Part 1 - Coronary angiography with gadofosveset trisodium: a prospective feasibility study evaluating injection techniques for steady-state imaging

Mark A Ahlman, Fabio S Raman, Scott R Penzak, Jianing Pang, Zhaoyang Fan, Songtao Liu, Neville Gai, Debiao Li, David A Bluemke, Mark A Ahlman, Fabio S Raman, Scott R Penzak, Jianing Pang, Zhaoyang Fan, Songtao Liu, Neville Gai, Debiao Li, David A Bluemke

Abstract

Background: The purpose of this study was to define an optimal injection protocol for 5-10 min duration navigator-based coronary MR angiography using an intravascular gadolinium-based contrast agent (GBCA), which is better suited for steady-state coronary MR angiography than conventional GBCAs.

Methods: Using projections from pharmacokinetic models of the intravascular concentration of gadofosveset, a dual-injection protocol was formulated and tested on 14 healthy human subjects. Modified Look-Locker inversion recovery (MOLLI) sequences were used for T1 mapping at 3 Tesla to evaluate the concentration of tracer in the aorta over the scanning interval.

Results: Pharmacokinetic models for a bolus plus slow infusion technique at a 5, 10, and 15 min steady state intravascular concentration was compared to single bolus curves. The 70 %/30 % bolus/slow infusion technique resulted in the highest intravascular concentration over a 5 min scan duration. Similarly, the 60 %/40 % bolus/slow infusion technique was projected to be ideal for image acquisition duration of 5-10 min. These models were confirmed with T1 maps on normal volunteers. Arterial-venous mixing of contrast was achieved within 90 s of the beginning of the bolus.

Conclusions: Gadofosveset injection is optimized for the lowest intravascular T1 time for 5-10 min duration MR angiography by bolus injection of 60-70 % of the total dose followed by slow infusion of the remainder of the total dose. This protocol achieves rapid and prolonged steady state intravascular concentrations of the GBCA that may be useful for prolonged image acquisition, such as required for navigator-based coronary MR angiography at 3 Tesla.

Trial registration: ClinicalTrials.gov identifier: NCT01130545 NCT01130545 , registered as of May 25, 2010.

Figures

Fig. 1
Fig. 1
Example of axial MOLLI images acquired of the heart. T1 time (in milliseconds) were derived from T1 maps using the MOLLI pulse sequence in the descending aorta (DAo, white arrow) before injection and at subsequent time points after injection. MOLLI – modified Look-Locker inversion recovery, LV left ventricle, RV right ventricle, RA right atrium, DAo descending aorta
Fig. 2
Fig. 2
Pharmacokinetic model for the intravascular concentration of gadofosveset. Using various dual injection techniques, a fixed percentage of the total volume is injected as the bolus phase, followed by remainder as a slow infusion over a targeted duration to maintain a steady state concentration. A 100 % bolus is also plotted for reference. The 2-compartment model assumes immediate injection and arterial-venous mixing (equilibrium)
Fig. 3
Fig. 3
In vivo behavior of dual-injection technique with gadofosveset. Examples of intravascular T1 time with injection protocols in normal volunteers for the (a) 70 %/30 % bolus/infusion, (b) 60 %/40 %, (c) 100 % bolus, and a composite of all subjects imaged (d). Time zero indicates the beginning of infusion

