward J. L.; Bannerman D. D. The proteomic advantage: Label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis. Vet. Immunol. Immunopathol. 2010, 1384252–266.
    1. Mangé A.; Tuaillon E.; Viljoen J.; Nagot N.; Bendriss S.; Bland R. M.; Newell M.-L.; Van de Perre P.; Solassol J. Elevated concentrations of milk β2-microglobulin are associated with increased risk of breastfeeding transmission of HIV-1 (vertical transmission study). J. Proteome Res. 2013, 12125616–5625.
    1. Molinari C. E.; Casadio Y. S.; Hartmann B. T.; Livk A.; Bringans S.; Arthur P. G.; Hartmann P. E. Proteome mapping of human skim milk proteins in term and preterm milk. J. Proteome Res. 2012, 1131696–1714.
    1. Kunz C. L. B. Human milk proteins: Separation of whey proteins and their analysis by polyacrylamide gel electrophoresis, fast protein liquid chromatography (FPLC) gel filtration, and anion-exchange chromatography. Am. J. Clin. Nutr. 1989, 49, 464–470.
    1. Wessel D. F.; Flugge U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 1984, 1381141–143.
    1. Rice R. H.; Rocke D. M.; Tsai H.-S.; Silva K. A.; Lee Y. J.; Sundberg J. P. Distinguishing mouse strains by proteomic analysis of pelage hair. J. Invest. Dermatol. 2009, 12992120–2125.
    1. Nesvizhskii A. I.; Keller A.; Kolker E.; Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75174646–4658.
    1. Trygg J.; Wold S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 163119–128.
    1. Svensson O.; Kourti T.; MacGregor J. F. An investigation of orthogonal signal correction algorithms and their characteristics. J. Chemom. 2002, 164176–188.
    1. Wiklund S.; Johansson E.; Sjostrom L.; Mellerowicz E. J.; Edlund U.; Shockcor J. P.; Gottfries J.; Moritz T.; Trygg J. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 801115–22.
    1. Palermo G.; Piraino P.; Zucht H. D. Performance of PLS regression coefficients in selecting variables for each response of a multivariate PLS for omics-type data. Adv. Appl. Bioinf. Chem. 2009, 2, 57–70.
    1. Xu Q.-S.; Liang Y.-Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 5611–11.
    1. Pavelka N.; Pelizzola M.; Vizzardelli C.; Capozzoli M.; Splendiani A.; Granucci F.; Ricciardi-Castagnoli P. A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinf. 2004, 5, 203.
    1. Pavelka N.; Fournier M. L.; Swanson S. K.; Pelizzola M.; Ricciardi-Castagnoli P.; Florens L.; Washburn M. P. Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol. Cell. Proteomics 2008, 74631–44.
    1. Benjamini Y.; Hochberg Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 571289–300.
    1. Carbon S.; Ireland A.; Mungall C. J.; Shu S.; Marshall B.; Lewis S.; Ami G. O. H. Web Presence Working, G., AmiGO: Online access to ontology and annotation data. Bioinformatics 2009, 252288–9.
    1. Boyle E. I.; Weng S.; Gollub J.; Jin H.; Botstein D.; Cherry J. M.; Sherlock G. GO::TermFinder—Open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics 2004, 20183710–5.
    1. Castelo R.; Roverato A. Reverse engineering molecular regulatory networks from microarray data with qp-graphs. J. Comput. Biol. 2009, 162213–27.
    1. Shannon P.; Markiel A.; Ozier O.; Baliga N. S.; Wang J. T.; Ramage D.; Amin N.; Schwikowski B.; Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13112498–504.
    1. The R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011.
    1. Zhang B.; Wang J.; Wang X.; Zhu J.; Liu Q.; Shi Z.; Chambers M. C.; Zimmerman L. J.; Shaddox K. F.; Kim S.; Davies S. R.; Wang S.; Wang P.; Kinsinger C. R.; Rivers R. C.; Rodriguez H.; Townsend R. R.; Ellis M. J. C.; Carr S. A.; Tabb D. L.; Coffey R. J.; Slebos R. J. C.; Liebler D. C.; N. C. I. C. P. T. A. C. Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 5137518382–387.
    1. Smilowitz J. T.; Totten S. M.; Huang J.; Grapov D.; Durham H. A.; Lammi-Keefe C. J.; Lebrilla C.; German J. B. Human milk secretory immunoglobulin a and lactoferrin N-glycans are altered in women with gestational diabetes mellitus. J. Nutr. 2013, 143121906–12.
    1. Grapov D.; Fahrmann J.; Hwang J.; Poudel A.; Jo J.; Periwal V.; Fiehn O.; Hara M. Diabetes associated metabolomic perturbations in NOD mice. Metabolomics 2014, 1–13.
    1. Neville M. C.Milk secretion: An overview: UCHSC: Denver, CO, 1998. .
    1. Dewey K. G.; Nommsen-Rivers L. A.; Heinig M. J.; Cohen R. J. Risk factors for suboptimal infant breastfeeding behavior, delayed onset of lactation, and excess neonatal weight loss. Pediatrics 2003, 1123607–619.
    1. Do Carmo S.; Forest J.-C.; Giguère Y.; Masse A.; Lafond J.; Rassart E. Modulation of apolipoprotein D levels in human pregnancy and association with gestational weight gain. Reprod. Biol. Endocrinol. 2009, 7192.
    1. Basaran A. Pregnancy-induced hyperlipoproteinemia: Review of the literature. Reprod. Sci. 2009, 165431–437.
    1. Wahlig J. L.; Bales E. S.; Jackman M. R.; Johnson G. C.; McManaman J. L.; MacLean P. S. Impact of high-fat diet and obesity on energy balance and fuel utilization during the metabolic challenge of lactation. Obesity 2012, 20165–75.
    1. Stefan N.; Hennige A. M.; Staiger H.; Machann J.; Schick F.; Kröber S. M.; Machicao F.; Fritsche A.; Häring H.-U. α2-Heremans–Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 2006, 294853–857.
    1. Pal D.; Dasgupta S.; Kundu R.; Maitra S.; Das G.; Mukhopadhyay S.; Ray S.; Majumdar S. S.; Bhattacharya S. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat. Med. 2012, 1881279–1285.
    1. Stefan N.; Häring H.-U. Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans. Nat. Med. 2013, 194394–395.
    1. Wathes D. C.; Clempson A. M.; Pollott G. E. Associations between lipid metabolism and fertility in the dairy cow. Reprod., Fertil. Dev. 2012, 25148–61.
    1. Yang J.; Robert C. E.; Burkhardt B. R.; Young R. A.; Wu J.; Gao Z.; Wolf B. A. Mechanisms of glucose-induced secretion of pancreatic-derived factor (PANDER or FAM3B) in pancreatic β-cells. Diabetes 2005, 54113217–3228.

Source: PubMed

3
订阅