References

    1. Barkhausen J, Hunold P, Jochims M, Eggebrecht H, Sabin G, Erbel R, et al. Comparison of gradient-echo and steady state free precession sequences for 3D-navigator MR angiography of coronary arteries. RöFo. 2002;174(6):725–30.
    1. Bi X, Deshpande V, Simonetti O, Laub G, Li D. Three-dimensional breathhold SSFP coronary MRA: a comparison between 1.5 T and 3.0 T. J Magn Reson Imaging. 2005;22(2):206–12. doi: 10.1002/jmri.20374.
    1. Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D. Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 T. Investig Radiol. 2008;43(9):663–8. doi: 10.1097/RLI.0b013e31817ed1ff.
    1. Bhat H, Ge L, Nielles-Vallespin S, Zuehlsdorff S, Li D. 3D radial sampling and 3D affine transform-based respiratory motion correction technique for free-breathing whole-heart coronary MRA with 100% imaging efficiency. Magn Reson Med. 2011;65(5):1269–77. doi: 10.1002/mrm.22717.
    1. Pang J, Sharif B, Arsanjani R, Bi X, Fan Z, Yang Q, et al. Accelerated whole-heart coronary MRA using motion-corrected sensitivity encoding with three-dimensional projection reconstruction. Magn Reson Med. 2015;73(1):284–91. doi: 10.1002/mrm.25097.
    1. Pang J, Bhat H, Sharif B, Fan Z, Thomson LE, LaBounty T, et al. Whole-heart coronary MRA with 100% respiratory gating efficiency: self-navigated three-dimensional retrospective image-based motion correction (TRIM) Magn Reson Med. 2014;71(1):67–74. doi: 10.1002/mrm.24628.
    1. Maki JH, Prince MR, Londy FJ, Chenevert TL. The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging. 1996;6(4):642–51. doi: 10.1002/jmri.1880060413.
    1. Prompona M, Cyran C, Nikolaou K, Bauner K, Reiser M, Huber A. Contrast-enhanced whole-heart MR coronary angiography at 3.0 T using the intravascular contrast agent gadofosveset. Investig Radiol. 2009;44:369. doi: 10.1097/RLI.0b013e3181a40d1d.
    1. Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, et al. MS-325: albumin-targeted contrast agent for MR angiography. Radiology. 1998;207(2):529–38. doi: 10.1148/radiology.207.2.9577506.
    1. Raman FS, Nacif MS, Cater G, Gai N, Jones J, Li D, et al. 3.0-T whole-heart coronary magnetic resonance angiography: comparison of gadobenate dimeglumine and gadofosveset trisodium. Int J Card Imaging. 2013;29(5):1085–94. doi: 10.1007/s10554-013-0192-z.
    1. Hu P, Chan J, Ngo LH, Smink J, Goddu B, Kissinger KV, et al. Contrast-enhanced whole-heart coronary MRI with bolus infusion of gadobenate dimeglumine at 1.5 T. Magn Reson Med. 2011;65:392–8. doi: 10.1002/mrm.22706.
    1. Wagner M, Rief M, Asbach P, Vogtmann T, Huppertz A, Beling M, et al. Gadofosveset trisodium-enhanced magnetic resonance angiography of the left atrium--a feasibility study. Eur J Radiol. 2010;75(2):166–72. doi: 10.1016/j.ejrad.2009.04.052.
    1. Prompona M, Cyran C, Nikolaou K, Bauner K, Reiser M, Huber A. Contrast-enhanced whole-heart coronary MRA using Gadofosveset 3.0 T versus 1.5 T. Acad Radiol. 2010;17(7):862–70. doi: 10.1016/j.acra.2010.02.009.
    1. Kelle S, Thouet T, Tangcharoen T, Nassenstein K, Chiribiri A, Paetsch I, et al. Whole-heart coronary magnetic resonance angiography with MS-325 (Gadofosveset) Med Sci Monit. 2007;13(11):CR469–74.
    1. Lu H, Clingman C, Golay X, van Zijl P. Determining the longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magn Reson Med. 2004;52(3):679–82. doi: 10.1002/mrm.20178.
    1. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40:715–24. doi: 10.1097/01.rli.0000184756.66360.d3.
    1. Lee JJ, Liu S, Nacif MS, Ugander M, Kawel N, Sibley CT, et al. Myocardial T1 and Extracellular Volume Fraction Mapping at 3 Tesla. J Cardiovasc Magn Reson. 2011;13(1):75. doi: 10.1186/1532-429X-13-75.
    1. Chiribiri A, Morton G, Nagel E. Gadofosveset injection for magnetic resonance angiography. Imaging in Medicine. 2010;2(4):383–93. doi: 10.2217/iim.10.39.
    1. Chiribiri A, Botnar RM, Nagel E. Magnetic resonance coronary angiography: where are we today? Current cardiology reports. 2013;15(2):1–9. doi: 10.1007/s11886-012-0328-0.
    1. Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, et al. T1 mapping of the myocardium: intra-individual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson. 2012;14(1):26. doi: 10.1186/1532-429X-14-26.
    1. Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley C, et al. T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson. 2012;14(1):27. doi: 10.1186/1532-429X-14-27.

Source: PubMed

3
订阅